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Abstract: Dimensionality reduction based on random projection (RP) includes two problems, namely,
the dimensionality is limited by the data size and the class separability of the dimensionality reduction
results is unstable due to the randomly generated projection matrix. These problems make the RP
algorithm unsuitable for large-size hyperspectral image (HSI) classification. To solve these problems,
this paper presents a new partitioned RP (PRP) algorithm and proves its rationality in theory. First,
a large-size HSI is evenly divided into multiple small-size sub-HSIs. Afterwards, the projection
matrix that maximizes the class separability is selected from multiple samplings in which the class
dissimilarity measurement is defined as large inter-class distance and small intra-class variance. By
using the same projection matrix, each small-size sub-HSI is projected to generate a low dimensional
sub-HSI, thereby generating a low dimensional HSI. Next, the minimum distance (MD) classifier
is utilized to classify the low dimensional HSI obtained by the PRP algorithm. Finally, four real
HSIs are used for experiments, and three of the most popular classification algorithms based on RP
are selected as comparison algorithms to validate the effectiveness of the proposed algorithm. The
classification performance is evaluated with the kappa coefficient, overall accuracy (OA), average
accuracy (AA), average precision rate (APR), and running time. Experimental results indicate that
the proposed algorithm can obtain reliable classification results in a very short time.

Keywords: random projection; minimum distance classifier; hyperspectral remote sensing image
classification; dimensionality reduction

1. Introduction

The wavelength range of hyperspectral images (HSIs) is continuous and dense from
visible light to short-wave infrared [1]. Compared with panchromatic images and multi-
spectral remote sensing images, HSIs contain richer spectral information and finer texture
information of ground objects, which provide a solid data foundation for high-precision
ground object classification [2,3]. Therefore, more and more researchers apply it to the fields
of medicine [4,5] and agriculture [6,7]. However, for commonly configured hardware, the
classification of large-size HSIs has some problems, such as long running time and a large
amount of data. The most straightforward solution is to perform dimensionality reduction
before HSI classification, thereby reducing the computational load through dimensionality
reduction [8,9].

Popular HSI dimensionality reduction methods are roughly divided into two types:
band selection [10,11] and feature extraction [12,13]. The band selection method directly
discards most of the bands and only selects a part of the bands for subsequent HSI analysis.
Currently, Zhang et al. [14] proposed a marginalized graph self-representation (MGSR)
method for unsupervised hyperspectral band selection, which considers the differences
between different homogenous regions. First, super-pixel segmentation is used to construct
the structure map of HSI [15]. Additionally, considering the relationship between adjacent
pixels of the same segmentation, the damage is marginalized by an alternating optimization
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algorithm to search for the best band selection scheme. Computation of the graph matrix
takes a lot of time, and the result of super-pixel segmentation affects the result of subsequent
band selection. Mou et al. [16] studied deep reinforcement learning models for HSI analysis
and first proposed an automatic learning strategy for band selection under the framework
of the Markov decision. The method first used a parametric method to rank the bands
and then utilized a deep reinforcement learning model to select the best subset of bands.
Because it is a learning-based algorithm, it takes much time during the training phase to
explore efficient band selection strategies. Feature extraction generally uses mapping to
linearly transform all bands of HSIs. Tamilarasi et al. [17] proposed a new dimensionality
reduction and classification technique, which extracted and classified road and building
features from HSIs with high accuracy. This technique combined independent component
analysis (ICA) [18], principal component analysis (PCA) [19], fully convolutional network
(FCN) [20], and support vector machine (SVM) models [21]. The above dimensionality
reduction method is cumbersome and cannot be calculated quickly.

The random projection (RP) algorithm is an emerging dimensionality reduction tech-
nique that satisfies the Johnson-Lindenstrauss (JL) lemma [22–24]. The algorithm does not
require any prior knowledge of the original data [25]. In addition, a randomly generated
projection matrix is used to achieve dimensionality reduction, where the column vector
of the projection matrix is unit length. This makes the RP algorithm easier to implement
and more convenient to calculate [26]. Additionally, the RP algorithm can guarantee that
the distance between any pair of vectors before and after projection is kept within a small
range [27,28]. Because many machine learning algorithms use the distance information
between vectors to operate and execute [29,30], the dataset obtained after dimensionality re-
duction by the RP algorithm can be well applied to machine learning algorithms. Therefore,
more and more researchers apply it to the dimensionality reduction of HSI data.

At present, many researchers interested in the field of the RP algorithm have proposed
many classification algorithms based on the RP algorithm [31,32]. These methods can be
grouped into three types: combined feature extraction method [33], separability-boosting
method [34], and ensemble method [35]. Combined feature extraction methods combine
RP and other feature extraction methods. Zhao and Mao [36] proposed a semi-random
projection method, which uses linear discriminant analysis (LDA) to calculate each column
vector in the projection matrix and calculates the projection matrix by repeating it multi-
ple times. It strikes a good balance between computational complexity and classification
accuracy. This method can effectively preserve the distance invariance of the data when
dealing with high-dimensional data. Deegalla and Bostrom [37] compared the dimen-
sionality reduction effect of PCA and the RP algorithm and combined PCA and RP to
propose a nearest-neighbor classification algorithm. This method not only improves effi-
ciency but also enables more efficient nearest-neighbor classification. However, the method
cannot achieve dimensionality reduction when dealing with large-size HSIs. Separability-
boosting methods preserve the class separability of the original data during projection.
Zhao et al. [38] proposed a new tighter RP with minimal intra-class variance (TRP-MIV)
algorithm for HSI classification, which supplied a promising way for HSI dimensionality
reduction. Nevertheless, when the number of hyperspectral vectors is very large, the dimen-
sionality reduction effectiveness of the TRP-MIV algorithm is still limited. The ensemble
methods combine RP and the fuzzy clustering algorithm. Rathore et al. [39] studied the
cumulative agreement fuzzy c-means (CAFCM) algorithm, which uses RP for generating
multiple dimensionality reduction results. In addition, Anderlucci et al. [40] proposed
a model-based high dimensional data clustering method based on the idea of ensemble
methods. The method first generates a set of low dimensional independent projection
results and performs model-based clustering on each of them. Then, the projection of the
best grouping structure is displayed, and the final partition is obtained by aggregating
the clusters found in the projection by consensus. However, the dimensionality reduction
results produced by each projection are only guaranteed to be like the original data and
cannot be applied to classification tasks. The RP algorithm has the following shortcom-
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ings in large-size HSI classification. (1) The lowest projection dimensionality of the RP
algorithm is independent of the high dimensionality, which is positively correlated with
the number of hyperspectral vectors [41]. The larger number of hyperspectral vectors, the
larger the lowest projection dimensionality. (2) Different dimensionality reduction results
will be generated by different projection matrices, which lead to the class separability of
dimensionality reduction results being very unstable. Thus, the RP algorithm cannot play a
dimensionality reduction effect on the HSI with a large number of hyperspectral vectors,
which is not conducive to large-size HSI classification.

Aiming at the above problems existing in the RP algorithm in large-scale dimensional-
ity reduction and classification, an HSI classification algorithm based on partitioned RP
(PRP) is proposed. Firstly, the PRP algorithm is proposed by means of image division, and
the distance preservation of the hyperspectral vector pair after partitioning is still satisfied
from two perspectives within each sub-HSI and between any two different sub-HSIs. In ad-
dition, a classifier based on the PRP algorithm is designed, in which the optimal projection
matrix is determined according to the principle of large inter-class distance and small intra-
class variance, and minimum distance (MD) [42,43] is used to classify the low dimensional
HSI received by the PRP algorithm. The experimental results show that the PRP algorithm
can project the large-size HISs into a subspace with a lower dimensionality than the RP
algorithm, and the proposed classification algorithm can obtain good classification results.
The structure of this paper is organized as below. Sections 2 and 3 give the materials and
the proposed algorithm, respectively. The experimental results and discussion are provided
in Sections 4 and 5. Finally, this paper is concluded in Section 6.

2. Materials

This paper uses four publicly available datasets with validation data, namely, real
Pavia Centre, Salinas, Chikusei, and LongKou [44,45] images. The four images are respec-
tively located in Pavia Centre in northern Italy, Salinas in Northwestern Indiana, Chikusei
in Japan, and LongKou in China. Details of these images are listed in Table 1, including
download address, year, sensor, spatial resolution, and number of bands. Spatial resolution
represents the actual distance on the ground represented by a pixel.

Table 1. Details of four real HSIs.

Pavia Centre Salinas Chikusei LongKou

URL for data source

http://www.ehu.eus/
ccwintco/index.php/

Hyperspectral_
Remote_Sensing_

Scenes (accessed on 12
July 2021)

http://www.ehu.eus/
ccwintco/index.php/

Hyperspectral_
Remote_Sensing_

Scenes (accessed on 12
July 2021)

https://naotoyokoya.
com/Download.html
(accessed on 11 April

2016)

http://rsidea.whu.edu.
cn/resource_WHUHi_
sharing.htm (accessed

on 1 October 2020)

Year 2003 1998 2014 2018

Sensor ROSIS AVIRIS Headwall
Hyperspec-VNIR-C Nano-Hyperspec

Spatial resolution 1.3 m 3.7 m 2.5 m 0.463 m
Number of bands 102 204 128 270

It is worth noting that this paper uses HSIs of sizes 1096 × 531, 512 × 127, 1000 × 800,
and 550 × 400, with homogeneous regions of 9, 13, 7, and 9, respectively, as shown in
Figure 1. The classes included in the Pavia Centre image are water, trees, meadows, self-
blocking bricks, bare soil, asphalt, bitumen, tiles, and shadows. The classes included in
the Salinas image are broccoli green weeds2, fallow, fallow rough plow, fallow smooth,
stubble, celery, grapes untrained, soil vineyard develop, corn senesced weeds, lettuce
romaine 4 week, lettuce romaine 5 week, lettuce romaine 6 week, and lettuce romaine
7 week. The classes included in the Chikusei image are water, bare soil (school), bare soil
(farmland), natural plants, glass, rice field (grown), and row crops. The classes included
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in the LongKou image are corn, cotton, sesame, broad leaf soybean, narrow leaf soybean,
rice, water, roads and houses, and mixed weed. Specifically, Figure 1 shows the false-color
images, the standard images (i.e., validation data), and the legends. The band combinations
used to replace the RGB bands in the false-color images of the four images are (49, 31, 15),
(29, 20, 12), (54, 35, 22) and (130, 65, 18), respectively. Moreover, the specific classes are
explained in the legends. In addition, because many vectors in these images do not contain
any valid information, these vectors are discarded before applying. Therefore, the numbers
of spectral vectors in these scenes are 109,794, 20,655, 9435, and 204,542, respectively.
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Figure 1. Real HSIs. (a1–d1) represent the false-color images of the Pavia Centre, Salinas, Chikusei,
and LongKou images, respectively. (a2–d2) represent the standard classified images (i.e., valida-
tion data) of four real HSIs, respectively. (a3–d3) represent the legends for all classes of four real
HSIs, respectively.

3. The Proposed Algorithm
3.1. Random Projection

RP is an effective dimensionality reduction tool that can keep the distance between
vector pairs before and after projection unchanged. The usual version of the RP algorithm
is defined below [26].

Theorem 1. Supposing that A is any S × D matrix, where S is the data size and D is the feature
dimensionality. Its row vector is as in D dimensional spaces, where s is the index of row vectors and
s = 1, . . . , S. For constants ε and β > 0, an integer KRP is chosen as follows,

KRP ≥ K0
RP =

4 + 2β
ε2

2 −
ε3

3

log S (1)

where K0
RP is the lowest projection dimensionality of the RP algorithm. RRP is any D × KRP

matrix whose entry belongs to the standard normal Gaussian distribution. The S × KRP matrix

B =
1√
KRP

ARRP (2)

is the projection of A in KRP dimensional subspaces. The row vector of matrix B is bs. Then, with
the probability of no distortion at least

PRP = 1 − S −β (3)

for any two row vectors as and as′ of matrix A, the distance of the row vectors bs and bs′ of matrix
B is preserved as follows,

(1 − ε) ||as − as ′||2 ≤ ||bs − bs ′||2 ≤ (1 + ε) ||as − as ′||2 (4)

where s′ is the index of row vectors.

It can be seen from the above theorem that RP is a computationally simple method.
The order of forming a projection matrix RRP and projecting the high dimensional data A
into the KRP dimensional subspaces is O (D × KRP × S). If the number of vectors S becomes
larger, the lowest projection dimensionality K0

RP will become larger according to Equation
(1) and the probability of no distortion PRP will also become larger according to Equation
(3). Therefore, when the number of vectors is large, although the probability of no distortion
is high, the low dimensionality KRP may be higher than the high dimensionality D, so the



Remote Sens. 2022, 14, 2194 6 of 24

dimensionality reduction effect cannot be achieved. Besides, the generation of the projection
matrix is completely random, which will lead to instability in the class separability of the
generated dimensionality reduction result. In simpler terms, it cannot guarantee that the class
separability of the dimensionality reduction result is good for the classification task.

3.2. Partitioned Random Projection

The lowest projection dimensionality K0
RP of the RP algorithm is strictly limited by the

parameters ε, β, and the number of hyperspectral vectors S. The Pavia Centre image with
102 bands is taken as an example, of which the number of hyperspectral vectors is 109,794.
When the fixed parameters ε = 1 and β = 0.5, according to Equation (1), the lowest projection
dimensionality of the RP algorithm is 349, which is much higher than the number of bands,
which is 102. Therefore, when processing large-size HSIs, if the number of bands is very
low, the RP algorithm will not be able to achieve the dimensionality reduction of large-size
HSIs. Considering this problem, a new PRP algorithm is introduced in this section. PRP, a
dimensionality reduction algorithm, can project a large-size HSI into a low dimensional
subspace without serious distortion on pairwise distance.

The HSI can be expressed as a matrix U = [u1; . . . ; us; . . . ; uS], where S is the number of
hyperspectral vectors, s is the index of hyperspectral vectors, and us is the sth hyperspectral
vector. The implementation of the PRP algorithm involves partitioning an HSI into multiple
sub-HSIs evenly according to the horizontal direction and then projecting each sub-HSI
into a low dimensional subspace. Specifically, the matrix of the HSI can also be defined
as U = [U1; . . . ; Um; . . . ; UM], where M is the number of sub-matrices, and m is the index
of sub-matrices. Moreover, Um = [um

1; . . . ; um
n; . . . ; um

N] is the mth N × D sub-matrix,
where n is the index of hyperspectral vectors in the sub-matrix, and N is the number
of hyperspectral vectors in the sub-matrix that is the same for all sub-matrices. Thus,
S = M × N. Note that the dimensionality reduction method in this paper requires that an
HSI must be divided equally. Otherwise, the first few hyperspectral vectors can be regarded
as edges and discarded so that the HSI can be divided equally.

Next, the rationality of the distance preservation property guaranteed by this partition
method is proven from two perspectives: within each sub-matrix and between any two
different sub-matrices.

The distance changes before and after the projection of any two hyperspectral vectors
within each sub-matrix are explained as follows. The conclusion of this theorem comes
from the RP algorithm (Theorem 1).

Theorem 2. For constants ε and β > 0, an integer KPRP such that

KPRP ≥ K0
PRP =

4 + 2β
ε2

2 −
ε3

3

log N =
4 + 2β
ε2

2 −
ε3

3

log
S
M

(5)

where K0
PRP is the lowest projection dimensionality of the proposed algorithm. RPRP is a D ×

KPRP matrix whose entry belongs to the standard normal Gaussian distribution. The N × KPRP
sub-matrix

Vm =
1√

KPRP
UmRPRP (6)

is the projection of sub-matrix Um in KPRP dimensional subspaces. The low dimensional hyperspec-
tral vector of sub-matrix Vm is vm

n. Namely, Vm = {vm
1; . . . ; vm

n; . . . ; vm
N}. Then, according to

Equation (3), with the probability of no distortion at least

PPRP1 = 1 − N −β = 1 − (S/M)−β (7)

for any two hyperspectral vectors um
n and um

n ′ of sub-matrix Um, the distance of the two low di-
mensional hyperspectral vectors vm

n and vm
n ′ of sub-matrix Vm is preserved based on Equation (4),

(1 − ε) ||um
n − um

n ′||2 ≤ ||vm
n − vm

n ′||2 ≤ (1 + ε) ||um
n − um

n ′||2 (8)
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where n′ is the index of hyperspectral vectors in the sub-matrix.

According to Equation (5), the lowest projection dimensionality K0
PRP decreases with

the increase in the number of sub-matrices M and the decrease of parameter β. Moreover,
with the increase of parameter ε, the change trend of lowest projection dimensionality
K0

PRP is to first decrease and then increase. Comparing Equation (1) and Equation (5),
the lowest projection dimensionality of the PRP algorithm is smaller than that of the RP
algorithm under the same parameters. Note that when M is equal to one, it is the projection
without partitioning, that is, the RP algorithm. When M is equal to S, there is only one
hyperspectral vector in each sub-matrix. Meanwhile, the lowest projection dimensionality
is zero, according to Equation (5), so it can be projected into any space with a dimensionality
greater than zero.

A projection matrix is randomly generated, and each sub-matrix is projected into the
same low dimensional space with this projection matrix. On this basis, the distance changes
before and after the projection of any two hyperspectral vectors in any two different sub-
matrices are introduced. It is described in detail as Theorem 3. (Proof of Theorem 3 can be
found in Appendix A).

Theorem 3. For constants ε and β > 0, an integer KPRP is chosen according to Equation (5). RPRP
is a D × KPRP matrix whose entries belong to the standard normal Gaussian distribution. The
sub-matrix Vm is obtained based on Equation (6). Then, for the same ε, β, KPRP, and RPRP, with
the probability of no distortion at least

PPRP2 = 1 − 2N −β = 1 − 2 (S/M)−β (9)

for any hyperspectral vector um
n in sub-matrix Um and hyperspectral vector um′

n ′ in another
sub-matrix Um′ , the distance of the low dimensional hyperspectral vector vm

n in sub-matrix Vm

and low dimensional hyperspectral vector vm′
n ′ in another sub-matrix Vm′ is preserved,

(1 − ε) ||um
n − um′

n ′||2 ≤ ||vm
n − vm′

n ′||2 ≤ (1 + ε) ||um
n − um′

n ′||2 (10)

where m′ is the index of sub-matrices. Significantly, m′ is not equal to m (m′ 6= m).

Combining Theorem 2 and Theorem 3, the distance before and after the projection of any
two hyperspectral vectors in HSIs can also remain unchanged with an acceptable probability
of no distortion. Specifically, the minimum value of probabilities of no distortion within each
sub-matrix and between two different sub-matrices is taken as the probability of no distortion
of the PRP algorithm. The projection of the matrix U = [u1; . . . ; us; . . . ; uS] can be expressed
as a matrix V = [v1; . . . ; vs; . . . ; vS], where the low dimensional hyperspectral vector vs is the
projection of us. The proposed algorithm is interpreted as Theorem 4.

Theorem 4. For constants ε and β > 0, an integer KPRP is chosen according to Equation (5). RPRP is a
D × KPRP matrix whose entries belong to the standard normal Gaussian distribution. The N × KPRP
sub-matrix Vm is defined based on Equation (6) to present the projection of Um in KPRP dimensional
subspaces. Then, for the same ε, β, KPRP and RPRP, with the probability of no distortion at least

PPRP = min [PPRP1, PPRP2] = 1 − 2 (S/M)−β (11)

for any two hyperspectral vectors us and us′ of matrix U, the distance of the hyperspectral vectors vs
and vs′ of matrix V remains as Equation (4).

The PRP algorithm can greatly reduce the dimensionality of HSIs, thereby reducing
the computational load of subsequent HSI classification. The probability of no distortion
PPRP increases as the parameter β increases and the number of sub-matrices M decreases
based on Equation (11). Theorem 4 demonstrates that the PRP algorithm does not introduce
a significant distortion in HSIs. Meanwhile, the proposed algorithm can also gain a high
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probability of no distortion in the case of dividing a small number of sub-matrices. In this
case, the proposed algorithm can approximate the distance between each hyperspectral
vector pair while projecting HSI into a space with a lower dimensionality than the RP
algorithm. Thus, considering Theorem 1 and Theorem 4 comprehensively, the PRP algo-
rithm is feasible in calculation and dimensionality reduction for large-size HSI. Moreover,
when the number of sub-matrices is too small, the proposed algorithm cannot ensure the
achievement of the purpose of dimensionality reduction. Therefore, this paper gives the
minimum number of sub-matrices that guarantees high dimensionality can be reduced.
Additionally, it is defined as Lemma 1. (Proof of Lemma 1 can be found in Appendix B).

Lemma 1. Suppose that 1.5 > ε > 0 and β > 0, then

M > S× e−
D
24 ⇔ K0 ≤ D (12)

Figure 2 presents an example of dividing an HSI with five million hyperspectral
vectors into one million sub-HSIs. The number of hyperspectral vectors N in each sub-HSI
is five in Figure 2, which is calculated by dividing the number of hyperspectral vectors S in
the HSI by the number of sub-HSIs M, that is, N = S/M = 5,000,000/1,000,000 = 5.
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Figure 2. A partition of an HSI with five million hyperspectral vectors into one million sub-HSIs.

3.3. HSI Classification Based on the PRP Algorithm

The classification based on the PRP algorithm is introduced from two aspects. One is
the optimization strategy of the projection matrix to increase the class separability of the
dimensionality reduction result with the assistance of samples, and then the optimization
strategy is applied to the PRP algorithm. The other is the HSI classification algorithm inte-
grates the PRP algorithm for dimensionality reduction and MD classifier for classification.

3.3.1. Optimization Strategy of the Projection Matrix

Because the projection matrix is generated randomly, there is a case where the dimen-
sionality reduction result with low class separability is not suitable for subsequent HSI
classification. Therefore, it is necessary to exploit a projection matrix that is applicable for
the classification task. The optimization strategy of the projection matrix is to increase
the class separability of the low dimensional HSI. The class dissimilarity measurement is
defined as large inter-class distance and small intra-class variance. The calculation method
is the sum of the distance between classes divided by the variance within the class. Specifi-
cally, with the aid of samples, the projection matrix that maximizes the class dissimilarity is
selected among multiple samplings.
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Samples matrix for all classes of an HSI is expressed as X. Specifically, X = [X1; . . . ;
Xl; . . . ; XL], where l is the index of classes and L is the number of classes known as a prior.
And Xl is the lth samples matrix,

Xl =


xl

11 xl
12 · · · xl

1D
xl

21 xl
22 · · · xl

2D
...

...
. . .

...
xl

H1 xl
H2 · · · xl

HD

 (13)

where H is the number of samples in a single class, which is the same for each class. The
selection of the projection matrix RPRP is very important for the HSI classification. To be
specific, many matrices are generated based on the standard normal Gaussian distribution.
These matrices constitute a sampling matrix of the projection matrix, Q = [Q1, . . . , Qt, . . . ,
QT], where t is the index of sampling, T is the number of samplings, and Qt is the projection
matrix of the tth sampling. Then, each projection matrix Qt is used to project the samples
matrix X. The low dimensional samples matrix W = [W1, . . . , Wt, . . . , WT] is the projection
of samples matrix X by the sampling matrices Q. Moreover, its calculation is derived from
Equation (6), that is, Wt = XQt/

√
KPRP. Specifically, Wt = [Wt1, . . . , Wtl, . . . , WtL], where

Wtl is the low dimensional samples matrix of class l of the tth sampling. That is,

Wtl =


wtl

11 wtl
12 · · · wtl

1KPRP
wtl

21 wtl
22 · · · wtl

2KPRP
...

...
. . .

...
wtl

H1 wtl
H2 · · · wtl

HKPRP

 (14)

The feature mean hyperspectral vector of low dimensional samples matrix Wtl of class
l of the tth sampling is described as

Wtl
mean =

1
H

Wtl =
1
H

[
wtl

11 + · · ·+ wtl
H1 wtl

12 + · · ·+ wtl
H2 · · · wtl

1KPRP
+ · · ·+ wtl

HKPRP

]
(15)

Next, distance between lth class and l′th class divided by the variance of the lth class
is defined as follows,

It
ll′ =

∥∥∥Wtl
mean −Wtl′

mean

∥∥∥2

var
(

Wtl
mean

) (16)

where l′ is the index of classes. Then, the class dissimilarity is calculated as follows,

Jt =
L

∑
l=1

L

∑
l′=1

It
ll′ (17)

The better projection matrix is the t*th sampled projection matrix with the large class
dissimilarity. Then,

t∗ = arg max
t=1,...,T

Jt (18)

Finally, the projection matrix RPRP takes to the t*th sampled projection matrix Qt*,
where t* is obtained by Equation (18),

RPRP = Qt∗ (19)

The projection matrix selection strategy can increase the separability of dimensionality
reduction results, thereby increasing the accuracy of HSI classification.
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3.3.2. HSI Classification Based on Optimization Strategy of the Projection Matrix

HSI classification algorithm is described in this section. First, the low dimensional sam-
ples matrix Y = [Y1; . . . ; Y l; . . . ; YL] is the projection of samples matrix X by the projection
matrix obtained according to Equation (19) with KPRP dimensionalities. To be special,

Yl =


yl

11 yl
12 · · · yl

1KPRP
yl

21 yl
22 · · · yl

2KPRP
...

...
. . .

...
yl

H1 yl
H2 · · · yl

HKPRP

 (20)

is the lth low dimensional samples matrix. The feature mean hyperspectral vector of the lth
low dimensional samples is expressed as

Yl
mean =

1
H

Yl =
1
H

[
yl

11 + · · ·+ yl
H1 yl

12 + · · ·+ yl
H2 · · · yl

1KPRP
+ · · ·+ yl

HKPRP

]
(21)

Consequently, an HSI is denoted by U = [u1, . . . , us, . . . , uS], where s is the index of
hyperspectral vectors, S is the number of hyperspectral vectors, and us is a hyperspectral
vector with D dimensionalities. The low dimensional HSI V = [v1, . . . , vs, . . . , vS] is
obtained by the PRP algorithm, where vs is a low dimensional hyperspectral vector with
KPRP dimensionalities. Then, the final classes to which the low dimensional HSIs belong
are determined by executing the MD classifier. That is to calculate the distance between the
low dimensional hyperspectral vector and the samples feature mean hyperspectral vector
of each class.

The distance matrix is characterized as Z = [z1, . . . , zs, . . . , zS], where zs is the sth
distance vector. Especially, zs = [zs1, . . . , zsl, . . . , zsL], where zsl is the distance between
a low dimensional hyperspectral vector vs and feature mean hyperspectral vector Y l

mean
according to Equation (21), and the calculation method is as follows,

zsl = ||Y l
mean − vs|| (22)

The determined classification result can be defined as f = [f 1, . . . , fs, . . . , fS] in the HSI
classification process. That is, the class with the smallest distance is the class to which the
low dimensional hyperspectral vector belongs,

fs = argminzs = arg min
l=1,...,L

{zsl} (23)

3.4. The Complexity of the Proposed Algorithm

The space and time complexity of the proposed algorithm are analyzed here. This section
studies the complexity in two parts: the optimization strategy of the projection matrix and the
HSI classification algorithm based on the optimization strategy of the projection matrix.

The main contribution of the complexity of the optimization strategy of the projec-
tion matrix is to calculate the projection matrix Q. To update Q, it takes O(HLD) space
and O(HLDKPRP) time for the calculation of the low dimensional sample matrix W. Fur-
thermore, O(HKPRP) space and O(THL2KPRP) time are required to calculate the class
dissimilarity Jt. The main contribution of the complexity of the HSI classification algorithm
based on the optimization strategy of the projection matrix is to calculate the distance
matrix Z. To update Z, it takes O(MND) space and O(MNDKPRP) time for the calculation
of the low dimensional image V . Furthermore, O(MNKPRP) space and O(MNLKPRP) time
are required to calculate the distance zsl. To sum up, the overall space complexity of the pro-
posed algorithm is O(MND), and the overall time complexity of the proposed algorithm is
O(HLDKPRP + THL2KPRP + MNDKPRP + MNLKPRP).

3.5. The Flow Chart of the Proposed Algorithm

The detailed process of the proposed Algorithm 1 is described as follows.
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Algorithm 1 The detailed process of the proposed classification algorithm

Input: HSI U and samples X.
Output: Classification result f .
Step 1. Initializing parameters ε, β, L, T, H, M, S.
Step 2. Dividing an HSI evenly U = [U1; . . . ; UM].
Step 3. Calculating the lowest projection dimensionality K0

PRP by using Equation (5).
Step 4. Forming the projection matrix RPRP by using Equation (19).
Step 5. Generating a low dimensional sub-HSI Vm by using Equation (6).
Step 6. Getting the low dimensional HSI V = [V1; . . . ; VM].
Step 7. Generating the feature mean hyperspectral vector of the low dimensional samples of lth
class Yl

mean by using Equation (21).
Step 8. Calculating the distance zsl by using Equation (22).

In addition, Figure 3 illustrates a flow chart of the proposed classification algorithm in
this paper.
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4. Experiments and Results

To validate the effectiveness of the proposed algorithm, classification experiments in real
HSIs were performed on a PC with Intel (R) Xeon (R) CPU E7-8880 v3, 2.30 GHz and 96.0 GB
memory using MATLAB R2020a. The experimental parameters are set as shown in Table 2. The
table contains the number of samplings T, the number of samples in each class H, the number
of sub-HSI M, and low dimensionalities. It can be seen from Table 2 that the KPRP is less than
three-quarters of that of the KTRP and one-eighth of that of the KRP, which greatly reduces the
amount of computation. In addition, the KRP is larger than the high dimensionality D, which
means that the RP algorithm cannot achieve the purpose of dimensionality reduction.

To verify the effectiveness of the projection matrix selection strategy, taking the
LongKou image as an example, the randomly generated projection matrix (projection
matrix without selection) is used as a comparison algorithm. Figure 4 shows the change
of the spectral curve of the mean vector of samples of 9 classes of the LongKou image
to evaluate the distance change between classes in the dimensionality reduction results.
The horizontal coordinates represent the number of bands, and the vertical coordinates
represent the intensity value. Figure 4a–c represent spectral curves of all classes without
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dimensionality reduction, dimensionality reduction without matrix selection, and dimen-
sionality reduction based on matrix selection, with legends for all classes, respectively.
Comparing the three images in Figure 4, the low dimensional spectral curves obtained by
the projection matrix selection strategy have good separability for each class in each dimen-
sionality, which fully reflect the superiority of the projection matrix optimization strategy.

Table 2. Projection parameter settings in the experiment.

T H M KPRP KTRP KRP

Pavia Centre image 10 10 36,598 33 100 349
Salinas image 10 10 2295 66 86 299

Chikusei image 10 10 3145 33 79 275
LongKou image 10 10 102,271 21 106 367
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For the sake of validating the proposed classification algorithm, the TRP-MIV al-
gorithm, the algorithm for combining PRP and MGSR (PRP-MGSR), and the CAFCM
algorithm are used as comparison algorithms. It is worth noting that the classification
experiments of all experimental images have been tested 100 times. For all algorithms,
the classification results with the highest accuracy in 100 trials are exhibited in Figure 5.
Figure 5(a1–a4,b1–b4,c1–c4,d1–d4) show the classification results for four experimental
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images by the proposed algorithm and the TRP-MIV, PRP-MGSR, and CAFCM algorithms,
respectively. Additionally, Figure 5(a5–d5) are legends for all classes of the four experimen-
tal images. Meanwhile, to better show the classification effect of the proposed algorithm,
Figure 6 superimposes the final classification results of HSIs on the respective false-color
images (see Figure 1(a1–d1) for details). Figure 6 shows the outlines of the superposition
results of the four experimental images of the four algorithms.
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(The red lines are the outline of the classification results).

From a qualitative point of view, compared with the other three comparison algo-
rithms, the classification performance of the proposed algorithm is superior, which proves
the reliability of the proposed classification algorithm for large-size HSIs. According to
qualitative experimental results, the TRP-MIV algorithm has misclassification for complex
HSIs with large hyperspectral vectors. In addition, comparing the PRP-MGSR algorithm,
the proposed algorithm simultaneously considers the inter-class distance and intra-class
variance and can achieve better classification results. The proposed algorithm preserves the
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class separability so that each class is classified exactly. In theory, the more dimensionalities
are reduced, the more the loss of spectral information will be, which results in an unsatis-
factory classification effect. However, the proposed algorithm attains a classification effect
better than the CAFCM algorithm for four experimental images. Moreover, the CAFCM
algorithm needs to be projected into a space with a higher dimensionality than the high
dimensionality so that it cannot achieve the effect of dimensionality reduction.

The kappa coefficient, overall accuracy (OA), average accuracy (AA), average preci-
sion rate (APR), and running time are calculated to effectively evaluate the classification
performance. Tables 3–6 reveal the quantitative evaluation results of four experimental
images, respectively. The values in the tables are the mean and variance of the kappa
coefficient, OA, AA, APR, and running time calculated by different algorithms for 100 trials,
in which the values in brackets are the variance and those not in are the mean.

Table 3. Accuracy evaluation of classification results for the Pavia Centre image. (The values in
brackets are the variance of 100 trials, and those not in are the mean).

The Proposed Algorithm TRP-MIV PRP-MGSR CAFCM

Kappa coefficient 0.83
(0.02)

0.81
(0.05)

0.79
(0.02)

0.38
(0.11)

OA/% 89.65
(1.03)

88.02
(2.94)

87.34
(1.25)

53.72
(11.68)

AA/% 78.99
(1.94)

75.43
(5.88)

73.22
(3.02)

38.03
(5.65)

APR/% 79.80
(1.70)

74.49
(5.81)

72.72
(2.60)

34.11
(6.01)

Running time/s 1.16
(0.09)

2.93
(0.29)

10,209.72
(1538.24)

5798.18
(855.03)

Table 4. Accuracy evaluation of classification results for the Salinas image. (The values in brackets
are the variance of 100 trials, and those not in are the mean).

The Proposed Algorithm TRP-MIV PRP-MGSR CAFCM

Kappa coefficient 0.91
(0.00)

0.87
(0.01)

0.88
(0.00)

0.59
(0.14)

OA/% 91.98
(0.23)

89.00
(0.71)

90.20
(0.38)

63.77
(11.47)

AA/% 85.97
(0.92)

84.24
(1.25)

80.14
(1.70)

48.95
(11.68)

APR/% 79.89
(0.66)

75.57
(1.20)

75.28
(1.33)

45.32
(17.93)

Running time/s 0.37
(0.10)

3.93
(0.11)

100.08
(8.65)

1623.16
(226.78)

From a quantitative perspective, the classification results of the proposed algorithm
surpass other algorithms. The running time of the proposed method for four image
classification experiments is about 1.16, 0.37, 0.21, and 2.42 s, and the mean values of
their kappa coefficient are larger than 0.82. All evaluation parameters intuitively state
that the proposed algorithm accurately classifies the real HSIs. According to quantitative
experimental results, although the mean values of AA and APR are less than 80% for
the Pavia Centre image, the mean value of OA is more than 89%. For the Salinas image,
the variance value of the kappa coefficient of the proposed algorithm in 100 trials is
approximately equal to zero, which indicates that the classification results of the proposed
algorithm are relatively stable. In addition, for the Chikusei image, the mean values of
all evaluation parameters of the proposed algorithm are at least 0.05, 3.59%, 4.73%, 7.28%,
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and 7.57 times larger than those of the comparison algorithms, which fully reflects the
superiority of the proposed classification algorithm. Although the kappa coefficient of the
proposed algorithm is not very high for the LongKou image, the accuracy of the proposed
algorithm is still higher than that of all comparison algorithms. Additionally, the values of
OA, AA, and APR outperform the comparison algorithms by at least 16.51%, 21.35%, and
35.19%. In summary, the proposed algorithm can obtain reliable classification results in a
very short time.

Table 5. Accuracy evaluation of classification results for the Chikusei image. (The values in brackets
are the variance of 100 trials, and those not in are the mean).

The Proposed Algorithm TRP-MIV PRP-MGSR CAFCM

Kappa coefficient 0.97
(0.01)

0.92
(0.05)

0.90
(0.01)

0.35
(0.10)

OA/% 97.74
(0.38)

94.15
(3.36)

92.93
(0.74)

48.52
(7.77)

AA/% 96.66
(1.06)

87.89
(8.85)

91.63
(0.81)

36.58
(9.75)

APR/% 94.57
(0.56)

87.29
(7.67)

85.00
(1.93)

33.62
(6.54)

Running time/s 0.21
(0.76)

1.59
(0.16)

52.20
(11.34)

289.21
(34.70)

Table 6. Accuracy evaluation of classification results for the LongKou image. (The values in brackets
are the variance of 100 trials, and those not in are the mean).

The Proposed Algorithm TRP-MIV PRP-MGSR CAFCM

Kappa coefficient 0.82
(0.01)

0.62
(0.01)

0.62
(0.03)

0.47
(0.01)

OA/% 86.24
(0.51)

68.90
(0.81)

69.73
(2.93)

56.84
(1.03)

AA/% 77.94
(1.57)

56.59
(2.12)

55.51
(3.51)

33.69
(2.56)

APR/% 74.23
(1.50)

52.05
(1.65)

52.78
(2.36)

39.04
(3.21)

Running time/s 2.42
(0.24)

7.76
(0.40)

7215.75
(835.60)

16,698.02
(1512.06)

5. Discussion

In order to verify the superiority of the proposed classification algorithm, all classi-
fication experiments have been tested 100 times. The TRP-MIV algorithm [38] has better
classification results for HSIs with a large inter-class distance. The PRP-MGSR algorithm is
relatively stable in classification results in multiple tests. This is because the MGSR algo-
rithm [14] has strong applicability to various data, but the running time is relatively long.
The CAFCM algorithm [39] is more likely to be disturbed by noise, and the classification
results of the algorithm are better for images with less noise. The proposed classification
algorithm considers the class dissimilarity, which can reach the ideal classification result in
a shorter time.

In order to use the proposed algorithm more widely, this section discusses the influence
of the projection parameters on dimensionality reduction and the influence of the number
of samples and the number of samplings on the classification accuracy. First, the focus
is to analyze the effects of parameters ε, β, and the number of sub-HSIs M on the lowest
projection dimensionality K0

PRP. According to Equation (5), taking the Salinas image as
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an example, Figure 7 represents the change curves of the lowest projection dimensionality
with different parameters, where the horizontal coordinates are different parameters, and
the vertical coordinates are K0

PRP. Figure 7a is the change curve of ε and K0
PRP when

β = 0.5 and M = 2295 (according to Table 2), where the position of the black dotted line
is the inflection point. When ε is equal to 1.5, the denominator term of Equation (5) is 0,
so the curve in Figure 7a is discontinuous at ε = 1.5. When ε < 1.5, K0

PRP first decreases
and then increases with the increase of ε and takes the minimum value when ε = 1. When
ε > 1.5, K0

PRP increases with the increase of ε and is always negative, which is meaningless
for dimensionality reduction. Figure 7b is the change curve of β and K0

PRP when ε = 1 and
M = 2295. As seen in Figure 7b, K0

PRP increases with the increase of β. Figure 7c is the
change curve of M and K0

PRP when ε = 1 and β = 0.5. The position of the black dotted line
is the number of bands, and the values on the upper side and the left side of the boundary
line cannot achieve dimensionality reduction. As seen from Figure 7c, K0

PRP decreases
with the increase of M. Therefore, to reduce computation and memory, it is necessary to
project the HSI to a smaller dimensional space. Then, it is best to set ε to 1 within (0, 1.5);
β should be set as small as possible, and M should be set as large as possible. Next, in
order to reflect the impact of the number of samples H and the number of samplings T on
classification performance, the change curves in the values of OA with different T and H
are shown in Figure 8. The number of samples and samplings are taken from 10 to 650,
respectively. Figure 8 shows that as T and H increase, the OA value varies only in a small
range. The larger the number of samplings and samples, the smaller the range of variation.
Among them, Figure 8a shows that with the increase of T, the error of the OA value is
1%, and Figure 8b shows that with the increase of H, the error of the OA value is 2.5%.
Therefore, in practical applications, only a small number of samples and few projection
matrix samplings can be used to obtain better classification results. In addition, in order
to ensure that the PRP algorithm can still maintain the distance after the HSI is divided,
the number of samples in each class in this paper is set to be the same. The focus of future
research will be on dividing an HSI into sub-HSIs with different numbers of hyperspectral
vectors to improve utility.
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6. Conclusions

A new dimensionality reduction method, the PRP algorithm, is presented for large-size
HSIs in this paper. It is worth mentioning that this paper also theoretically proves the
distance preservation property of the PRP algorithm in detail. The PRP algorithm projects
the large-size HSI into a space with a lower dimensionality than the RP algorithm. Therefore,
when applied to the large-size HSI, the PRP algorithm no longer has the problem of the
inability to reduce the dimensionality. In addition, the proposed algorithm utilizes the large
inter-class distance and small intra-class variance as the class dissimilarity measurement
for selecting the projection matrix, which can preserve the class separability of the low
dimensional HSI well. Compared with TRP-MIV, PRP-MGSR, and CAFCM algorithms, the
proposed algorithm has the shortest running time and the highest classification accuracy.
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Appendix A

Proof of Theorem 3. To facilitate understanding, some basic statistical concepts and
properties that need to be used in the proof are introduced.

Markov inequality. The Markov inequality defines an upper bound on the probability
that a function of a random variable is greater than or equal to a positive number. Let X be
a non-negative random variable α > 0, and then,

Pr(X ≥ α) ≤ E(X)

α
(A1)

Standard normal distribution. If α obeys the standard normal distribution, then

p(α) =
1√
2π

exp
(
−α2

2

)
(A2)

Function integral. When 1/2 > a > 0,

+∞∫
−∞

exp
(
− x2

2a2

)
dx =

√
2πa (A3)

Taylor expansion. A formula that describes the value around a point of an exponential
function is as follows.

exp(−ε) = 1− ε +
ε2

2
− ε3

6
+ · · · (A4)

The specific proof is given below. Provided that the probability that the distance
between the vectors before and after projection exceeds the range of (1 ± ε) is Pdistortion

Pdistortion = Pr
(∥∥∥vm

n − vm′
n′

∥∥∥2
≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
∨
∥∥∥vm

n − vm′
n′

∥∥∥2
≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
)

(A5)

Either of these two cases signifies that the distance exceeds a factor of ε. Without loss
of generality, thinking of the situation Pr (||vm

n − vm′
n ′||2 ≥ (1 + ε) ||um

n − um′
n ′||2),

suppose that

C =
KPRP

∥∥∥vm
n − vm′

n′

∥∥∥2

∥∥∥um
n − um′

n′

∥∥∥2 (A6)

Then,

Pr
(∥∥∥vm

n − vm′
n′

∥∥∥2
≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
)
= Pr(C ≥ (1 + ε)KPRP) (A7)

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
https://naotoyokoya.com/Download.html
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For any constant λ > 0, continue to construct the above formula, then,

Pr
(∥∥∥vm

n − vm′
n′

∥∥∥2
≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
)
= Pr(exp(Cλ) ≥ exp((1 + ε)KPRPλ)) (A8)

The probability that the projected distance will remain the same can be linked to the
mathematical expectation of the projected distance according to Equation (A1). Then, the
first scaling can be done for Pr (||vm

n − vm′
n ′||2 ≥ (1 + ε) ||um

n − um′
n ′||2),

Pr
(∥∥∥vm

n − vm′
n′

∥∥∥2
≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
)
≤ E(exp(Cλ))

exp((1 + ε)KPRPλ)
(A9)

Meanwhile, according to Equation (6), the distance between vector vm
n and vector

vm′
n ′ is ∥∥∥vm

n − vm′
n′

∥∥∥2
=

∥∥∥∥ 1√
KPRP

R(um
n − um′

n′ )

∥∥∥∥ (A10)

Then,

C =
KPRP

∥∥∥vm
n − vm′

n′

∥∥∥2

∥∥∥um
n − um′

n′

∥∥∥2 =

∥∥∥R(um
n − um′

n′ )
∥∥∥2

∥∥∥um
n − um′

n′

∥∥∥2 (A11)

Supposing that Ck = Rk (um
n − um′

n ′ ). Because it is the weighted average of the
independent standard normal variables, it belongs to the standard normal distribution.
Hence,

C =
KPRP

∑
k=1

∥∥∥Rk(um
n − um′

n′ )
∥∥∥2

∥∥∥um
n − um′

n′

∥∥∥2 =
1∥∥∥um

n − um′
n′

∥∥∥2

KPRP

∑
k=1

C2
k (A12)

Since Ck is independent and identically distributed, Pr (||vm
n − vm′

n ′||2 ≥ (1 + ε)
||um

n − um′
n ′||2) defined in Equation (6) can be calculated as follows,

Pr
(∥∥∥vm

n − vm′
n′

∥∥∥2
≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
)
≤ E(exp(Cλ))

exp((1+ε)KPRPλ)

=
∏

KPRP
k=1 E(exp(C2

k λ))
exp((1+ε)KPRPλ)

=

(
E(exp(C2

1 λ))
exp((1+ε)λ)

)KPRP

(A13)

Intriguingly, because C1 obeys the standard normal distribution, then according to
Equation (A2)

E
(
exp(C2

1λ)
)

=
+∞∫
−∞

exp(C2
1λ)p(C1)dC1

= 1√
2π

+∞∫
−∞

exp(C2
1λ) exp

(
−C2

1
2

)
dC1

= 1√
2π

+∞∫
−∞

exp
(
−( 1

2 − λ)C2
1

)
dC1

= 1√
2π

+∞∫
−∞

exp
(
− 1

2 (1− 2λ)C2
1

)
dC1

(A14)

Based on Equation (A3), combining the above equation and Equation (A13),

E
(

exp(C2
1λ)
)
=

1√
2π

√
2π

1√
1− 2λ

=
1√

1− 2λ
(A15)
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Therefore,

Pr
(∥∥∥vm

n − vm′
n′

∥∥∥2
≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
)
≤
(

E(exp(C2
1 λ))

exp((1+ε)λ)

)KPRP

=
(

1√
1−2λ exp((1+ε)λ)

)KPRP

=
(

exp(−2(1+ε)λ)
1−2λ

) KPRP
2

(A16)

In order to perform the next scaling on the base term of the above equation, we provide
that

g(λ) =
exp(−2(1 + ε)λ)

1− 2λ
(A17)

At this point, its minimum value can be found at λ0 = ε/2 (1 + ε), and g (λ0) = (1 + ε)
exp(−ε) here. And then,

Pr
(∥∥∥vm

n − vm′
n′

∥∥∥2
≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
)
≤ ((1 + ε) exp(−ε))

KPRP
2 (A18)

Therewith, according to Equation (A4), the probability that a single hyperspectral
vector pair satisfies the distance preservation property is

Pr
(∥∥∥vm
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∥∥∥2
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∥∥∥um
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)
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2

(
− ε2

2
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ε3

3
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(A19)

Similarly,

Pr
(∥∥∥vm
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∥∥∥2
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∥∥∥um
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∥∥∥2
)
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2

(
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2
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3
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(A20)

According to the above derivation, the probability of distortion is as follows,

Pr
(∥∥∥vm
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≥ (1 + ε)

∥∥∥um
n − um′

n′

∥∥∥2
∨
∥∥∥vm

n − vm′
n′

∥∥∥2
≤ (1− ε)

∥∥∥um
n − um′

n′

∥∥∥2
)

≤ 2 exp
(

KPRP
2

(
− ε2

2 + ε3

3

)) (A21)

Since the number of hyperspectral vector pairs is N2, the probability of making these
hyperspectral vector pairs undistorted based on Equation (5) can be calculated as below,

1− N2 · 2 exp
(

KPRP
2

(
− ε2

2 + ε3

3

))
≥ 1− 2N2 · exp(−(2 + β) log N)

= 1− 2 exp(−(2 + β) log N + 2 log N)
= 1− 2 exp(−β log N)
= 1− 2N−β

(A22)

�

Appendix B

Proof of Lemma 1. For Theorem 4, if the lowest projection dimensionality K0
PRP is smaller

than the high dimensionality D based on Equation (5), then

4 + 2β
ε2

2 −
ε3

3

log
S
M
≤ D (∀ε, β > 0) (A23)

For β > 0, the item 4 + 2β is larger than 4. Moreover, S/M is the number of hyperspectral
vectors in the sub-HSI N, which is larger than 1. Therefore, the logarithmic item log S/M is
larger than zero. When the range of the parameter ε is larger than 1.5, the item ε2/2 − ε3/3
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is smaller than 0. Therefore, the value on the left side of the above equation is always
negative. At this time, the above equation is always established, so this paper will not
discuss it. In addition, if the range of the parameter ε is 0 to 1.5, the item ε2/2 − ε3/3 is
larger than 0. Thus, the value on the left side of the above equation is always positive here.
Then,

4 + 2β

D
log

S
M
≤ ε2

2
− ε3

3
(∀1.5 > ε> 0,β > 0) (A24)

The right side can be seen as a function g (ε) = ε2/2 − ε3/3 of ε. Within this range,
the function obviously increases first and then decreases. g (ε) takes the maximum value
g (ε0) = 1/6 at ε0 = 1. Thus, in case the above inequality is always established in the range
of 1.5 ≥ ε ≥ 0, then

4 + 2β

D
log

S
M
≤ ε2

2
− ε3

3
≤ 1

6
(∀1.5 > ε> 0,β > 0) (A25)

Moreover, when the parameter β is equal to zero, the left side takes the value
(4 log S/M)/D. Similarly, for β > 0, if the above equation always holds, then

4
D

log
S
M

<
4 + 2β

D
log

S
M
≤ 1

6
(A26)

In this way, the minimum number of sub-matrices to ensure dimensionality reduction
can be calculated as follows,

4
D

log
S
M

<
1
6

log
S
M

<
D
24

S
M

< e
D
24

M> Se−
D
24

(A27)
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