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Abstract: Concrete cracks can threaten the usability of structures and degrade the aesthetics of
buildings. Furthermore, minor cracks can develop into large-scale cracks that may lead to structural
failure when exposed to excessive external loads. In addition, the concrete crack width and depth
should be precisely measured to investigate the effects of concrete cracks on the stability of structures.
Thus, a nondestructive and noncontact testing method was introduced for detecting concrete crack
depth using thermal images and machine learning. The thermal images of the cracked specimens
were obtained using a constant test setup for several months under daylight conditions, which
provided sufficient heat for measuring the temperature distributions of the specimens, with recording
parameters such as air temperature, humidity, and illuminance. From the thermal images, the
crack and surface temperatures were obtained depending on the crack widths and depths using the
parameters. Four machine-learning algorithms (decision tree, extremely randomized tree, gradient
boosting, and AdaBoost) were selected, and the results of crack depth prediction were compared
to identify the best algorithm. In addition, data bias analysis using principal component analysis,
singular value decomposition, and independent component analysis were conducted to evaluate the
efficiency of machine learning.

Keywords: crack detecting method; thermal images; machine learning; data bias analysis; macrocrack

1. Introduction

Concrete cracks at the exposed surfaces of concrete structures are caused by shrinkage,
construction deficiencies, and deterioration of the structure with time. These cracks can
threaten the stability of concrete structures and degrade the aesthetics of buildings. In
addition, minor cracks can develop into large-scale cracks, which lead to structural failure
when exposed to excessive external loads. The concrete crack width and depth should be
precisely measured to investigate the effects of concrete cracks on the stability of structures.
Numerous studies on detecting concrete width have been conducted, whereas studies on
detecting concrete depth have rarely been conducted owing to many unknown factors [1,2].
Aggelis et al. proposed surface crack depth and repair evaluation using Rayleigh waves [1].
Slots 4 mm wide, whose depths were specifically 2–23 mm, were artificially made in
laboratory-size concrete specimens to investigate the accuracy of the proposed technique.
Lin and Wang detected concrete crack depths using ultrasonic shear horizontal waves [2].

The most common method for detecting concrete cracks is placing the detecting device
in direct contact with the concrete surface. However, it is difficult to access every concrete
surface area located in tall buildings and inaccessible places. Thus, new methods using
thermography cameras have attracted the attention of field engineers. Sham et al. [3]
verified that the concrete crack temperatures were higher than the intact concrete tem-
peratures at the surface and investigated the radiative mechanism at the concrete crack
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through tests. The flash method in this study obtained thermal images after the concrete
surface was heated for 3 ms, and can detect cracks from 0.5–1.0 mm wide. Omar et al. [4,5]
proposed an automated method for detecting delamination in a concrete bridge deck using
infrared thermography. In addition, an unmanned aerial vehicle (UAV) was used to take
images from all views. Kodikara et al. [6] measured thermal diffusivity of soil with thermal
images with a single fixed temperature end method in laboratory conditions. Andrade and
Eduardo [7] proposed a methodology for detecting internal defects of fired ceramic tiles
using thermal images and a multilayer perception network, the most widely used neural
classifier. The three-layer was constituted of 72, 40, and 5 neurons in the input, hidden, and
output layers, respectively. Bauer et al. [8] qualitatively and quantitively diagnosed façade
defects using two kinds of thermography cameras with heat sources in the laboratory.
Seo [9] detected initial crack and propagation using temperature changes in the thermal
images and validated the detection method via strain gauge data. Chun and Hayashi [10]
proposed a remote detecting method for concrete floating and delamination using ther-
mal images. The thermal images were analyzed by machine learning with seven factors
to detect the defects. Feroz and Abu Dabous [11] presented UAV-based remote sensing
applications for bridge condition assessment, such as visual imagery, light detection, and
ranging technology, and an infrared thermography camera. Mandirola et al. [12] proposed
a UAV-based methodology for the inspection and damage assessment of bridges in the
aftermath of a disaster, or in normal conditions.

There are limitations in quantitatively evaluating concrete cracks using thermal im-
ages, because of many unknown parameters such as crack shapes and concrete thermal
characteristics. To solve this problem, machine learning was selected to investigate the
relationships between unknown parameters and concrete defects. However, studies on
detecting the existence of concrete defects and classifying the types of defects using machine
learning have mainly been conducted based on photographs [13–21]. Recently, several
studies have been conducted using thermal images and machine learning for predicting
concrete crack depths [22–25]. Jeong et al. first introduced a crack depth prediction system
using thermal images obtained from UAVs and machine learning. However, the accuracy
of crack depth detection is relatively low because of the lack of thermal image data for
machine learning [22]. Lee et al. applied the system to existing buildings to predict concrete
crack depths, and machine learning was improved to reduce errors of prediction [23]. Bae
et al. described a similar detection system for macrocrack depth (10–60 mm) using infrared
thermography with three machine-learning algorithms (linear regression, random forest,
and gradient boosting) implemented in Python 3.9 with 3639 thermal images [24,25]. How-
ever, the accuracy of crack depth detection needs to be greatly improved. Kim et al. used
four machine-learning algorithms (multilayer perceptron, random forest, gradient boosting,
and AdaBoost) to improve the accuracy of the system with 6940 thermal images [26]. The
accuracies of all the algorithms, except the multilayer perceptron, were greatly improved;
the maximum error was 3.1%. Moreover, the AdaBoost algorithm showed the best accuracy
(98.96%) among the four machine-learning algorithms.

In this study, the accuracies of the other three machine-learning algorithms (decision
tree, extremely randomized tree, and extreme gradient boosting) were compared to the
best machine-learning algorithm (AdaBoost) in the previous study [26]. The amount of
data for determining the most appropriate algorithm for assessing the concrete crack
depths is equal to that in the previous study [26]. However, to increase the validation of
machine learning, data bias, which was not conducted in the previous study, was also
investigated to prevent overfitting. Finally, the performance indicators of the four machine-
learning algorithms, considering data bias analysis, were described using three techniques
that increased the efficiency and reduced the training duration methods. The differences
between the algorithms and techniques were compared to suggest the best algorithm for
predicting concrete crack depths.
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2. Thermal Image Collection
2.1. Test Program

Concrete specimens with known cracks were artificially manufactured to collect the
thermal image data for machine learning. The procedure for collecting thermal images and
conducting machine learning to investigate the correlation between the crack depths and
parameters is shown in Figure 1. This test was conducted at 1–4 pm, which is the typical
working time for structural inspections; during this time, there is sufficient daylight for the
specimen to show a significant temperature distribution at the crack surface. Numerous
thermal images of artificially defective concrete specimens were obtained along with
environmental parameters (illuminance, humidity, etc.). Machine learning was performed
to train to analyze the data for predicting the crack depth.
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2.2. Test Specimen

The test specimens were named according to the crack width (W) and depth (H), as
listed in Table 1. The first letter, C, in the designation stands for crack; for example, C5-20
stands for a crack with width 5 mm and depth 20 mm. The configurations of the test
specimens are illustrated in Figure 2. Macrocracks were selected in this study because
of the detection system and the early stage of this research. The purpose of the system
was to detect significant cracks in damaged structures rapidly and widely, using UAVs in
disaster situations such as post-earthquakes [22–26]. Currently, this system aims primarily
to detect macrocracks using thermal images and machine learning; after the investigation,
the microcrack test specimens will be used to improve the detection system. To manufacture
the test specimens, molds were fabricated. After filling the concrete in the molds, polymer
pieces of equal size to the cracks were installed at the planned crack locations with easily
detached thin wax. The polymer pieces were fabricated using a 3D printer, and the strength
of the concrete in the specimens was 24 MPa.

Table 1. Name of test specimens.

Crack Depth (H)
(mm)

Crack Width (W) (mm)

5 8 10 12 15 20

10 - - C10-10 - C15-10 C20-10
20 C5-20 C8-20 C10-20 C12-20 C15-20 C20-20
30 - - C10-30 - C15-30 C20-30
40 C5-40 C8-40 C10-40 C12-40 C15-40 C20-40
50 - - C10-50 - C15-50 C20-50
60 - C8-60 C10-60 C12-60 C15-60 C20-60
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2.3. Test Setup

Thermal images were obtained from test specimens located outdoors at 1–4 pm after
the specimens were directly exposed to sufficient daylight. To gather 6439 thermal images,
the test was repeated over several months. The performance of a thermal camera located
outdoors can be influenced by several parameters such as air temperature, humidity,
illumination, cracks, and concrete surface temperature; the thermal images were therefore
collected with those parameters set for machine learning. The air temperature ranged from
−1.8 ◦C to 37.8 ◦C. In addition, humidity and illuminance ranged from 3.1% to 74.3%, and
from 3200 lux to 91,810 lux, respectively. The test setup is shown in Figure 3, where the
distance between the thermal camera and specimen was 5 m, which was determined by
the minimum shooting distance of the UAV. This was because the proposed method aimed
to rapidly detect the macrocrack at the unapproachable area using a UAV. The location
and angle of the thermal camera towards the specimens were always fixed because the
UAV with GPS can obtain ortho-thermal images with flight path planning in advance.
In addition, the thermal camera was installed in the UAV instead of a normal camera
with special modules. The professional thermal camera was an FLIR T530 [27], whose
specifications are listed in Table 2. From the thermal images obtained, the raw data in
the crack and surfaces were extracted at each temperature per pixel using environmental
parameters. The surface temperatures at the upper and lower parts of the crack were
measured because the surface conditions of concrete have more influence than the other
environmental parameters. In addition, the specimen depth was decided by the previous
studies [22–26] to avoid the rear surface effect on the crack or surface temperatures.
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Table 2. Specification of the thermal camera [27].

Parameter Specification

IR resolution 320 × 240 (76,800 pixels)
Thermal sensitivity/NETD <40 mK, 24 ◦C @ 30 ◦C (86 ◦F)

Accuracy ±2 ◦C (±3.6 ◦F) or ±2% of reading
Digital camera 5 MP, with built-in LED photo/video lamp

Display 4”, 640 × 480 pixel touchscreen LCD with autorotation
Storage media Removable SD card

2.4. Test Results

An example of the thermal images obtained is shown in Figure 4. The minimum
pixel size of the thermal camera was 6.55 mm when the distance between the camera and
specimen was 5 m. There was no issue with measuring the cracks of the specimen in
this study, where the minimum width was 10 mm, as shown in Table 1. Because the test
specimen was exposed to daylight before the test, the crack temperatures were higher than
the surface temperatures. Light passed through the crack and was repeatedly reflected
inside the crack. In contrast, light was reflected only once at the surface of the test specimen.
Therefore, crack temperatures are higher than surface temperatures. The factors affecting
the difference between crack and surface temperatures are environmental parameters,
such as air temperature, humidity, and illuminance during the test. An example of the
three-dimensional (3D) temperature distribution at the crack is shown in Figure 5, where
the differences between the crack and surface temperatures are clearly shown. The shape
of the temperature distribution at the crack was similar to that of the crack. An example of
raw data with the parameters is presented in Table 3.
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Table 3. Example of raw data.

Crack Width
(mm)

Crack Depth
(mm)

Crack
Temperature

(◦C)

Surface
Temperature

(◦C)

Air
Temperature

(◦C)
Humidity (%) Illuminance

(lux)

10 60 11.3 10.8 15.5 23.3 7448
15 20 10.3 9.9 13.7 24.1 6686
20 10 4.8 3.8 20.4 30.6 14,967
20 40 28.8 27.2 25.1 44.4 6189

3. Data Analysis Result and Discussion
3.1. Parameter Information

The total number of data points was 6940, and all data were used for analysis. The
statistical information and normal probability distributions of the data are shown in Figure 6
and Table 4. Standardization datasets were used to improve machine-learning performance.
The crack depth was the target value for machine learning, whereas the others were
input values.
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Table 4. Statistical information.

Features Average Standard
Deviation

First
Quartile

Second
Quartile
(Median)

Third
Quartile

Max.
Value

Min.
Value

Crack temperature (◦C) 24.80 13.50 16.00 26.70 37.00 47.8 −2.3
Surface temperature (◦C) 24.50 13.58 15.05 26.30 36.40 47.2 −3.3

Air temperature 22.85 10.33 16.50 25.20 31.00 37.8 −1.8
Humidity (%) 37.23 12.35 27.30 40.50 45.50 74.3 3.1

Illuminance (lux) 15,630 16,040 4436 9777 22,230 91,810 3200
Crack width (mm) 15.05 8.90 10.00 15.00 20.00 60 5
Crack depth (mm) 35.31 17.22 20.00 40.00 50.00 60 10

3.2. Machine Learning

This study used four machine-learning algorithms (decision tree, extremely random-
ized tree, extreme gradient boosting, and AdaBoost), because the previous study [19] used
other machine-learning techniques (multilayer perceptron, random forest, gradient boost-
ing, and AdaBoost) and suggested that AdaBoost could efficiently predict crack depth using
thermal images. To prevent overfitting, cross-validation was conducted as a resampling
procedure used to evaluate machine learning on a limited dataset. k-fold cross-validation,
which partitioned the dataset into two groups (training and test), was selected [28]. Ma-
chine learning used the training group to analyze data and the test group for verification.
The decision tree (DT) algorithm [29] classifies the data using criteria based on data features
and structures the classification into a tree shape. Decision making is provided by the
classifier function, and the subgroups are repeatedly divided until they match the target
data. For example, the specific classifier for performing binary classification was selected,
such as where the crack temperatures of the specimen with a 20 mm crack depth were
over 30 ◦C when the air temperatures were over 25 ◦C. Then, the 25 ◦C air temperatures
could be the first classifier to estimate the crack depth. However, to prevent the overfitting
and the wrong estimation flow with complicated classifiers, selection was applied. From
multiple and repeated classifiers, the decision tree algorithm estimated the crack depth.
As the extremely randomized tree (EXT) [30] is an advanced random forest algorithm,
overfitting rarely occurs. The subsamples of the data features are randomly selected, and
the algorithm trains the optimal estimators. The EXT algorithm uses the entire training
group for the training estimator, whereas the random forest uses only the extracted data.
To estimate the crack depth, parameters were randomly selected without information gain.
For example, 25 ◦C air temperature was randomly selected as the feature and the optimal
estimators were calculated. After that, various features were randomly selected, and the
optimal estimators were calculated to estimate the crack depths. As extreme gradient
boosting (XGB) [31] is developed from the gradient boosting algorithm with classification
and regression trees. The training speed of XGB is much faster than gradient boosting.
The main feature of XGB is the regularized loss function to prevent overfitting, which can
reduce the feature size and simplify training. Therefore, XGB can be used when data and
situations are complicated. For example, several decision trees, such as the mentioned
example in the DT, were combined and assigned their weights. The difference between
the DT and XGB, is whether using sampling data or weighted sampling data. AdaBoost
(AB) [32] is similar to the gradient boosting algorithm except for the weight factors. AB
grades the weight factor for the misclassification data to apply to the next decision-making
iteration, which can reduce the training duration and improve the accuracy. Therefore, AB
can be applied to complicated situations with large data; however, the computation cost is
high. For example, the crack temperatures of the specimen with a 20 mm crack depth were
over 30 ◦C when the air temperatures were over 25 ◦C. The errors of this classifier were
calculated, and this weighted data affected the second classifier and this procedure was
repeated to derive the best estimation.
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3.3. Results and Discussions

To evaluate the performance of the machine learning, five indicators, training and test
scores, ±1 and 2 mm accuracies, and mean absolute percentage error (MAPE), were calcu-
lated. The training and test scores were evaluated using the coefficients of determination
(R2

train, R2
test) using Equation (1).

R2 =
SSR
SST

=

(
n
∑

i=1
(yi − y)

(
ti − t

))2

n
∑
i
(yi − y)2 n

∑
i

(
ti − t

)2
(1)

where R2 is the coefficient of determination, SSR is the sum of squares related to regression,
SST is the total sum of squares, yi is the real crack depth of the i-th data, ti is the estimated
crack depth of the i-th data, yi is the average of the real depth, ti is the average of the
estimated depth, and n is the number of data.

The coefficients of determination ranged between 0 and 1. If the value approaches
zero, the correlations between the real and estimated cracks are irrelevant to each other.
By contrast, if the value approaches 1, the correlation between the real and estimated
cracks is relevant to each other. Generally, training scores are higher than test scores; when
the difference between them is large, machine learning is overfitted. Next, accuracies of
±1 and 2 mm (acc1, acc2) were evaluated using Equation (2). This indicates the possibility
of developing microcracks.

acc =
Ntrue

n
(2)

where acc is the accuracy, Ntrue is the number of estimated data points within the allowable
errors, and n is the number of data points.

The mean absolute percentage error (MAPE) is a non-dimensional indicator for evalu-
ating errors and an improved version of the root mean square error (RMSE) that does not
consider size-dependent errors. MAPE can be expressed as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ti
yi

∣∣∣∣ (3)

where MAPE is the mean absolute percentage error, n is the number of data, yi is the real
crack depth of the i-th data, and ti is the estimated crack depth of the i-th data.

MAPE should be set between 0 and 1. If the value approaches zero, the performance
of the machine-learning algorithm is satisfactory. The machine-learning results for the
aforementioned indicators are listed in Table 5. Based on the training and test scores, all
algorithms except DT can be used for detecting macrocrack depths; the test score for DT is
too low to effectively predict crack depths. DT showed lower scores because it is a single
learner, whereas the other algorithms had several weighted learners to predict the crack
depths. In addition, the test score of AB was the highest because of the weight factor of the
misclassification data for the next decision. In terms of accuracy, only the AB algorithm
has the possibility of detecting microcracks. However, XGB and AB can be selected for
detecting macrocracks when considering MAPE because the MAPE of the EXT was quite
high and even higher than DT. The difference between XGB and AB is the random classifi-
cation of XGB and weighted factor for the misclassification data of AB. Therefore, random
classification should be helpful in detecting macrocrack depth because the parameters
showed a complicated correlation with the crack depth, not random correlation.
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Table 5. Machine-learning results.

Algorithm R2
train R2

test acc1 (%) acc2 (%) MAPE (%)

DT 0.9436 0.8821 76.74 80.99 7.23
EXT 0.9710 0.9606 52.33 69.83 8.27
XGB 0.9999 0.9710 87.97 92.15 2.63
AB 0.9998 0.9896 97.70 98.49 0.60

4. Data Bias Analysis Result and Discussion
4.1. Data Bias Analysis

In this section, we discuss ways to prevent data bias and evaluate its effects using
three bias prevention models: principal component analysis, singular value decomposition,
and independent component analysis. A change in features may cause changes in other
features because of covariation.

Principal component analysis (PCA) [33] is a technique used to evaluate the covariation
of numerical variables, which selects smaller variable groups than the number of numerical
variables. The principal component (Zi) can be obtained by multiplying the variables (Xi)
by the weight values (wi,n) in the n-th data feature as follows:

Zi = wi,1X1 + wi,2X2 + · · ·+ wi,nXn (4)

where Zi is the principal component, wi,n is the weight, Xi is the variable, and i is the
number of variable groups (=1, 2, . . . , k, k ≤ n).

To investigate the data bias for the crack depth, six principal components were used:
crack, surface and air temperatures; humidity; illuminance; and crack width. The compo-
nent with the highest weight value, when considering the six principal components, was
the crack temperature.

Singular value decomposition (SVD) [34] can be presented in any matrix M, which is
decomposed into three matrices, as follows:

M = UΣVT (5)

where U is an m × m unitary matrix, Σ is an m × n diagonal matrix, V is an n × n unitary
matrix, and VT is the conjugate transpose of V.

Matrix M is a real-valued data matrix; the columns represent samples, and the rows
indicate the features. This technique finds the standard axis to make an average of rows
zero similar to the PCA, and the axis with the largest value is decided as the matrix U. SVD
is an efficient technique for most datasets, although it focuses on variance, and it is difficult
to understand strongly nonlinear data.

Because PCA [35] creates orthogonal principal component vectors by extracting the
principal components, the principal components are independent of each other. However,
principal components that have no correlation, in fact, would not be independent of
each other. To solve this limitation of PCA, independent component analysis (ICA) was
developed to classify multidimensional data into independent components.

4.2. Analysis Results and Discussions

To evaluate the data bias analysis, three techniques, PCA, SVD, and ICA, were used
with six parameters. The machine-learning algorithms for each technique show five per-
formance indicators, as presented in Table 6. The value of several indicators decreased
compared to the results in Table 5, whereas others remained almost unchanged. The reason
for the decrease in the indicators was the data loss caused by the techniques used to classify
the data groups. The performance of the SVD technique was better than that of the others
for all algorithms, meaning that the correlation between crack depths and the six parame-
ters was not random, and could be defined as simple non-linear relations. It is significant
that the training scores of XGB with all techniques were excessively overestimated because
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their results were overfitted. However, this model has the potential to be developed for
microcrack detection with accuracies up to ±1 and 2 mm, if the XGB can be controlled
and prevented from overfitting. In addition, unlike DT and EXT, AB with PCA and ICA
showed excellent performance in detecting macrocracks and development possibilities for
detecting microcracks. PCA should be helpful for detecting microcracks in the XGB and
AB. From a previous study [26] and the results of this study, AB is the best algorithm for
detecting macrocracks. If overfitting can be prevented, XGB can also be used to detect
macrocracks. For further studies on detecting microcracks, AB and XGB with PCA will be
the best algorithms.

Table 6. Data bias analysis.

Algorithm Technique R2
train R2

test acc1 (%) acc2 (%) MAPE (%)

DT
PCA 0.9303 0.8578 75.52 71.06 9.43
SVD 0.9218 0.8533 74.65 71.06 10.44
ICA 0.9229 0.8752 76.38 72.14 9.1

EXT
PCA 0.9309 0.9198 49.75 32.54 13.43
SVD 0.9098 0.8935 44.13 24.69 14.9
ICA 0.9304 0.9194 48.67 31.61 13.37

XGB
PCA 0.9999 0.9445 87.68 82.07 4.25
SVD 0.9999 0.9442 84.59 78.11 5.26
ICA 0.9999 0.9403 85.03 78.69 4.86

AB
PCA 0.9987 0.9776 90.21 82.36 3.05
SVD 0.9097 0.8935 44.13 24.69 15.9
ICA 0.9964 0.9765 84.38 71.71 4.32

5. Conclusions

This study proposes a method for predicting macrocrack depths in concrete using
thermal images and machine learning. Using the same test setup, 6490 thermal images
were obtained over several months for artificial crack specimens with known crack widths
and depths, with exposure to environmental parameters such as air temperature, humidity,
and illuminance. These provided the input data for the machine learning. To detect the
macrocrack depth, four machine-learning methods, DT, EXT, XGB, and AB, were selected,
and data bias analysis was conducted using PCA, SVD, and ICA. Similar to a previous
study, the AB algorithm was found to be the best machine-learning algorithm, with or
without data bias techniques. However, XGB can also be an excellent machine-learning
method if it prevents overfitting. To evaluate the development possibilities of detecting
microcracks in further studies, accuracies up to ±1 and 2 mm were obtained. Based on
these accuracies, AB and XGB with PCA can be used to detect microcracks. In the case of
XGB, overfitting must be prevented, as in a larger test dataset. The proposed concrete crack
depth prediction method using thermal images and machine learning is expected to be
actively used when rapid structural safety assessments are needed. For example, if a strong
earthquake occurs in a city, the structural safety of numerous buildings in the city should
be rapidly investigated. In addition, the proposed method with UAVs is expected to be
applied to infrastructure or buildings where human access is impossible, such as nuclear
facilities and irregular or tall buildings.
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