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Abstract: This study evaluates formaldehyde (HCHO) over the U.S. from 2006 to 2015 by comparing
ground monitor data from the Air Quality System (AQS) and a satellite retrieval from the Ozone
Monitoring Instrument (OMI). Our comparison focuses on the utility of satellite data to inform
patterns, trends, and processes of ground-based HCHO across the U.S. We find that cities with
higher levels of biogenic volatile organic compound (BVOC) emissions, including primary HCHO,
exhibit larger HCHO diurnal amplitudes in surface observations. These differences in hour-to-hour
variability in surface HCHO suggests that satellite agreement with ground-based data may depend
on the distribution of emission sources. On a seasonal basis, OMI exhibits the highest correlation
with AQS in summer and the lowest correlation in winter. The ratios of HCHO in summer versus
other seasons show pronounced seasonal variability in OMI, likely due to seasonal changes in the
vertical HCHO distribution. The seasonal variability in HCHO from satellite is more pronounced
than at the surface, with seasonal variability 20–100% larger in satellite than surface observations. The
seasonal variability also has a latitude dependency, with more variability in higher latitude regions.
OMI agrees with AQS on the interannual variability in certain periods, whereas AQS and OMI do
not show a consistent decadal trend. This is possibly due to a rather large interannual variability in
HCHO, which makes the small decadal drift less significant. Temperature also explains part of the
interannual variabilities. Small temperature variations in the western U.S. are reflected with more
quiescent HCHO interannual variability in that region. The decrease in summertime HCHO in the
southeast U.S. could also be partially explained by a small and negative trend in local temperatures.

Keywords: formaldehyde; trend; OMI; satellite; monitor; annual; seasonal; temperature

1. Introduction

Formaldehyde (HCHO) is a carcinogen and mutagen that has been categorized by
the U.S. Environmental Protection Agency (EPA) as one of 187 Hazardous Air Pollutants
(HAPs). HCHO can be either primary (emitted) or secondary (chemically produced).
Global background HCHO concentration primarily comes from the oxidation of methane or
methanol [1,2]. In the continental boundary layer (PBL), HCHO is most often formed by the
oxidation of non-methane volatile organic compounds (VOCs) [3,4]. The dominant biogenic
precursor of HCHO is isoprene, which comes from vegetation and can quickly oxidize
to form HCHO [5,6]. The reaction of HCHO with OH, as well as HCHO photolysis [7],
among other loss pathways, results in a lifetime of HCHO on the order of hours [8]. On
shorter time scales, biomass burning and wildfires are also sources for instantaneous
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elevated HCHO [9]. The major emission sources for anthropogenic VOCs include fuelwood
production, utilization of gasoline, and biomass burning [10,11].

To support air quality management and public health assessments, the U.S. maintains
several networks and programs to monitor HCHO at the surface. These include the In-
teragency Monitoring of Protected Visual Environments (IMPROVE), National Air Toxics
Trends Stations (NATTS), and Photochemical Assessment Monitoring Stations (PAMS)
networks. Data from these networks are archived through the EPA Air Quality System
(AQS) Ambient Monitoring Archive (AMA) for hazardous air pollutants (available at
https://www3.epa.gov/ttnamti1/toxdat.html#data; accessed on 30 August 2017). Several
methods are used for in situ measurements of HCHO, including spectroscopic, colorimet-
ric, chromatographic, and fluorometric techniques, which are discussed in detail by [12].
Among these techniques, the EPA commonly uses the chromatographic technique with
2,4-Dinitrophenylhydrazine (DNPH) [13] to measure HCHO, though there may be some
bias with this method, such as interference from ozone, nitrogen dioxides, and water
vapor [14–17].

Between 2006 and 2015, there were 338 ground-based monitors operated by states, local
agencies, and tribes throughout the U.S. in compliance with EPA standards on archiving and
measuring HCHO. Of these 338 total stations, the measurement frequency of HCHO varies,
with stations reporting either 1 h (10 stations), 3 h (41 stations), or 24 h concentrations
(322 stations). Most stations measured HCHO by collecting air samples via cartridges
coated with DNPH and analyzing those samples using the High-Performance Liquid
Chromatography (HPLC) method. Even among these monitors, there are significant gaps
in the data records of every station.

Satellite observations offer the potential to complement this limited surface monitor-
ing network. Satellite retrievals of HCHO bear relevance to air quality planning as an
indicator of HCHO exposure, as well as VOC emissions, VOC reactivity, and associated
ozone formation. This study compares satellite and ground-based HCHO with the goal of
assessing spatial and temporal HCHO patterns and the appropriate role of satellite vertical
column density (VCD) as a potential proxy for near-surface HCHO.

Currently, four polar-orbiting satellite instruments detect HCHO, including: the
Ozone Monitoring Instrument (OMI) onboard the Aura satellite [18], which has a local
overpass time in the early afternoon at 13:30 and a spatial resolution of 24 × 13 km2; the
Tropospheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor, with
the same overpass time as OMI, but finer resolution [19] of 3.5 × 5.5 km2 as of August
2019; the Ozone Mapping and Profiler Suite (OMPS) on the Suomi NPP satellite [20], which
also has an overpass time of 13:30, but with a spatial resolution of 50 × 50 km2; and the
Global Ozone Monitoring Experiment-2 (GOME-2) on the Metop satellite series [21], with a
local overpass time of 09:30 and a spatial resolution of 80 × 40 km2. In addition to these
polar-orbiting satellites, a number of instruments are planned for or have recently reached
geostationary orbit: Tropospheric Emissions: Monitoring of Pollution (TEMPO), from the
National Aeronautics and Space Administration (NASA; spatial resolution: 2 km × 4.5 km)
in 2022; Sentinel-4 from the European Space Agency (ESA; spatial resolution: 8 km × 8 km)
in 2023; and Geostationary Environment Monitoring Spectrometer (GEMS), from the Korea
Aerospace Research Institute (KARI; spatial resolution: 7 km × 8 km), which launched
successfully in early 2020. These satellites will provide continuous observation of HCHO
over North America, Europe, and Asia, respectively [22–24].

Satellite observations of HCHO have been used to advance the understanding of
atmospheric chemistry, e.g., refs. [25–33], as well as for air quality management to protect
public health [34–37]. Because of HCHO’s strong detectability from space, its local footprint
due to a short atmospheric lifetime, and its high yield from VOCs, HCHO has been used as
an indicator of total VOCs in the atmosphere [38–40]. Combined with satellite derived NO2,
HCHO has been used to support the assessment of the ozone production regime [36,41,42]
and has even been used in decision-making contexts [43].

https://www3.epa.gov/ttnamti1/toxdat.html#data
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As satellite data usage expands, there is interest in the relevance of satellite products to
better characterize emissions and near-surface concentrations. Much of work has focused
on satellite observations of NO2. For example, ref. [44] used satellite observations of
NO2 to constrain emissions of NOx (NO + NO2) at the surface, ref. [45] used a model-
derived scaling factor to scale satellite observations of NO2 to near-surface amounts, and
ref. [46] found similar responses to weather variables for both surface and column NO2.
Ref. [47] found a good correlation between surface and column NO2, discovering that both
datasets captured weekly cycles over Leicester, England; ref. [48] found strong seasonal
and weekly cycles in both datasets over Israeli cities in 2006; and ref. [49] found that both
datasets showed a small weekly cycle in NO2 in Beijing. Similar work with satellite HCHO
includes studies by [50,51], who evaluated relationships among 17 years of satellite-based
HCHO, biogenic isoprene emissions, and land cover datasets, by [52–54], who characterized
anthropogenic emissions, and by [34], who used satellite HCHO to evaluate differing
chemical transport model configurations over the continental U.S., and following [45],
explored the utility of scaling satellite HCHO to near-surface amounts, and by [55], who
derived surface HCHO amounts from TROPOMI and surface monitor observations using a
neural network technique.

Fewer studies have compared satellite and surface HCHO observations. The majority
of previous studies using both in situ and remote measurements of HCHO have focused
on global patterns and VOC emissions. Between 2004 and 2014, ref. [26] found that
OMI HCHO decreased in the eastern U.S., central South America, and across Europe,
but increased in India and central-eastern China. That same study found that HCHO is
highest in the early afternoon in the mid-latitudes by differencing the morning overpass of
GOME-2 with the afternoon overpass of OMI [26]. Several studies have used satellite-based
HCHO observations to infer the spatial distribution of isoprene over the U.S., e.g., [4,38,56].
Between 2005 and 2014, OMI HCHO increased over the U.S. overall, but decreased in the
southeast [57]. HCHO trends have been found to be largely dependent on temperature and
fire events [26,56,58–61], as well as anthropogenic emission sources [53,57,62,63].

This study informs potential applications of satellite-based HCHO within the health
and air quality communities, which focus on near-surface concentrations. We evaluate the
diurnal, seasonal, and interannual trends for HCHO over the U.S. by comparing HCHO
from satellite retrievals with those from ground-based measurements. We assess HCHO
data availability from EPA monitoring stations (Section 2.1), diurnal cycles (Section 3),
seasonal variability (Section 4), and interannual trends (Section 5). In Section 6, we connect
our results with previous findings to evaluate mechanisms that could potentially explain
some of the observed behaviors. Finally, we conclude our results in Section 7.

2. Data and Methods

We evaluated HCHO for the U.S. between 2006 and 2015 from ground measurements
and satellite retrievals. Ground monitor data for HCHO comes from the EPA Air Quality
System (AQS) Ambient Monitoring Archive (AMA) for hazardous air pollutants, which
includes data collected from the IMPROVE, NATTS, and PAMS networks. Satellite HCHO
observations have been retrieved from the measurements of the NASA Earth Observing
System’s OMI instrument as a part of the Quality Assurance for Essential Climate Variables
project (QA4ECV; available at http://www.qa4ecv.eu/; accessed on 24 July 2019).

2.1. Ground-Based Measurements

In this study, we used AQS HCHO concentrations (µg m−3) which have been con-
verted to local meteorological conditions (using local pressure and temperature) from
standard conditions. Detailed conversion is available in the Quality Assurance Summary
Report for HAPs (https://www3.epa.gov/ttn/amtic/files/toxdata/techmemo2017.pdf;
accessed on 30 August 2017). As described in this report, we eliminated data that are
flagged as non-detect or below measurement detection limit. Of the 338 monitors in the
AMA between 2006 and 2015, we only used data from sites with the DNPH/HPLC method.

http://www.qa4ecv.eu/
https://www3.epa.gov/ttn/amtic/files/toxdata/techmemo2017.pdf
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We choose to use publicly available data in a manner consistent with the use of monitoring
data by air quality managers and by the EPA for the National Air Toxics Assessment.

There are significant gaps in the data records of every station, which we characterize
as the percentage of available data for each available reporting frequency (Table 1). Percent
availability is calculated as the number of available measurements divided by the total
number of possible measurements at each station’s measurement frequency. We find that
no station offered more than 50% data coverage across the 10-year period of analysis.
Ten stations measured HCHO at an hourly frequency, with one site, located at St. Louis,
Missouri, having data coverage of 38% of all days. The other nine stations have below
1% of data coverage. Forty-one sites measured HCHO with a 3 h frequency, but only two
stations in Los Angeles County in California (Burbank and Pico Rivera) had data coverage
over more than 10% of the days in the study period, and these sites only had measurements
in July, August, and September.

Table 1. Number of HCHO ground monitoring stations in the United States, with data distributed by
the EPA AQS. Stations are grouped based on data availability, and by measurement frequency (hourly,
3 h, and 24 h). Data availability is calculated as the percentage of measurements available from
2006 to 2015 relative to the potential number of measurements during this period at the monitor’s
reporting frequency. The three sites used for analysis of the diurnal HCHO cycle are marked in
bold, which include the 1 h site with 30–40% data availability (St. Louis, MO, USA), and the two 3 h
site with 10–20% data availability (Burbank, CA, USA; Pico Rivera, CA, USA). These three sites are
marked as triangle in Figure 1.

Percent Available 1 h Frequency 3 h Frequency 24 h Frequency

0–10% 9 39 230
10–20% 0 2 70
20–30% 0 0 18
30–40% 1 0 3
40–50% 0 0 1

Total stations 10 41 322

For our diurnal analysis, we relied on the three stations that offered >10% data cov-
erage in a 1 h or 3 h measurement frequency. For our seasonal and interannual analyses,
we used data from sites with a 24 h measurement frequency and six or more samplings
of each season throughout 2006 to 2015 continuously. For comparison, only 37 sites have
one or more measurements per month, so we chose the seasonal average basis to include
more monitors. The threshold of six samples each season was selected to balance temporal
and geographic coverage of monitors. For thresholds less than six samples per season,
more monitors would be available (58 monitors at a threshold of five samples per season;
64 monitors with a threshold of one sample per season). For thresholds greater than six
samples per season, fewer monitors would be available (41 monitors at a threshold of
seven samples per season; 10 monitors with a threshold of ten samples per season). We
removed five outlier stations which had significantly large maximum over median values
in each seasonal average (larger than two standard deviations among all stations), since
these sites might not be representative for interannual trend studies and cannot represent
regional conditions. This approach yielded 45 ground monitor stations for the seasonal
and interannual analyses. The black symbols in Figure 1 identify the locations of the AQS
stations used in this study: circles (45 sites) indicate the stations used in seasonal and
interannual analyses; triangles (3 sites) indicate sites included in the diurnal analysis.
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Figure 1. 2006–2015 annual average HCHO vertical column density from OMI. Four U.S. regions
are designated for analysis, with region name aside the map. Overall, for studying diurnal patterns,
there are three sites: two in the Western U.S. and one in the Midwest. These stations are labeled as
triangles. For seasonal and interannual studies, there are 45 AQS stations (10 in the west, 6 in the
Midwest, 14 in the southeast and 15 in the northeast) that are labeled as circles. For more details on
monitoring sites, please see Section 2.1 and Table 1.

2.2. Satellite Observations

We used the HCHO Level-3 product, with horizontal resolution at 0.25◦ × 0.25◦,
from OMI onboard the Aura satellite, for which the U.S. overpass occurs in the early
afternoon. We used the OMI retrieval algorithm from the EU FP7-project QA4ECV
(hereafter abbreviated OMI unless otherwise specified) [64,65]. The QA4ECV algorithm
utilizes a fitting window ranging from 328.5 to 359 nm from OMI. We removed data
with solar zenith angles greater than 70 degrees and cloud fractions greater than 40%.
We also removed data that are quality flagged or influenced by the OMI row anomaly
(http://projects.knmi.nl/omi/research/product/rowanomaly-background; accessed on
24 July 2019). Detailed descriptions of this algorithm are described by [66].

Compared to other instruments with data covering any of our 2006–2015 study years
(GOME2A, GOME2B, OMPS), OMI offers the highest spatial retrieval resolution of HCHO
at 24 × 13 km2 at nadir, as discussed by [67]. Aura’s early afternoon overpass time
corresponds with the average daily peak amount of HCHO at mid-latitudes [26,68]. Fol-
lowing [69], who compared trends in satellite- and ground-based observations of NO2, we
use OMI HCHO VCD. While the total vertical column density indicates the number of
molecules between the satellite and ground, tropospheric HCHO accounts for the majority
of the total column amount. We use OMI HCHO observations for all seasons from 2006 to
2015 and compare with AQS measurements to evaluate OMI’s ability to indicate surface
HCHO trends.

OMI has exhibited a positive drift since 2008, possibly due to instrumental degrada-
tion [70,71]. The QA4ECV algorithm applied a background correction over the remote

http://projects.knmi.nl/omi/research/product/rowanomaly-background
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Pacific to reduce HCHO slant column uncertainty. Note that this approach assumes that
the remote Pacific HCHO is only due to the oxidation of methane [66].

Ref. [56] notes an instrument detection threshold of ~4 × 1015 molec cm−2; here, we
present all values for thoroughness and for the purpose of evaluating whether winter
HCHO values from OMI agree with AQS observations [26,72].

Figure 1 shows oversampled OMI 2006–2015 averaged HCHO for the continental U.S.
On average, HCHO column amounts are higher where precursor emissions of isoprene
are high, e.g., [38]. In particular, the southeastern U.S. shows elevated HCHO column
amounts (≥9 × 1015 molec cm−2). Amounts in other regions are lower, except in areas in
the Western U.S. corresponding to mountainous terrain and national parks, where average
amounts exceed 8 × 1015 molec cm−2. High values may be caused by isoprene emissions
and/or anthropogenic emissions associated with industries, such as oil and gas extraction,
or caused by direct and precursor emissions from fires [73].

Unless otherwise noted, all analyses were conducted with seasonal average data over
a three-month period (DJF: December January February; MAM: March April May; JJA: June
July August; SON: September October November). Although the QA4ECV data would
be appropriate for monthly average analysis, we chose to average by season due to the
limited availability of data from the AQS monitors. We checked the impact of constraining
AQS HCHO data to include only measurements taken when local cloudiness was <40%.
As we screened for cloudiness in the OMI dataset, we found a high correlation (r = 0.999)
between the seasonal mean of all 24 h ground measurements and the seasonal mean of
AQS measurements under the same OMI viewing conditions described above, with the
subset data having a small mean bias (−0.005 µg m−3; Supplementary Material Figure S1).
In order to obtain continuous seasonal data, we used all available AQS data with a 24 h
measurement frequency.

2.3. Emissions Data

We compared AQS and OMI HCHO with the EPA’s National Emissions Inventory
(NEI, available at https://www.epa.gov/; accessed on 23 October 2017). Every three
years, the NEI reports the annual summations from different emissions sources for various
air pollutants. We considered NEI HCHO emissions from biogenic, anthropogenic, and
wildfire sources to assess their contributions to observed HCHO abundance. Biogenic
HCHO comes from vegetation and soil, anthropogenic HCHO is mostly due to fuel com-
bustion and transportation, and wildfire is a single category that contributes significantly
to HCHO amounts in the western U.S. We considered the 2008 NEI in this study for the
diurnal section in which all three diurnal sites have only 2008 HCHO in common. This
NEI includes biogenic emissions calculated using the Biogenic Emission Inventory System
version 3.14 (BEIS) with land use data from the Biogenic Emissions Land use Database
version 3 (BELD3) [74]. We used 2008 NEI county-level data for each station in our diurnal
analysis and state-level data for studying seasonal and interannual trends.

3. Diurnal Cycle of HCHO

Given the limitations of the observational dataset, we focused our analysis on summer
months, when data are consistently available. For our evaluation of HCHO diurnal cycles,
we used data from three urban AQS sites (St. Louis, Burbank, and Pico Rivera) with 1- and
3 h measurement frequencies available in July, August, and September (JAS) from 2006 to
2010. The St. Louis site is located in St. Louis County in Missouri, while both the Burbank
and Pico Rivera sites are located in Los Angeles County in California. We excluded days
without full-day measurements (8 measurements per day for three-hour frequency and
24 measurements per day for hourly frequency). Figure 2 shows JAS mean HCHO for
each year at three diurnal sites (note the different y-axes for each plot, due to the large
differences in HCHO levels across the three sites).

https://www.epa.gov/
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In general, diurnal patterns in HCHO are affected by direct and precursor emissions,
chemical reactions, and vertical and horizontal mixing. Biogenic precursor emissions are
expected to peak in the mid- to late afternoon when photosynthetically active radiation
and temperature are high [75]. Formaldehyde yields from these precursors tend to peak
mid-day with elevated isoprene oxidation [76]. Vertical mixing of trace gases such as
HCHO and its precursors will also vary as diurnal heating drives changes in mixed layer
depth, e.g., ref. [77].

From 2006 to 2010, Burbank and Pico Rivera show clear diurnal trends with peaks
ranging between 5 and 30 µg m−3 around 11:00 LT (Figure 2a,c). Observations at St. Louis
indicate a less significant diurnal pattern, with peak values at 14:00 and 20:00 LT in 2010,
9:00 LT in 2007, and all years showing minima between 4:00 and 5:00 LT (Figure 2b). It is
noteworthy that for both 2007 and 2008, Burbank shows HCHO values over 15 µg m−3,
which are almost three-times greater than concentrations observed in other years (Figure 2a).
Since Burbank is 5 km southwest of the Angeles National Forest, these high concentrations
could be due to significant wildfire emissions in 2007 and 2008. This wildfire enhancement
is consistent with the NEI, which indicates that wildfires yielded 296 tons of HCHO for Los
Angeles County in 2008, compared to 48 tons in 2011 and 36 tons in 2014. However, Pico
Rivera, another station in Los Angeles County, did not record anomalously high HCHO
in 2007 and 2008 (Figure 2c). This could be due to the fact that the Pico Rivera monitor is
20 km south of the Angeles National Forest. In Figure 2, we overlaid the OMI overpass
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time (13:30 LT) for each AQS site and found that with the exception of the St. Louis site in
2009 and 2010, OMI generally passes the sites after the peak in HCHO.

To better describe the amount of diurnal variability at each site, we quantified the
amplitude of the diurnal pattern in AQS data, presented in Table 2. We differentiated
between absolute amplitude (Aabs) and relative amplitude (Arel) and calculated mean
amplitudes from 2006 to 2010 at the three sites. Amplitudes for 2008 were compared with
NEI emissions reported for that year. We defined Aabs as the difference in value between
the daily maximum and minimum, in µg m−3, and Arel as the ratio between Aabs and the
daily average value to represent the difference between the two, expressed as a percentage.
Overall, Burbank and Pico Rivera, with clear diurnal patterns, show larger amplitudes (Aabs
of 5.94 µg m−3 and 4.70 µg m−3, respectively, and Arel of 53.92% and 80.47%, respectively)
than St. Louis (Aabs of 2.74 µg m−3 and Arel of 34.70%; Table 2). These differences are likely
the result of differences in HCHO sources. We extracted NEI emissions for total VOCs
and for HCHO in 2008 where the three sites have data in common (Table 3). In both Los
Angeles and St. Louis counties, direct HCHO emissions only account for a small portion
compared to total VOC emissions, regardless of emission sector. Overall Los Angeles has
four times more total VOC emissions and ten times more direct HCHO emissions than
those in St. Louis. Both counties also indicate more anthropogenic sources of HCHO and
total VOCs than biogenic sources, with different anthropogenic to biogenic ratios.

Table 2. 2006–2010 and 2008 (NEI reported year) mean June, August, September (JAS) diurnal
HCHO amplitudes at the three AQS sites in Figure 2. Aabs is the absolute amplitude, and Arel is the
relative amplitude.

Aabs (µg m−3) Arel (%)

2006–2010 2008 2006–2010 2008

Burbank, CA 5.94 8.05 53.92 38.65
Pico Rivera, CA 4.70 5.13 80.47 91.62
St. Louis, MO 2.74 1.76 34.70 29.86

Table 3. 2008 NEI total VOC and HCHO emissions at St. Louis and Los Angeles county, along with
anthropogenic to biogenic emissions ratio.

Total VOC Emissions (Kilotons) HCHO Emissions (Tons)

St. Louis Los Angeles St. Louis Los Angeles

Biogenic 6.48 70.68 101.43 1213.80
Anthropogenic 36.33 111.75 338.58 2733.73

Wild Fire 0 4.76 0 295.65
Anthro/Bio Ratio 5.61 1.58 3.34 2.25

For total VOC emissions, St. Louis has above five-times more anthropogenic emissions
than biogenic emissions, in which the major anthropogenic source is on-road, non-diesel,
and light-duty vehicles. Direct HCHO emissions at St. Louis also have a higher ratio
between anthropogenic and biogenic sources, in which on-road vehicles from the mobile
sector contribute to more than half of the anthropogenic HCHO emissions. Although Los
Angeles has much higher emissions than St. Louis, it has a lower ratio of anthropogenic to
biogenic VOC and HCHO emissions (~2 versus ~5 in St. Louis). As indicated by [78], the
reactivity of anthropogenic VOCs (emissions mostly coming from motor vehicles) remains
consistent with temperature, but the reactivity of biogenic VOCs grows exponentially with
temperature. Therefore, higher contributions of anthropogenic emissions could explain the
lack of a diurnal cycle in St. Louis County compared to the two sites in Los Angeles County.

However, since we only use three sites and they are all in urban areas, these results
might have a sample size and location bias. Hourly retrievals of HCHO from geostationary



Remote Sens. 2022, 14, 2191 9 of 19

satellites, when available, could be used to evaluate how anthropogenic versus biogenic
emissions affect the diurnal cycle of HCHO over wider areas.

4. Regional HCHO Seasonality Analysis

To assess seasonal patterns in HCHO, we divided the continental U.S. into four
geographical regions (shown in Figure 1) generally following regions defined by the U.S.
Census. There are 6 AQS stations in the Midwest; these have a humid continental climate
(hot summer) and crops as the dominant Plant Functional Type (PFT). There are 15 AQS
sites in the Northeast; these have humid continental climate with a cool summer, and
broadleaf trees as the dominant PFT. The southeast has 14 stations, a humid subtropical
climate, and a mixture of broadleaf and fine leaf trees, shrubs, crops, and grass as the PFTs.
The west has 10 sites, a mixture of Mediterranean, semi-arid, and desert climate, and shrubs
and grassland as the PFTs. Since AQS sites are not evenly distributed in each zone, they
might not be representative of the entire region. For consistency, we used OMI coincident
pixels at these 45 AQS sites for all of the AQS-OMI comparison analyses.

4.1. Overall AQS-OMI Seasonal Correlation

Figure 3 compares HCHO AQS and OMI observations for each season at 45 ground
monitor stations. Abundance of HCHO varies seasonally, with greater amounts of biogenic
precursors in warm seasons at all sampling sites (corresponding with the 45 ground
monitors). To obtain continuous winter averages, we combined January and February data
with December data from the previous year. For these seasonal evaluations, we considered
2007 to be the first year of analysis, which includes December 2006. Each symbol represents
seasonal HCHO averaged from 2007 to 2015 at one AQS station, with symbols color-coded
by region.

As shown in Figure 3, correlations between AQS and OMI peak in summer and drop to
a minimum in winter. This result is consistent with [35], who reported a larger contribution
of near-surface HCHO in summer months, and a lower vertical gradient in winter. The
summer has a larger fraction of column HCHO in the boundary layer, consistent with the
positive correlation between AQS and OMI in warm months.

We find a positive correlation between AQS and OMI HCHO in all four geographical
regions for every season except for winter, where the correlations becomes negative or
insignificant for most regions. This could be due to the fact that winter has (1) greater
solar zenith angles in the northern hemisphere, (2) frequent cloud coverage, and (3) lower
HCHO emissions that are below the OMI detection limit. AQS and OMI have consistently
high agreement in the Northeast (r = 0.49, 0.65, 0.87, and 0.56 for DJF, MAM, JJA, and
SON, respectively), and a slightly weaker but consistent correlation in the west (r = 0.25,
0.61, 0.71, and 0.67 for DJF, MAM, JJA, and SON, respectively). AQS and OMI show high
agreement in the Midwest and southeast during JJA, but weak or even negative correlation
in other seasons.
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Figure 3. Spatial correlation of 2007–2015 average HCHO from 45 AQS sites (x-axis) and coincident
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in different regions are shown in the legend. Each panel represents average values for: (a) winter,
(b) spring, (c) summer, and (d) autumn.

4.2. Seasonal Variability

We evaluated seasonal variability by comparing the HCHO ratios of summer to the
other three seasons. Previous studies indicate that in the U.S., summertime HCHO amounts
are higher than in winter due to higher summertime temperatures, leading to an increase
in biogenic VOC emissions and HCHO production [4,58,72]. This increase is characterized
by the seasonal variability in surface-level HCHO, estimated by the GEOS-Chem model
using the ratio of yearly mean to summer amounts. For both AQS (measured in µg m−3)
and OMI (measured in 1015 molec cm−2), we calculated the unitless ratio of the summer
JJA average to winter DJF average, JJA to spring MAM average, and JJA to autumn SON
average. These ratios are given in Figure 4 for each region as box plots.
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mean, and cycles represent extreme values.

Overall, as seen in Figure 4, both AQS and OMI HCHO have summer to other season
ratios >1 in all four regions, with peak ratios in JJA/DJF and similar ratios between
JJA/MAM and JJA/SON, indicating a clear seasonal cycle with maximum HCHO in
summer, minimum HCHO in winter, and similar amounts in spring and autumn. For all
four regions, OMI shows more pronounced ratios than AQS, which reflects the greater
variability in column amounts compared to near-surface amounts seen in Figure 3. Among
those regions, OMI ratios mostly bias high in the higher latitude regions in the Midwest
and Northeast by a factor or 1.3 to 2.8 depending on different seasons compared to AQS,
despite these regions having strong correlation between AQS and OMI in summer from
Figure 3. OMI ratios have less overestimation in the two lower latitude regions in the
southeast and west, though still bias high with a factor between 1.2 to 1.3, with larger bias
in winter (up to 1.9 greater than AQS ratios).

5. Interannual Trends

In Section 4.2, we showed that HCHO exhibits a strong seasonal cycle. To assess
HCHO’s interannual variability between 2006 and 2015, we deseasonalized the seasonal
mean values for each region, using observations from all 45 AQS stations and collocated
OMI data. We also calculated the line of best fit for the deseasonalized data in each region.
Endpoints are SON average 2006 and SON 2015 to avoid seasonality affecting the trend.
Figure 5 shows the mean deseasonalized HCHO for AQS and OMI in each region (solid
lines). These plots are overlaid with collocated seasonal average 2 m temperature from the
North American Regional Reanalysis (NARR) [79], to indicate the role of temperature in
the variability of each data set. The slopes from the linear regression and the associated
standard errors are indicated in each panel.



Remote Sens. 2022, 14, 2191 12 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

5. Interannual Trends 
In Section 4.2, we showed that HCHO exhibits a strong seasonal cycle. To assess 

HCHO’s interannual variability between 2006 and 2015, we deseasonalized the seasonal 
mean values for each region, using observations from all 45 AQS stations and collocated 
OMI data. We also calculated the line of best fit for the deseasonalized data in each region. 
Endpoints are SON average 2006 and SON 2015 to avoid seasonality affecting the trend. 
Figure 5 shows the mean deseasonalized HCHO for AQS and OMI in each region (solid 
lines). These plots are overlaid with collocated seasonal average 2 m temperature from the 
North American Regional Reanalysis (NARR) [79], to indicate the role of temperature in 
the variability of each data set. The slopes from the linear regression and the associated 
standard errors are indicated in each panel. 

 
Figure 5. 2006–2015 AQS and OMI HCHO deseasonalized interannual trends averaged by season 
in the (a) Midwest, (b) northeast, (c) west, and (d) southeast. Blue lines indicate AQS trends, red 
lines represent OMI trends, and yellow represents 2 m temperature from the North American 
Regional Reanalysis (NARR) data, sampled at the AQS monitor locations. Solid lines are the mean 
seasonal HCHO abundance or temperatures, and shaded areas are the standard deviation. Region 
name and number of stations in the region are labeled at the top of each figure, along with the slope 
of the line of best fit and the standard errors associated with the slopes. 

After deseasonlizing the data, AQS and OMI show some consistency in certain 
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Figure 5. 2006–2015 AQS and OMI HCHO deseasonalized interannual trends averaged by season in
the (a) Midwest, (b) northeast, (c) west, and (d) southeast. Blue lines indicate AQS trends, red lines
represent OMI trends, and yellow represents 2 m temperature from the North American Regional
Reanalysis (NARR) data, sampled at the AQS monitor locations. Solid lines are the mean seasonal
HCHO abundance or temperatures, and shaded areas are the standard deviation. Region name and
number of stations in the region are labeled at the top of each figure, along with the slope of the line
of best fit and the standard errors associated with the slopes.

After deseasonlizing the data, AQS and OMI show some consistency in certain periods.
For example, both AQS and OMI captured the double peak in HCHO in 2010–2012 over the
Midwest (Figure 5a). Both AQS and OMI HCHO also show elevated amounts in the west
in summer of 2008 (Figure 5c), possibly corresponding to local fire emissions. However, the
vertical and horizontal transport of VOC emissions from fires are more likely captured by
satellite observations, and then affect regional trends downstream of fires more in the OMI
record than in AQS.

During the entire ten-year period, the slopes from the linear regression on AQS and
OMI do not aways agree. Since the standard errors associated with the slopes are rather
large, this indicates HCHO did not have a significant and monotonic drift during 2006–2015.
There are two exceptions: AQS in the west does indicate a significant increasing trend at
a rate of 0.059 ± 0.019 µg m−3 yr−1, and AQS in the southeast is decreasing at a rate of
0.029 ± 0.027 µg m−3 yr−1 from 2006 to 2015. The large standard error in the southeast
AQS data could partially come from the winter in 2014, when the regional mean is skewed
by a few exceptionally high values.

In all regions, the increase in HCHO is partially explained by temperature trends, as
shown by the NARR data. The west, which shows a significant increase in AQS HCHO,
also shows the greatest warming at a rate of 0.181 ± 0.046 ◦C yr−1. However, this large
increase is not captured by OMI, despite OMI having high agreement in seasonal variability
with AQS. The interannual variations in temperature are also more quiescent in the western
U.S. than in other regions, which could partially explain smaller year-to-year variations in
HCHO in the West.
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We used the same best fit linear regression to consider interannual changes for each
season (Figure 6) and yearly mean for every grid box from OMI. We see a significant
increase in California at around 0.3 × 1015 molec cm−2 per year; this is mostly contributed
by an increase in MAM. The broader southeast and northeast regions experienced a strong
increase in HCHO during DJF but were offset by a strong decrease in JJA. Such a decrease
in HCHO could be partially explained by summertime cooling in the southeast U.S. over
the past few decades [80,81].
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Though OMI (co-located with AQS sites) indicates a decreasing trend that is opposite
to AQS and NARR in the west (Figure 5c), there is a significant increase in OMI HCHO
over large area of California, Oregon and Washington (Figure 6). Thus, using the OMI
co-located pixels at AQS sites might not be indicative of the entire region.

6. Discussion

The evaluation of diurnal, seasonal, and interannual HCHO suggests that satellite-
derived HCHO serves as a useful indicator for surface HCHO change on seasonal to
interannual timescales. While surface-to-column agreement varies in space and time, the
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combined analysis of these two datasets informs the chemical and meteorological processes
that impact HCHO.

This study builds on the earlier work of [72], with a greater focus on seasonality,
temperature, and comparison between satellite and ground-based data. Whereas ref. [72]
evaluated May-September change of temperature-corrected HCHO, we examine all seasons
without removing temperature effects with the goal of characterizing the degree to which
satellite data can inform near-surface trends and patterns.

The weighting function for OMI HCHO peaks in the upper troposphere [26], so it
is well established that satellite data does not capture the same surface air as measured
by the AQS monitors. With such differing physical characteristics between observation
methods, it would be challenging to reconstruct ground level HCHO merely from satellite
data. For example, ref. [82] reviewed methodologies of calculating surface level PM2.5 from
satellite observed aerosol optical depth, which requires either a chemistry transport model
or a statistical model based on empirical relations from the existing data. Future work to
derive surface level HCHO from satellite observations could be made possible with such
large datasets, such as the newly available EPA Air Quality Time Series (EQATES) project
(available online, https://www.epa.gov/cmaq/equates; accessed on 21 April 2022).

Additionally, validation studies have shown that satellite HCHO tends to be biased low
when column amounts are high (e.g., summer) and biased high when column amounts are
low (e.g., winter), which would tend to dampen the OMI HCHO seasonal cycle [83–85]. Our
observational results corroborate [35], who found that surface HCHO is a more significant
contributor to column HCHO in the summer, based on model simulations. Despite the low
agreement between AQS and OMI data in the winter, both datasets capture a consistent
seasonal cycle and consistent interannual trends over certain periods.

Our findings suggest that temperature sensitivity of column HCHO is greater than
near-surface HCHO. The seasonal amplitude of HCHO is higher in OMI data than in AQS
in all regions, which may be due to the larger role of secondary HCHO in the column versus
the surface. Furthermore, the warming across the 2006–2015 period leads to a stronger
increase in the HCHO column in most regions, and a less-pronounced increase (or decrease)
in the AQS monitor data, except in the west. The authors in [46] found that column NO2
is more sensitive to temperature than surface NO2, both in observations (monitors versus
satellite) and in a numerical model; the same appears to be true for HCHO. As discussed
by [72,86], trends in HCHO are attributable to a range of land use and emissions changes,
independent of temperature. The impact of local emissions is evident in our results as
well. In our analysis of diurnal HCHO at three sites with sufficient ground-data (Section 3),
we found a mid-day peak in HCHO only at sites dominated by biogenic VOC emissions
(Burbank and Pico Rivera in California). The increased temperature in the middle of the day
accelerates the emission and oxidation of isoprene, consistent with [76]. Although current-
generation satellites provide daily (or less frequent) HCHO data, the sensitivity of HCHO
to temperature, including as a function of biogenic VOC emissions versus anthropogenic
VOC emissions, would be a valuable application of future hourly HCHO observations from
geostationary satellites.

7. Conclusions

As a pollutant with direct health impacts and an indicator of ozone formation, HCHO
has emerged as an atmospheric species of interest for air quality management. Ground
monitoring data of HCHO is limited, and satellite data may complement the sparse network
with spatially continuous information on HCHO abundance. Multiple satellites can detect
HCHO, but these data are only beginning to be applied to operational and health-relevant
applications. For user communities interested in the interpretation of satellite data, a key
question is the agreement in spatial and temporal patterns between ground-based and
space-based measurements. Our comparison focuses on the utility of satellite data to
inform patterns, trends, and processes of ground-based HCHO across the U.S.

https://www.epa.gov/cmaq/equates
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Over our study period, HCHO data were available from 338 sites managed by the EPA.
However, only 45 of these had continuous seasonal measurements in the time range, and
only three stations provided hourly and three-hour measurement frequencies that had more
than 10% data available and passed quality control. Of those three sites, the two sites with
larger diurnal amplitudes (in Los Angeles County) had a lower anthropogenic/biogenic
ratio for both direct HCHO emissions and for total VOC emissions, as compared to the site
with the smaller diurnal amplitude (in St. Louis county). These relative diurnal changes
indicate that the origin of VOC emissions may be an important driver of diurnal HCHO
patterns. In addition to emissions, chemistry and meteorology also play important roles
in affecting the diurnal cycle of HCHO. With the upcoming availability of hourly HCHO
data from TEMPO, Sentinel-4, and GEMS, it will be interesting to assess how the diurnal
amplitude of HCHO changes between areas dominated by biogenic versus anthropogenic
emissions. We expect that areas with larger anthropogenic emissions will exhibit a weaker
diurnal signal.

On a seasonal basis, OMI exhibits the highest correlation with AQS in summer and
the lowest correlation in winter. These results are consistent with past work indicating
that boundary layer HCHO is a greater contributor to the summertime HCHO column
and less so in the winter [35]. Combining summer to other season ratios showed OMI bias
is high compared to AQS in all regions, but with different factors depending on different
regions. Seasonal differences across the regions are likely due to the differences in dominant
plant types in each area, as well as VOC emissions in young versus mature trees [87].
The overestimation of the ratios from OMI suggests a more pronounced sensitivity to
temperature in the HCHO column than in surface HCHO concentrations.

There are emerging opportunities to study HCHO and its trends in the near future
from both ground- and space-based platforms. In 2021, U.S. states, in coordination with the
EPA, established 27 new Photochemical Assessment Monitoring Stations (PAMS), which
provide hourly ground-based HCHO measurements (official and supporting documents
available at https://www.regulations.gov/document/EPA-HQ-OAR-2019-0137-0013; ac-
cessed on 22 April 2022). Additionally, ozone nonattainment areas have been required to
develop Enhanced Monitoring Plans (EMP), which would expand observations of meteo-
rology and VOCs, potentially including observations of columnar VOCs from PANDORA
spectrometers [88]. In addition to these monitoring programs, next generation satellite-
based observations are expected to provide high-resolution and hourly column HCHO
measurements. Further analysis of space- versus ground-based measurements, using these
next-generation platforms, will maximize the relevance of Earth-observing satellites to air
quality and public health user communities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14092191/s1, Figure S1: All available AQS data from 2006
to 2015 calculated for every season (x-axis) compared with seasonal mean AQS under same OMI
viewing conditions (y-axis), with correlation coefficient r = 0.999, mean bias = −0.005 µg m−3. Red
dotted line indicates 1-1 ratio.
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