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Abstract: Eastern oysters (Crassostrea virginica) are an important component of the ecology and
economy in coastal zones. Through the long-term consolidation of densely clustered shells, oyster
reefs generate three-dimensional and complex structures that yield a suite of ecosystem services, such
as nursery habitat, stabilizing shorelines, regulating nutrients, and increasing biological diversity.
The decline of global oyster habitat has been well documented and can be attributed to factors, such
as overharvesting, pollution, and disease. Monitoring oyster reefs is necessary to evaluate persistence
and track changes in habitat conditions but can be time and labor intensive. In this present study,
spectral and structural metrics of intertidal oyster reefs derived from Unoccupied Aircraft Systems
(UAS) and Structure from Motion (SfM) outputs are used to estimate intertidal oyster density. This
workflow provides a remote, rapid, nondestructive, and potentially standardizable method to assess
large-scale intertidal oyster reef density that will significantly improve management strategies to
protect this important coastal resource from habitat degradation.

Keywords: Crassostrea virginica; eastern oyster reefs; oyster density; Unoccupied Aircraft Systems;
Structure from Motion photogrammetry; remote sensing

1. Introduction

From the mid-Atlantic states in the U.S. through the Gulf of Mexico and the Caribbean,
eastern oysters (Crassostrea virginica) cluster in fringing reefs located in the intertidal zone [1].
These reefs provide ecosystem services to the surrounding estuarine environment, such
as filtering water, stabilizing shorelines, regulating nutrients, and providing habitat for
ecologically and economically valuable fish and invertebrates [2–4]. They also support a
lucrative fishery, contributing millions of dollars to coastal economies. Once abundant in
coastal waters along the U.S. east coast, eastern oysters now face a number of threats from
human and environmental stressors. These threats, including overharvesting, predation,
disease, pollution, habitat loss or degradation, and climate change, are leading to a decline
in oyster populations around the world [5–8]. In the U.S. alone, a 63% decline in the spatial
extent of oyster habitat in the past 100 years has been estimated, with the greatest declines
happening along Atlantic coast estuarine systems [9]. Effective monitoring of oyster habitat
is necessary to ensure the sustainability of this ecologically and economically significant
marine species.
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Monitoring oyster reef habitats is critical to understanding the complex dynamics
of these systems, identifying and tracking changes, and better informing management
and restoration efforts. Traditional sampling techniques typically involve intensive field
sampling initiatives including mapping reef footprints and height using global naviga-
tion satellite systems (GNSS) and calculating oyster density, size structure, and growth
rates by manual counts and measurements of individual oyster length within a specified
quadrat [10–12]. These methods are labor intensive and can be destructive to the oyster
reef environment. Satellite and aerial imagery have been used to map intertidal oyster reef
habitat at large scales by manually delineating reef footprints or applying spectral classifi-
cation methods to distinguish oyster reef habitat from other land cover features [13–17].
However, the coarse resolution of this imagery can potentially exclude small reefs and
similar habitat appearance (i.e., oyster reefs appearing similar to adjacent mudflats or salt
marshes) can confound classification techniques [15].

Unoccupied aircraft system (UAS) remote sensing is an emerging method to dis-
tinguish and map intertidal oyster reefs [18–21]. While not as spatially extensive as
satellite or airborne remote sensing, UAS imagery is a low-cost, rapid, and repeatable
method to collect data over a large area (e.g., ~25 acres in 20 min with a multirotor UAS,
see Windle et al., 2019 [18]). UAS imagery can be collected at a sub-centimeter resolution
which results in high overall accuracy in classification techniques [20,21]. UAS imagery has
been used to map and quantify intertidal oyster reef extent, however, it also has the po-
tential to provide estimates of oyster density. Spectral characteristics of exposed intertidal
oyster reefs can potentially be used to infer reef conditions [13,15–17,22]. Living oyster reefs
tend to grow vertically and cast shadows on the surrounding substrate, exhibiting darker
hues while unhealthy or dead intertidal oyster reefs are typically composed of more flat,
white, reflective shells that have been bleached by the sun [15,17]. Grizzle et al. (2018) [15]
related areas of high, medium, and low oyster density to the distinct coloring of intertidal
reefs from satellite imagery and found significantly greater live oyster density in reefs
exhibiting a dark brown-to-olive signature.

Similarly, the amount of three-dimensional (3D) surface complexity in an intertidal
oyster reef can also provide reef condition metrics. Dense reefs containing vertically
accreting oysters with increased interstitial spacing typically correlate with healthy reefs
allowing for more recruitment, survivorship, and favorable trophic dynamics [23–28].
Colden et al. (2017) [26] demonstrated how structural complexity, or rugosity, impacts
biological and physical processes on the reef and found lower rates of sediment deposition
on reefs with higher rugosity values.

Spectral and structural metrics of intertidal oyster reefs can be obtained with UAS im-
agery. Structure from Motion (SfM) is a photogrammetric technique that approximates the
3D structure of an object of interest by identifying key points in individual two-dimensional
(2D) images with known camera orientations [29]. UAS-SfM techniques are increasingly
being used for coastal research and management, including beach morphology [30], barrier
island dynamics and storm impact assessments [31,32], wetland vegetation monitoring [33],
and land cover classification [34]. UAS-SfM techniques have recently been used to assist in
large-scale intertidal oyster reef habitat classification and mapping [18,20,21], including the
application of automated deep learning approaches [35,36]. High resolution point clouds
of oyster reefs derived from SfM techniques have also been used to conduct geomorpho-
metric analysis and study how structural complexity influences oyster recruitment and
survival [28,37].

The objective of this study was to assess the potential of high resolution spectral and
structural characteristics provided by UAS-SfM techniques to estimate intertidal oyster
density. To do so, we evaluated the relationship between in situ intertidal oyster density
measurements and multiple spectral and structural metrics. Results from this research can
assist coastal managers and researchers by providing rapid, remote, and nondestructive
intertidal oyster monitoring techniques.
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2. Materials and Methods
2.1. Study Site

Data were collected from natural and restored intertidal oyster patch reefs within
the Rachel Carson National Estuarine Research Reserve (NERR) located in Beaufort, NC,
USA (Figure 1). The 937 ha Reserve consists of a complex of several small islands on
the western and eastern portions of the Reserve, respectively. Town Marsh consists of
natural fringing intertidal oyster reefs along the shoreline adjacent to a marsh and maritime
forest. Middle Marsh is a relict flood tide delta consisting of a saltmarsh complex with
natural fringing reefs and isolated restored patch reefs constructed in 1997 and 2000 [38].
Harvesting oysters is prohibited at Town Marsh but allowed at reefs located in Middle
Marsh. We collected data at six natural patch reefs from Town Marsh, ranging in area from
32 to 530 m2, and nine natural and restored patch reefs from Middle Marsh, ranging in area
from 13 to 303 m2.

Figure 1. (A) Location of study area in eastern North Carolina, USA, (B) Boundary of the Rachel
Carson NERR, Beaufort, NC, (C) Natural fringing intertidal oyster reefs located at Town Marsh
(labeled and outlined in black), (D) Natural and restored intertidal patch reefs located at Middle
Marsh (labeled and outlined in black), (E) UAS imagery showing patch reefs at Town Marsh (TM
5, TM 6, and TM 2), (F) Zoomed in UAS image of TM 6, (G) UAS imagery showing patch reefs at
Middle Marsh (MM 3), (H) Zoomed in UAS image of MM 3.

2.2. In Situ Data Collection

In situ oyster density data were collected from six natural fringing patch reefs located
on Town Marsh in Fall 2017 and Spring 2018 and nine restored or natural reefs located in
Middle Marsh in June 2020 (Figure 1). Each reef was sampled by excavating haphazardly
placed 0.0625 m2 (Town Marsh) or 0.04 m2 (Middle Marsh) quadrats at varying elevations.
A range of 1–7 quadrat density measurements was collected at each reef depending on the
reef area. A real time kinematic global positioning system (RTK GPS) was used to survey
the center of each quadrat location. At both sites, oysters that were located inside the
quadrat were sampled to a depth of approximately 15 cm, or to a depth necessary to obtain
all live oysters (sensu [39]). At Town Marsh, all live oysters were counted and a maximum
of 50 live oysters were measured (mm) and at Middle Marsh, all live oysters were counted
and measured. The left valve length (LVL), i.e., the distance from the umbo region of
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the shell to the anterior shell margin, was measured with calipers to the nearest 0.1 mm.
Oyster shell lengths were used to classify oysters into three size classes: recruit (<25 mm),
submarket adults (25–76 mm), and market (≥76 mm). When multiple excavations took
place on a single reef, the counts were averaged. Oyster densities in each size class were
calculated by multiplying the proportion of oysters measured in each size class by average
total count for that reef. Middle Marsh density measurements were extrapolated to a
quadrat size of 0.0625 m2 to be comparable to Town Marsh measurements.

2.3. UAS Remote Sensing and SfM Photogrammetry

UAS flights were conducted over Town Marsh and Middle Marsh during low tidal
conditions when most oyster reefs were exposed. UAS flights were conducted over
Town Marsh oyster reefs on 29 June 2018, with a DJI S900 hexacopter equipped with
a Sony a6000 digital red-green-blue (RGB) camera (ISO ranged from 125–200, shutter speed
1/1250 s) and over Middle Marsh oyster reefs on 1 July 2020 with a DJI Mavic 2 Pro
equipped with a Hasselblad L1D-20c RGB camera (ISO 100, shutter speed 1/250 –1/500).
Flights were automated and imagery was collected with ~75% longitudinal and ~75%
latitudinal overlap. The pixel resolution of the Town Marsh and Middle Marsh products
were 0.0062 and 0.0073 m, respectively. All UAS operations occurred according to Federal
Aviation Administration (FAA) licensing, registration, and renewal processes as dictated
by FAA Part 107. At Town Marsh, a total of 15 ground control points (GCPs) were installed
and surveyed with an RTK GPS to georectify all UAS surveys and achieve the greatest
positional and vertical accuracy. GCPs were made from high-density polyurethane black
and white checkerboard tiles (0.0929 m2) and situated on PVC pipes of differing lengths
evenly distributed around the 2.4 ha survey area (Figure A1). At Middle Marsh, UAS-SfM
derived elevations were corrected using a vertical control point measured with an RTK GPS.
Horizontal data were referenced to the World Geodetic Datum 1984 (WGS 1984) Universal
Transverse Mercator (UTM) Zone 18N, and vertical data were referenced to the North
American Vertical Datum established in 1988 (NAVD88). UAS imagery was processed
with Pix4D Mapper Pro SfM photogrammetry software v4.2.27 (Prilly, Switzerland) and
Drone2Map software v2.3 (ESRI Inc., Redlands, CA, USA) to output georectified RGB ortho-
mosaics and digital elevation models (DEMs). Orthomosaics and DEMs were transferred to
ArcGIS Pro 2.4.0 mapping software (ESRI Inc., Redlands, CA, USA) for geospatial analyses.
Using the UAS imagery as a reference, individual patch reefs were manually delineated
and clipped to form patch reef RGB orthomosaic and DEM raster layers for Town Marsh
and Middle Marsh, respectively.

2.4. Calculating Spectral and Structural Metrics

Geospatial analyses were performed on the patch reef orthomosaic and DEM layers
to calculate spectral and structural metrics. Specific metrics used in this study are de-
scribed below, however, descriptions and results of all metrics calculated can be found
in Appendix A. An unsupervised classification was performed using a modified iterative
optimization clustering procedure (‘Iso Cluster Unsupervised Classification’ tool). This
technique organizes the input orthomosaic rater into a user-defined number of clusters to
produce signatures which are used to classify the data [40]. The number of classes was
set to three to separate pixels representing light, intermediate, and dark colored oysters,
the minimum pixels per cluster and sampling interval was set to 20. Variability in the
proportions of pixel classifications among sites was expressed as two principal components
(‘PC1’ and ‘PC2’), using principal component analysis (‘prcomp’ function, R v3.5.1). Since
the proportions always add up to 100%, there were only 2 degrees of freedom among the
three pixel classes. For example, 30% light and 40% dark pixels mean the remaining 30%
must be intermediate colored pixels. For this reason, expressing the proportion of pixel
classifications as two principal components results in no loss of information. A ‘surface
complexity’ metric was computed using the ‘Focal Statistics’ tool to calculate neighborhood
standard deviation measurements of DEM elevation values using a 161 × 161 (1 m × 1 m)
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rectangle pixel window for Town Marsh imagery and a 137 × 137 (1 m × 1 m) rectangle
pixel window for Middle Marsh imagery. A 1 m2 area was chosen to investigate the effects
of surface complexity since it is a scale of the typical unit for oyster density (# m−2). Mean
surface complexity was calculated for each reef (n = 15) with the ‘Zonal Statistics as Table’
tool using the reef delineation shapefiles as the zone dataset. A higher surface complexity
metric is indicative of greater vertical variability and interstitial spacing within 1 m2 areas.

2.5. Statistical Analysis

A series of generalized additive models (GAMs) (‘mgcv’ package, R v3.5.1) were used
to describe the mean in situ density of oysters (response variable) as a linear function of
smoothed mean spectral and structural metrics (predictor variables). A GAM is a non-
parametric generalization of linear regression that iteratively fits smoothed relationships
between dependent and independent variables [41]. In this study, a series of GAMs were
constructed using a thin plate spline smoothing with up to 3 degrees of freedom per
predictor variable. All predictor variables were tested for collinearity and variables that
were strongly correlated were not applied in the same GAM. For GAMs using both PC1 and
PC2 as explanatory variables, a combined 2-dimensional smoothing term for a surface with
≤6 degrees of freedom was used instead of separate 1-dimensional smoothing terms with
≤3 degrees of freedom per variable. Specifying a gamma distribution for oyster density, a
log link function, and maximum likelihood estimation of smoothing parameters resulted
in a good fit to the data (based on visual inspection of function ‘gam.check’ diagnostic
plots). Due to the log link function, the partial additive effects can be seen as analogous to
predicting the log transformed oyster density.

Candidate GAMs were fitted for all possible combinations of predictor variables and
for different size classes of oysters. Candidate models with insignificant factors (p > 0.05)
were excluded and the best models were selected from the remaining candidates based
on the highest explained deviance. In cases with multiple factors in the final GAMs, the
relative importance of each was estimated by omitting each factor and noting the resulting
reduction in explained deviance.

3. Results
3.1. In Situ Data

Total oyster density across all reefs ranged from 768 to 6975 m−2, recruit density
ranged from 33 to 3150 m−2, submarket density ranged from 481 to 3475 m−2, and market
density ranged from 75 to 900 m−2 (Table 1). Average in situ oyster density measurements
at Middle Marsh were 2 to 4.5 times higher than density measurements at Town Marsh.
Average oyster LVL ranged from 32.4 to 63.1 mm among all reefs.

Table 1. Average in situ oyster length, measured as left valve length, density for each size class,
spectral and structural metrics calculated for each patch reef located on Town Marsh (TM) and Middle
Marsh (MM) that were applied in a series of GAMs.

Patch
Reef

Average
Length
(mm)

Total
Density
(#/m2)

Recruit
Density
(#/m2)

Sub
Market
Density
(#/m2)

Market
Density
(#/m2)

Light
Colored
Pixels

(%)

Intermediate
Colored

Pixels (%)

Dark
Colored
Pixels

(%)

Surface
Complexity

(m)

TM 1 47.9 1184 193 822 169 22 57 22 0.01
TM 2 47.0 971 123 751 97 37 33 30 0.04
TM 3 44.3 2640 792 1373 475 27 32 41 0.04
TM 4 35.4 1944 783 1031 130 42 36 22 0.03
TM 5 56.7 888 161 481 246 24 38 38 0.03
TM 6 63.1 768 33 501 235 27 38 35 0.03
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Table 1. Cont.

Patch
Reef

Average
Length
(mm)

Total
Density
(#/m2)

Recruit
Density
(#/m2)

Sub
Market
Density
(#/m2)

Market
Density
(#/m2)

Light
Colored
Pixels

(%)

Intermediate
Colored

Pixels (%)

Dark
Colored
Pixels

(%)

Surface
Complexity

(m)

MM 1 42.2 5400 2300 2200 900 5 17 78 0.04
MM 2 36.8 5100 2825 1500 775 5 16 79 0.05
MM 3 55.6 1925 675 600 650 12 32 57 0.06
MM 4 52.9 3525 1025 1650 850 6 24 70 0.04
MM 5 57.4 1900 475 700 725 13 37 50 0.05
MM 6 39.4 2475 1025 1125 325 31 43 26 0.04
MM 7 46.6 3100 675 2100 325 31 40 29 0.05
MM 8 32.4 6975 3150 3475 350 41 43 16 0.03
MM 9 40.5 2725 400 2250 75 33 46 21 0.02

3.2. Spectral and Structural Metrics

The unsupervised classification of light, intermediate, and dark colored pixels matched
visual inspections of UAS oyster reef imagery (Figure A2) with the percentage of light
colored pixels ranging from 5 to 42%, percentage of intermediate colored pixels ranging
from 16 to 57%, and percentage of dark colored pixels ranging from 16 to 79% (Table 1).
The variability of pixel classification expressed as two principal components are shown
in Figure A3. The major axis of variability (PC1) explains 92.85% of the total variability
in pixel appearance and is driven by the difference between dark pixels to both light and
intermediate pixels. The second axis of variability (PC2) is driven by differences in light to
intermediate pixels and explains an additional 7.14% of the variability (Figure A3). Mean
surface complexity across all reefs ranged from 0.01 to 0.06 m (Table 1).

3.3. Comparison to In Situ Density Measurements

For total and recruit oyster size classes, GAMs that incorporated PC1 and surface
complexity performed best and explained 73.4% and 72.2% of the deviance in the density
of each size class, respectively. In both cases, oyster density was positively associated
with surface complexity and negatively associated with intermediate values of PC1 (~38%
dark pixels) (Figures 2 and A2). For submarket oysters, a GAM with PC1 as the only
explanatory variable performed best and explained 48.5% of the deviance. Submarket
oyster density was also lowest at intermediate PC1 values as with the total and recruit size
classes. For market oysters, a GAM that incorporated both PC1 and PC2 as well as surface
complexity performed best and explained 79.2% of the deviance. Market density was
positively associated with surface complexity (as in the other size classes) and positively
associated with a high proportion of intermediate (and, to a lesser extent, dark) pixels.

For GAMs with multiple factors, the relative importance of each factor was estimated.
For the best performing GAM estimating total oyster density, removing PC1 resulted in
a 56.3% reduction in explained deviance, whereas removing surface complexity resulted
in a 22.7% reduction in deviance. For the best performing GAM estimating recruit size
oyster density, removing PC1 resulted in a 51.2% reduction in deviance, whereas removing
surface complexity resulted in a 28.4% reduction in deviance. For the best performing GAM
estimating market oyster density, removing PC1 resulted in a 21.7% reduction in deviance,
removing PC2 resulted in an 8.6% reduction in deviance, and removing surface complexity
resulted in a 16.7% reduction in deviance.
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Figure 2. Partial additive effects of fitted GAM models by oyster size class: (A) total, (B) recruit
(<25 mm), (C) submarket (25–76 mm), (D) market (≥76 mm). Tick marks along the x-axis are the
observed data points. Gray shading represents ± 2 standard error confidence bands. Panel (D)
includes a PCA plot where contour lines and shading represent partial additive effects on market
oyster density, with the darker shading indicating the minimum. Y-axes and contour units are log
transformed oyster density due to the log link function applied in the GAM models.

The predicted oyster density derived from the series of GAMs compared well with in
situ oyster density for each size class (Figure 3). The GAM used to predict market sized oys-
ters contained the highest correlation when compared to in situ density (r2 = 0.93, Figure 3)
while the GAM used to predict submarket oyster density had the weakest correlation
(r2 = 0.50, Figure 3). Although the sample size of reefs was relatively small (n = 15), this
analysis demonstrates that a combination of spectral and structural metrics derived from
UAS-SfM products has the potential to accurately estimate oyster density.

Figure 3. Intertidal oyster density predicted from GAMs for each size class total, recruit (<25 mm),
submarket (25–76 mm), market (≥76 mm) that incorporated spectral and structural metrics derived
from UAS and SfM products in relation to in situ oyster density. Black line represents the 1:1 line.
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4. Discussion

This study details the first remote, rapid, nondestructive, and potentially standardiz-
able framework for estimating intertidal oyster density from UAS-SfM products. Spectral
and structural metrics derived from the SfM products were compared against in situ oyster
density for different oyster size classes using a series of GAMs. Results have broad implica-
tions for large-scale intertidal oyster reef monitoring, but several aspects and caveats of
this study merit additional discussion.

4.1. Intertidal Oyster Reef Density Estimation

The overall mean live oyster density (1383 # m−2) and mean shell height (46.5 mm)
across all reefs compare well with recent studies on intertidal oyster reefs in the Rachel
Carson Reserve [42] and in other coastal environments [15]. Oyster density measurements
differed across reefs and can be tied to differences in reef type (natural vs restored), age
of reef, and growth rates. High growth rates on young reefs typically consist of more
clustering and higher densities while older and more mature reefs may be operating at their
growth ceiling and maintaining elevation with smaller oysters [4,42]. Despite differences
in density and size structure among reefs, spectral and structural characteristics generally
provided good predictions of size-specific density across reef types and settings.

Past studies have used manual interpretation methods to classify intertidal oyster
reefs based on reef appearance in remote sensing imagery [15,17]. Leveraging this relatively
subjective technique, the present study relied on machine learning image classification
methods to quantify the amount and change of reef appearance or color. A PCA was
used to reduce the dimensionality of the unsupervised classification results on the digital
count pixel values to lessen the number of variables to apply in a GAM. PC1 is a linear
combination of the initial variables of light, intermediate, and dark pixels and when applied
in the GAMs used in this study explained 48.5–61.4% of the deviance in oyster density,
depending on size class. For total, recruit, and submarket oyster sizes, the partial additive
effects on oyster density from PC1 contained a minimum that corresponds to where the
proportion of both light and intermediate pixels was similar to dark colored pixels (Figure 2).
This minimum describes how oyster density is lowest in areas with an equal mix of light-
intermediate and dark pixels, and higher in areas with more light-intermediate colored
pixels or more dark colored pixels (Figure A2). If more areas with dead, bleached oyster
shells were included in the GAMs (only reef TM4 included sizeable dead shell extent),
it is expected that the PCA results would show more variability in light to intermediate
pixels and the partial additive effects on oyster density would linearly increase with more
dark pixels. For market sized oysters, both principal components were included in the best
performing GAM, which contains a minimum that corresponds to where the proportion
of light pixels is the greatest. With the maximum corresponding to where the proportion
of intermediate and dark pixels is greatest, we see market oyster density increasing with
darker reef coloring (Figure 2). This relationship is more apparent in market sized oysters
likely due to more clustering and greater shadowing.

Surface complexity explained additional deviance in GAMs for total, recruit, and
market oyster densities, demonstrating that structural metrics can generally enhance
oyster density estimations. In these GAMs, the partial additive effects of oyster density
increased with increasing surface complexity (Figure 2). Surface complexity was considered
significant in predicting recruit oyster density, likely because there are more recruits on reefs
that have more interstitial spaces that enhance oyster recruitment [43]. Surface complexity
was also considered significant in predicting market density likely due to more clustering
of larger oysters. Surface complexity was not considered significant in the GAM predicting
submarket oyster density, potentially due to a lack of relationship with clustering and more
variability in the submarket surface complexity data. The total, recruit, and submarket
GAMs predicted MM 8 to have lower oyster density than observed (Figure 3), likely due to
MM 8 being a natural reef accumulating more dead shells through time and consisting of a
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relatively low proportion of large (market size) oysters to recruits and juveniles resulting in
lower surface complexity.

4.2. Limitations and Considerations

There are some important considerations regarding the collection of UAS imagery
in coastal environments, such as solar position, shadowing, cloud cover, and tides [44].
Shadowing from nearby vegetation or vertically growing oysters can occur depending
on the solar position in the sky. Additionally, the amount of moisture on the oysters
can influence glare. To minimize the effect of shadowing and glare, it is recommended
to collect UAS imagery close to solar noon and towards or away from the sun azimuth
(i.e., the azimuth ±180◦). It is also generally preferable to collect data when illumination
conditions are consistent (i.e., clear or completely overcast sky). Variable cloud cover can
lead to changes in illumination and potentially influence the spectral characteristics of
a reef. Imagery should also be collected at the lowest low tide possible to capture all
exposed oyster reefs and limit the effect of surrounding shallow water. It is possible to
define shallow submerged reefs in UAS imagery [18], however, the spectral and structural
characteristics of those reefs can be significantly influenced by the water column and impact
oyster density predictions. Precise manual delineation of oyster reefs can also lessen the
influence of water on density estimations. It is possible that oysters located higher in the
tidal frame can be exposed and dried longer which may impact spectral characteristics,
however, it is likely that they will remain spectrally distinguishable from dead, bleached
white reefs.

It is important to note that UAS imagery collected in this study was not radiometrically
calibrated. The pixel values used in this study are relative to the conditions in which the
data were collected and were subject to changes in light conditions. To compare imagery
over time, it becomes important to capture as accurate pixel values as possible and correct
for lighting changes. This can be accomplished by obtaining a baseline measurement using
a calibration panel with a known reflectance value that can be used to adjust the dataset
accordingly [45]. Some UAS sensors also contain an upward facing light sensor that records
lighting conditions throughout the flight. This information enables the process of converting
digital numbers from raw imagery into normalized surface reflectance measurements which
can improve comparisons over time and in different environmental conditions. In this study,
the approach of clustering pixels into light, intermediate, and dark was intended to reduce
the influence of variability in lighting conditions, however, radiometrically calibrated pixel
values may improve results.

It is possible for intertidal oysters to grow differently in various environments. For
example, Le Bris et al. (2016) [22] studied the spectral characteristics of wild oyster reefs lo-
cated on the French Atlantic coast and characterized two types of oyster reefs with different
spectral characteristics. The authors studied clusters of dense, vertically growing oysters on
mudflats which were dark in color due to being partially covered by mud and horizontally
growing oysters in rocky areas which were brighter in color [22]. Both reef structures were
considered alive and contained differing spectral signatures. In other studies, including
the present study, horizontal white bleached shells are typically considered to be dead
reefs [15]. Therefore, oyster density models may need to be regionally specific to retrieve
accurate density measurements. It is also essential to validate an oyster density prediction
model with regionally specific data. Oyster density is expected to vary across different
environments and locations; therefore, one density prediction model can result in erroneous
predictions at another site. It is recommended to develop a regional oyster density model
by collecting initial measurements of in situ oyster density.

Lastly, the deployment of GCPs can be considered laborious and in some cases, de-
structive to the coastal environment. Site conditions and management needs may dictate the
need for GCPs and the expected accuracy of the resulting products. Windle et al. (2019) [18]
demonstrated that reef footprints can be accurately assessed without the use of GCPs, how-
ever, the use of GCPs increased the accuracy of reef morphology measurements, particularly
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in areas with the presence of water and homogeneous spectral characteristics. The use of
GCPs will likely not impact reef appearance; however, it is recommended to use GCPs
to obtain an accurate surface complexity metric to improve oyster density estimations.
Deploying permanent GCPs in a site could lessen the amount of labor and destruction to
the reef.

4.3. Management Implications

Intertidal oyster reefs are a critical habitat and are sensitive to anthropogenic impacts.
Studies have shown that recreational boat waves can displace live oyster clusters, leading
to reef degradation [13]. If intertidal reefs are allowed to be harvested, methods, such
as dredges or hand and patent tonging, which scrape living oysters off the reef, can also
damage reef structures [46]. Ridge et al. (2015) [42] demonstrated how increasing rates of
sea level rise could eventually outpace reef accretion and ultimately exacerbate intertidal
oyster reef habitat loss. Thus, it is imperative to monitor intertidal oyster reef density to
better manage and protect this marine resource.

Coastal management and restoration practitioners can use commercial grade UAS to
conduct quick, inexpensive, and nondestructive surveys to collect high resolution imagery
of intertidal reefs. Two-dimensional imagery can assist in targeting priority areas for further
sampling, assessing reef extent, and conducting habitat classification [18,20]. Transforming
2D imagery into high resolution 3D models allows for more comprehensive monitoring by
providing valuable reef elevation measurements. In addition to estimating oyster density as
shown in this study, high resolution 3D models can also be used to emulate the conventional
chain-and-tape method to calculate rugosity. In this context, rugosity has been estimated
by placing a fine link chain over a reef, allowing it to conform to the crevices and interstitial
spaces, and dividing the length of the chain by the reef’s linear length to produce an index
of rugosity [26,47]. Rugosity values typically range from 1 (i.e., completely flat surface) and
increase with higher surface complexity. SfM products can be used to produce a digital
chain-and-tape rugosity metric by calculating the sum of elevation per pixel along a linear
transect divided by the transect’s linear length (Figure 4). Rugosity values derived from
this digital chain-and-tape method were not included in the GAMs since it only covers one
axis of the reef, however, managers should consider this novel technique for comparisons
with measures derived from conventional chain-and-tape methods.

Figure 4. Digital chain-and-tape method to calculate an intertidal oyster rugosity index which can be
calculated by dividing the actual length (B) from the linear length (A).
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UAS and SfM methods can also be combined with UAS light detection and ranging
(LiDAR) to enhance oyster density predictions. Aerial LiDAR bathymetry has been shown
to differentiate between various geomorphological bedforms [48] and has been used to
effectively map intertidal oyster reef habitats [49]. High resolution LiDAR provided by
a low-altitude UAS may improve oyster density estimations in shallow subtidal oyster
density measurements.

4.4. Future Work

In this study, a digital single-lens reflex camera collected imagery in broad RGB wave-
bands. Future studies should investigate the utility of using multispectral or hyperspectral
imagery. Multispectral sensors can collect imagery in discrete spectral wavebands while hy-
perspectral sensors collect data in hundreds of narrow wavelengths. Chand et al. (2020) [21]
used a multispectral sensor on a UAS and found that intertidal oyster reefs have a strong
spectral reflectance in the blue band which was used to distinguish reef habitat from other
habitat types. Le Bris et al. (2015) [22] found differences in NIR hyperspectral reflectance
between horizontally and vertically growing oysters likely due to less sedimentation on
vertically growing oysters. Differences in the magnitude and shape of multispectral or
hyperspectral reflectance spectra can potentially enhance estimations of intertidal oyster
density. Future studies could also investigate integrating spectral data with synthetic
aperture radar (SAR) imagery. SAR is radar backscattering which can provide information
on surface parameters, such as roughness. Choe et al. (2012) [50] demonstrated that po-
larization characteristics of SAR images can effectively distinguish the surface roughness
of intertidal oyster reefs from the surrounding mudflat habitat. The integration of high
resolution multi or hyperspectral imagery with high resolution elevation or texture data,
such as SAR has the potential to improve estimates of large-scale oyster density.

Automated assessment of a coastal ecosystem using machine learning is an emerging
field, and Ridge et al. (2020) [35] developed and trained a convolutional neural network
to successfully and rapidly classify and measure intertidal oyster reef area from high
resolution UAS imagery. Future studies should focus on integrating structural datasets and
a well performing oyster density model into a deep neural network to enhance large-scale
intertidal oyster density assessment. These methods will be powerful for extensive coastal
zone management and monitoring change in habitat over time.

5. Conclusions

Through the long-term consolidation of densely clustered shells, oyster reefs provide
three-dimensional and complex structures that provide a suite of ecosystem services. Mon-
itoring natural and restored oyster habitats is essential to track changes in habitat and
ensure restoration and management goals are being met. In this study, a series of GAMs
incorporating spectral and structural metrics of intertidal reefs derived from UAS-SfM
outputs demonstrate how intertidal oyster density can be accurately estimated. This work-
flow provides a remote, rapid, nondestructive, and potentially standardizable method to
assess large-scale intertidal oyster reef density that will significantly improve management
strategies to protect this important coastal resource from habitat degradation.
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Appendix A

Figure A1. (A) GCP deployed in Town Marsh, (B) GCPs from UAS imagery collected in Town Marsh.

Several other spectral and structural metrics were calculated but not included in
analyses for the following reasons. The effect of segmentation was studied by applying
an unsupervised classification to segmented RGB pixel values of the intertidal oyster reef
imagery. Pixels in the patch reef orthomosaic raster layers were segmented using the
‘Segment Mean Shift’ tool with a spectral and spatial detail parameter of 20. Town Marsh
imagery was segmented using a minimum segment size of 161 (1 m) and Middle Marsh
imagery was segmented using a minimum segment size of 137 (1 m). An unsupervised
classification classified the segmented pixels into three separate classes using the same
classification parameters listed in the Methods. The classified pixel values derived from the
segmented imagery were highly correlated with the raw classified pixel values (r > 0.96)
and were, therefore, not included in subsequent analyses.

The mean and standard deviation of reef elevation measurements was calculated
using the ‘Zonal Statistics as Table’ tool with the DEM reef layer as the zone dataset. While
these measurements represent reef wide elevation variability, they are not as representative
as the surface complexity metric described in the Methods and were therefore not included
in the GAMs. The slope was computed as the maximum rate of change in elevation from
a cell to its immediate neighbors using a default 3 × 3 pixel window which translates to
0.019 m × 0.019 m at Town Marsh and 0.022 m × 0.022 m at Middle Marsh. Rugosity was
computed following Burns et al. (2015) as the ratio of 3D surface area to the 2D planar
area for each patch reef and was computed by using the ‘Add Surface Information’ tool
to all delineated patch reef DEMs. Two patch reefs in Town Marsh (TM2 and TM3) had
higher than average slope and rugosity values, likely due to the effect of a small processing
window that produced high measurements when averaged over the entire reef. Therefore,
slope and rugosity were not included in the GAMs.
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Figure A2. Spectral and structural geospatial analyses applied to a patch reef located on Town Marsh
(TM 4). (A) RGB orthomosaic with pixel resolution of 0.0062 m. (B) Unsupervised classification
on RGB orthomosaic. (C) Unsupervised classification on segmented RGB orthomosaic. (D) Digital
elevation model with pixel resolution of 0.0062 m. (E) Surface complexity (neighborhood standard
deviation) using a 1 m2 pixel window. (F) Slope of elevation in a 0.019 × 0.019 (3 × 3 pixel) window.

Table A1. Spectral and structural metrics applied in GAMs.

Patch Reef
Average
Length
(mm)

Total
Density
(#/m2)

Recruit
Density
(#/m2)

Sub
Market
Density
(#/m2)

Market
Density
(#/m2)

Light
Colored

Pixels (%)

Intermediate
Colored

Pixels (%)

Dark
Colored

Pixels (%)

TM 1 47.9 1184 193 822 169 22 57 22
TM 2 47.0 971 123 751 97 37 33 30
TM 3 44.3 2640 792 1373 475 27 32 41
TM 4 35.4 1944 783 1031 130 42 36 22
TM 5 56.7 888 161 481 246 24 38 38
TM 6 63.1 768 33 501 235 27 38 35
MM 1 42.2 5400 2300 2200 900 5 17 78
MM 2 36.8 5100 2825 1500 775 5 16 79
MM 3 55.6 1925 675 600 650 12 32 57
MM 4 52.9 3525 1025 1650 850 6 24 70
MM 5 57.4 1900 475 700 725 13 37 50
MM 6 39.4 2475 1025 1125 325 31 43 26
MM 7 46.6 3100 675 2100 325 31 40 29
MM 8 32.4 6975 3150 3475 350 41 43 16
MM 9 40.5 2725 400 2250 75 33 46 21



Remote Sens. 2022, 14, 2163 14 of 16

Table A1. Cont.

Patch reef

Light
colored

segmented
pixels (%)

Intermediate
colored

segmented
pixels (%)

Dark
colored

segmented
pixels (%)

Mean
elevation

(m)

Standard
dev of

elevation
(m)

Surface
complexity

(m)
Slope (◦) Rugosity

(3D/2D)

TM 1 20 53 27 −0.30 0.06 0.01 8.9 1.03
TM 2 36 30 33 −0.35 0.15 0.04 43.79 4.23
TM 3 25 28 46 −0.34 0.15 0.04 34.6 3.66
TM 4 43 33 24 −0.28 0.17 0.03 13.8 1.09
TM 5 22 32 45 −0.27 0.07 0.03 16.1 1.14
TM 6 25 32 42 −0.23 0.08 0.03 16.0 1.13
MM 1 5 18 78 −0.02 0.09 0.04 12.5 1.04
MM 2 4 17 79 −0.38 0.10 0.05 13.8 1.05
MM 3 11 35 54 −0.20 0.13 0.06 13.1 1.05
MM 4 6 25 69 −0.04 0.12 0.04 11.2 1.04
MM 5 13 40 48 0.20 0.12 0.05 11.3 1.03
MM 6 32 45 23 −0.19 0.11 0.04 9.5 1.02
MM 7 31 39 31 0.09 0.12 0.05 10.9 1.03
MM 8 43 43 14 −0.18 0.08 0.03 7.3 1.01
MM 9 35 47 18 −0.12 0.11 0.02 5.8 1.01

Figure A3. PCA on proportions of digital count RGB pixel values classified as light, intermediate,
and dark colored pixels for each patch reef.
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