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Abstract: At present, the LiDAR ground filtering technology is very mature. There are fewer applica-
tions in 3D-object detection due to the limitations of filtering accuracy and efficiency. If the ground
can be removed quickly and accurately, the 3D-object detection algorithm can detect objects more
accurately and quickly. In order to meet the application requirements of 3D-object detection, inspired
by Universal-RANSAC, we analyze the detailed steps of RANSAC and propose a precise and efficient
RANSAC-based ground filtering method. The principle of GroupSAC is analyzed, and the sampled
points are grouped by attributes to make it easier to sample the correct point. Based on this principle,
we devise a method for limiting sampled points that is applicable to point clouds. We describe
preemptive RANSAC in detail. Its breadth-first strategy is adopted to obtain the optimal plane with-
out complex iterations. We use the International Society for Photogrammetry and Remote Sensing
(ISPRS) datasets and the KITTI dataset for testing. Experiments show that our method has higher
filtering accuracy and efficiency compared with the currently widely used methods. We explore the
application of ground filtering methods in 3D-object detection, and the experimental results show
that our method can improve the object detection accuracy without affecting the efficiency.

Keywords: light detection and ranging (LiDAR) filtering; random sample consensus (RANSAC);
Universal-RANSAC; 3D-object detection

1. Introduction

Light detection and ranging (LiDAR) can obtain real three-dimensional spatial co-
ordinate information within the measurement range [1]. This has the characteristics of
high efficiency and high accuracy. LiDAR is widely used in urban planning, agricultural
development, environmental monitoring, and transportation [2]. Ground filtering is a key
technology to separate and extract ground information from the point-cloud data obtained
by LiDAR [3,4]. Point cloud filtering is a significant step in the process of point-cloud
processing [5]. Therefore, in the past two decades, scholars have proposed many effective
automatic filtering algorithms, which greatly reduce the labor costs and improve the appli-
cation efficiency of point-cloud data [2]. There are many widely used methods that are well
suited for different situations. However, these methods can still be better optimized.

With the development of deep-learning technology [6], 3D-object-detection methods
based on convolutional neural networks have achieved high accuracy and efficiency and
have been gradually applied in the fields of autonomous driving and robotics. For 3D-
object detection, many scholars have proposed network structures, and these networks
have superior performance [7–9]. Commonly used methods for 3D-object detection include
converting point clouds into voxels [10] and pseudo images [11]. This also includes PointR-
CNN [12], which processes point clouds directly. Research progress has also been made in
joint 3D-instance segmentation and object detection [13].

However, the general practice of the current 3D-object detection algorithm is to directly
process the collected point cloud, and few scholars have considered removing the ground
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first. The main reason is that the accuracy and efficiency of the current ground filtering
algorithms have difficulty in meeting the application requirements of 3D-object detection.
For example, the ground filtering accuracy is insufficient, which will result in part of the
ground being retained and some objects being removed. This will seriously affect the
object detection accuracy. At the same time, computational efficiency is an important
indicator of 3D-object detection. If the ground filtering efficiency is insufficient, it is also
impossible to be applied. Therefore, a fast and high-precision ground filtering method is
currently needed.

Since the elevation changes of most scenes are relatively small, many researchers
treat the ground surface as a flat surface [14]. Fan et al. builds a plane function by using
RANSAC. The ground points whose distance to the optimal plane is within the threshold
are recognized [15]. When the ground is uneven, this method has obvious defects. In order
to improve the fitting accuracy in large scenes, Golovinskiy filters out the ground points
locally [16].

As the whole ground cannot be a flat plane. Part of the ground is mostly a flat plane.
However, they only filter the ground points through the plane fitting method and do not
consider the problems that may be caused by the local plane fitting. Similarly, this paper
uses a local method to filter out the ground points. The proposed method first divides
the point cloud into several blocks, which is essential to obtain a local point cloud. This
paper analyzes the problems that may be caused by local ground fitting, and proposes
effective solutions.

For the efficiency and accuracy of RANSAC, Universal-RANSAC [17] conducted a
detailed analysis and proposed a comprehensive solution. Similarly, we analyze the steps
of RANSAC in detail and optimize the two key steps of sampling and determining the
optimal plane, respectively.

• Sampling: RANSAC uses a completely random approach. The premise of this ap-
proach is that we have absolutely no idea what the data is like. However, in practical
applications, prior knowledge of the data is known. GroupSAC [18] considers points
within a class to be more similar, and points in a dataset are grouped according to
some similarity. Sampling starts with the largest cluster as there should be a higher
proportion of inliers here. In the process of LiDAR ground filtering, the heights of
the two adjacent parts of the ground are essentially the same, and thus we can first
estimate the height of the ground and set constraints. Our scheme can also deal with
the problems caused by local ground fitting.

• Determining the optimal plane: After RANSAC calculates the model, the number of
points that satisfy the parameters in all sets is calculated. Preemptive RANSAC [19]
first generates multiple models, and then a selected subset is used to rank the generated
models according to the objective function score. The first few are selected, and several
rounds of similar sorting are performed to select the best model. We also adopt this
idea. Multiple models are generated, and the best one is selected. This avoids multiple
iterations and improves the efficiency.

The contributions of this article are as follows.

1. We propose an improved RANSAC. We analyze the principle of GroupSAC, design
the sampling method and effectively solve the problems that may be caused by local
point cloud filtering. We analyze Preemptive RANSAC and devise a method for
determining the optimal plane. Based on these two key steps of RANSAC, a LiDAR
ground filtering method is proposed.

2. We experimentally verify that the accuracy and efficiency of the proposed method are
higher than the current commonly used methods. The filtering results obtained by
the proposed method can better preserve the details in the point cloud.

3. We explore the application of point cloud filtering methods to 3D-object detection.
The proposed method can improve the accuracy of 3D-object detection to a certain
extent without affecting the efficiency.
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2. Related Work
2.1. LiDAR Filtering

In recent years, researchers have proposed a variety of ground filtering algorithms,
which can be classified according to different criteria. For example, filtering algorithms
can be divided into urban pavement and wild vegetation according to the ground type.
According to the processing method, these can be divided into single-step filtering and
iterative filtering. After sorting out the ground filtering algorithms, the current mainstream
algorithms are divided into three categories according to the point-cloud division and
processing methods. These are the ground filtering algorithm based on morphology, the
ground filtering algorithm based on space division and the ground filtering algorithm
based on iterative least square interpolation.

Morphological filtering was the earliest filtering algorithm applied to LiDAR. The
specific steps of this method are to divide the point-cloud data into grids, and the grid ele-
vation information is used to erode the non-ground points to extract the ground points [20].
The progressive morphological filter gradually increases the window size, and according
to the window size, the elevation difference threshold information is used to retain ground
points and remove points from non-ground objects [21].

Pirotti used a multi-dimensional grid to apply a progressive morphological filter to
remove non-ground points [22]. The algorithm does not require multiple iterations and can
optimize the speed; however, it relies heavily on reflectance information. Trepekli evaluated
the performance of morphological filter, and the results show that the performance of
morphological filter on uniform surface is satisfactory [23].

This method generally requires interpolation and gridding before data processing,
which will cause damage to the original terrain features. Furthermore, this kind of method
only uses the lowest point of the window as the ground point. Assuming that the roof area
is large and the ground is not included in the window, there will be errors in the filtering
results, and this method is not applicable. In addition, the size of the structural window
and the setting of the elevation threshold are the main factors that affect this filtering. This
also leads to the impracticality of these methods.

Ground filtering based on space division is a mixture of grid-based filtering and three-
dimensional voxel-based filtering. The grid-based filtering is to grid the horizontal plane of
the point cloud space. Thrun et al. proposed a filtering algorithm based on the minimum–
maximum height difference [24]. The ground filtering based on a two-dimensional grid uses
local ground information instead of global continuity information for filtering. This method
is susceptible to noise or external calibration of the sensor, and thus the performance is
not stable.

Three-dimensional voxels are based on a plane grid and divide the three-dimensional
space into several sets according to the elevation information of the point cloud [25].
This type of algorithm generally distinguishes ground voxels from non-ground voxels by
judging the average height or variance value of the points within the voxels [26].

The filtering method based on iterative linear least squares interpolation was first
proposed by Kraus et al. [27]. This method can obtain the terrain surface well; however,
the obvious drawback of this method is that the filtering parameters need to be constantly
adjusted to adapt to different types of terrain. Koebler proposed a layered robust linear
interpolation method based on least squares [28]. This method is suitable for steep areas and
forest areas. Qin proposed a region growth filtering based on moving-window weighted
iterative least squares fitting [29]. This method can effectively remove buildings and
vegetation; however, it still requires further improvement for the removal of bridges and
objects at the edge.

Gao used least squares interpolation in the framework of road extraction to restore the
elevation information of the blocked sections of the overpass [30]. This type of algorithm
needs to satisfy two conditions. First, the lowest point of elevation value within a certain
area must be a ground point. Second, the distribution of ground points conforms to the
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quadratic surface distribution, and other points are higher than the surface. In short, the
application of ground filtering methods based on least squares is limited.

2.2. RANSAC

The goal of classic RANSAC [31] is to continuously attempt different target space
parameters to maximize the objective function. This is a random, data-driven process.
The estimated model is generated by iteratively randomly selecting a subspace of the
dataset. The estimated model is then leveraged and tested with the remaining points in the
dataset to obtain a score. Finally, the estimated model with the highest score is returned
as the model for the entire dataset. Classical RANSAC has three main limitations, namely
efficiency, accuracy, and degradation. There are many improvements to these limitations of
the classical approach.

Under the condition of prior knowledge, the minimum subset sampling method can
effectively reduce the sampling times. The main idea of NAPSAC [32] is to regard the
n-dimensional space of the dataset as a hypersphere, and as the radius decreases, the
outliers decrease faster than the inliers. PROSAC [33] uses the result of matching the initial
set of points as the basis for sorting, and thus that the samples that are most likely to obtain
the best parameters will appear earlier, which improves the speed. Similar to NAPSAC,
the classical algorithm begins to calculate the parameters after the sampling is completed,
while some algorithms verify whether the sampling results are suitable for the parameter
calculation after the sampling is completed.

The model calculation is to calculate the parameters according to the minimum set
selected in the previous step to obtain the model. Prior knowledge is used for model
validation, such as matching point sets with circles. When verifying, it is not necessary to
verify all the points in the dataset but only to verify within a radius of the model.

The verification parameter is to calculate the number of points satisfying the parameter
in all sets after obtaining the parameters generated by the minimum set. T(d, d) test selects
d points that are much smaller than the data set as the test. Only when these d points
are all in-class points, are the remaining points are tested; otherwise, the current model is
discarded. The Bail-Out test [34] selects several points in the set for testing. If the proportion
of inliers is significantly lower than the proportion of inliers in the current best model,
the model is discarded. The SPRT test [35,36] randomly selects a point and calculates the
probability of conforming to the current model and the probability of not conforming.
When the probability ratio exceeds a certain threshold, the current model is discarded.

The final converged RANSAC result may be affected by noise and is not the globally
optimal result. This effect requires the addition of a post-processing of model refinement.
When the current optimal result appears in the iterative process, Lo-RANSAC [37] re-
samples from the inliers of the returned result to calculate the model by setting a fixed
number of iterations and then selecting the optimal local result as the improved result. The
idea of the error propagation method [38] is consistent with Lo-RANSAC, since the initial
RANSAC results are generated from a noisy dataset, and thus this error propagates to the
final model.

Universal-RANSAC [17] analyzes and compares various methods to optimize the key
steps of RANSAC. The algorithm flow chart of Universal-RANSAC is shown in Figure 1.
Its minimum sampling method adopts PROSAC, its model verification adopts SPRT test,
and its detail optimization adopts Lo-RANSAC. In this paper, the key steps of RANSAC
are optimized according to the characteristics of point clouds, and an efficient and robust
LiDAR filtering method is proposed.
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Figure 1. Flowchart of Universal-RANSAC.

2.3. 3D Object Detection

3D-object detection in urban environments is a challenge, requiring the real-time
detection of moving objects, such as vehicles and pedestrians. In order to realize real-time
detection in large-scale point clouds, researchers have proposed a variety of methods for
different requirements.

Lang et al. proposed the encoder PointPillars to learn the point-cloud representation
in pillars [11]. By operating the pillar, there is no need to manually adjust the combination
of points in the vertical direction. Since all key operations can be represented as 2D convo-
lutions, end-to-end 3D point cloud learning can be achieved using only 2D convolutions.
The point cloud information can be effectively utilized by this method, and the calculation
speed is fast.

Shi et al. proposed PointRCNN to generate ground-truth segmentation masks from
point clouds in the scene based on bounding boxes [12]. A small number of high-quality
bounding box preselection results are generated while segmenting the foreground points.
Preselected results are optimized in standard coordinates to obtain the final inspection results.

Considering the generality of the model, Yang et al. proposed STD [39]. Spherical
anchors are exploited to generate accurate predictions that retain sufficient contextual
information. The normalized coordinates generated by PointPool make the model robust
under geometric changes. The box prediction network eliminates the difference between lo-
calization accuracy and classification score, which can effectively improve the performance.

Liu et al. proposed LPD-Net (large-scale place description network) [40]. The network
uses an adaptive local feature extraction method to obtain the local features of the point
cloud. Second, the fusion of feature space and Cartesian space can further reveal the
spatial distribution of local features and learn the structural information of the entire point
cloud inductively.

Zhang et al. proposed PCAN to obtain local point features and generate an attention
map [41]. The network uses ball queries of different radii to aggregate the textual feature
information of points. This method can learn important point cloud features.

To overcome the limitation of the small size of point clouds in general networks,
Paigwar et al. proposed Attentional PointNet [42] using the Attentional mechanism to
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focus on objects of interest in large-scale and disorganized environments. However, the
preprocessing step of this method makes it computationally expensive.

Voxel CNN is adopted for voxel feature learning and precise location generation to
save subsequent computation and encode representative scene features [43]. Features are
then extracted, and the aggregated features can be jointly used for subsequent confidence
predictions. This method combines the advantages of voxel and Pointnet to learn more
accurate point cloud features.

3. LiDAR Ground Filtering

In this section, we introduce the proposed method. The sampling part is introduced
first. We first analyze the principle of GroupSAC and the possible problems caused by point
cloud segmentation, and based on this, we propose a method to constrain the sampled
points. Then, the calculation method of the plane equation and the method of counting the
number of points in the plane are introduced. Finally, based on the analysis of Preemptive
RANSAC, a method to determine the optimal plane is proposed.

The flow chart is shown in Figure 2. First, the point cloud is observed and divided
into several parts evenly according to the length and width. We determine the constraints
and select n sets of points. n plane equation models are built, and the point cloud is
downsampled. Then, we count the number of points within the range of each plane model,
and select the top m models with the largest number of point clouds. The point cloud
before downsampling is used to count the number of points within the plane model again.
At this time, the selected plane model with the largest number of points is the optimal
model. This process is repeated to obtain the ground model of the entire point cloud.

Figure 2. Flowchart of the proposed method.
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3.1. Sampling
3.1.1. Principle Analysis of GroupSAC

In the original RANSAC and its many improved methods, the probability that point
x is the target point in the random point sampling process obeys a Bernoulli distribution.
That is, the possibility that a point is an inlier is considered to be independent of the other
points. In the original RANSAC, the parameter estimation problem for an existing model
from N data {xj}, j = 1 · · ·N is corrupted by interference. We suppose that the least
number of data required for calculating the parameters of the model is m. For any minimal
data set S with m data:

IS ∼ B(m, ε) (1)

where IS is the number of all target points in S. B(m, ε) is the binomial distribution. “∼”
is the sign that IS obeys the binomial distribution. ε is the parameter of the Bernoulli
trial—that is, the target point possibility of S. Therefore, for the probability Psum(IS = m)
that all data in S are target points, the formula is:

Psum(IS = m) =
m

∏
j=1|xj∈S

P(Ij) = εm (2)

where Ij is a variable indicating that xj is the target point. Despite the fact that many
previous works consider that ε is not necessarily identical for various points. Furthermore,
this inhomogeneous attribute is used to accelerate the sampling process. The target point
probabilities of various points in these methods are still assumed to be independent of
each other.

For many problems, there is a grouping between data. These grouped attributes tend
to have high or low proportions of target points. Figure 3 is used as an example. We
label the point cloud with different colors based on height. We can consider a group of
similar colors as a point group. The green group is more likely to contain inliers than the
blue group.

Figure 3. Schematic diagram of a point cloud grouping. According to the height, the point cloud is
divided into two groups, the blue group and the green group. It is clear that the green group contains
more inliers.

We hypothesize that the probability of inliers in these sets can be modeled by a two-
class compound. They are the high inlier class and the low inlier class, respectively. The
characteristic of the model is that the more data in the high inlier class, the lower the inlier
ratio. The inlier ratio is about 0 in the low inlier class. The delta function is also called a
generalized function. The larger the range of the function’s definition domain, the smaller
the range of the value domain. The value outside the domain is 0. The characteristics of the
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delta function are highly compatible with the model. Thus, we use the delta function for
modeling. The inlier ratio εi in any existing group Gi is:

εi ∼ πhδ(ε0) + πzδ(0) (3)

where πh and πz are the mixture weights for the high inlier class and the zero inlier class.
The inlier ratios of these two classes are ε0 and 0, respectively. Therefore, the probability of
having IGi inliers in Gi can be deduced as:

P(IGi ) =
∫

εi

P(IGi |εi)P(εi) = πhP(IGi |εi = ε0) + πzP(IGi |εi = 0) (4)

That is to say, the distribution of inliers IGi for any existing group is:

IGi ∼ πhB(|Gi|, ε0) + πzB(|Gi|, 0) = πhB(|Gi|, ε0) (5)

where |Gi| is the number of points in Gi. Therefore, inliers are generated by only a part πh
of the groups, called the inlier groups [18]. In summary, we designed a method suitable for
point clouds. Point clouds are grouped by height in order to find more suitable points.

3.1.2. Point Cloud Segmentation and Problem Description

We observe the horizontal and vertical slopes of the ground in the point-cloud data
and make the ground of each part of the point cloud as plane as possible. The number of
parts of the point cloud is as small as possible. Two problems may arise after the point
cloud is divided into parts, and these are described as follows:

1. It is necessary to perform plane fitting processing for each part. Additional operations
increase the calculation time.

2. When the building is tall, the number of points on the side of the building is more
than the number of points on the ground as shown in Figure 4. The fitted plane is
the side of the building, not the ground. When the plane fitting method is used for
ground filtering, it will lead to incorrect results. When the area on the top of the house
is large, this will also lead to wrong results.

Therefore, it is necessary to set constraints on the selection of random points.

(a) (b)

Figure 4. Special cases. The green points are ground points, and the blue points are non-ground
points. (a) The number of points on the side of the building is greater than the points on the ground.
(b) The number of points on the top of the building is greater than the points on the ground.

3.1.3. Constraints of Sampled Points

In response to the above problems, this article proposes the following two constraints.

1. Two points are randomly selected from the three random points, the line of the
two points is projected on the xoz and yoz planes, and the slope should be limited
to (−n, n). We use the coordinate values to calculate the slope of the projection of
the line between the two points on the plane. For example, the coordinates of two
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points are (x1, y1, z1) and (x2, y2, z2). The slope of the line connecting the two points
projected on the xoz plane is (z2 − z1)/(x2 − x1). The slope of the projection on the
yoz plane is (z2 − z1)/(y2 − y1). n refers to the slope threshold. According to the
inclination of the ground in the point cloud, we set n manually. Assuming that the
plane slope is not greater than 30 degrees, then n = tan30◦ ≈ 0.577.

2. We use the tools provided by the Point Cloud Library (PCL) [44] to observe the z
coordinates (Hz, Lz) of the lowest and highest points on the ground of the point cloud
that needs to be processed first. When randomly selecting the three initial coordinate
points of the first point cloud part, the range of z-coordinates is limited to (Hz, Lz).
Then, we calculate the optimal plane in the current point cloud under constraints. The
range of z coordinates of the optimal plane is (hz, lz). When selecting the coordinates
of three random points of the next point cloud, the z coordinate of these points are
limited to (hz + t, lz − t), where t = hz − lz. In short, the range of z coordinates of
random points is determined according to the range of z coordinates of the optimal
plane in the previous point cloud.

The increase of constraints will increase the calculation time; however, when selecting
the points under constraints, the optimal plane can be obtained after a few iterations.
Therefore, this method can reduce the number of iterations and improve the efficiency. This
can solve the first problem mentioned above. By limiting the elevation and slope of the
plane, it is easy to solve the second problem mentioned above.

3.2. Fitting Plane

According to the coordinates of three random points, the initial plane parameters are
determined by the plane parameter calculation rules. The plane equation:

Ax + By− z + C = 0 (6)

where A, B, C are parameters. The coordinates of the three points are P1(x1, y1, z1), P2(x2, y2, z2)
and P3(x3, y3, z3), respectively. We bring the coordinates of the three points into the equa-
tion to calculate the parameters:

A =
(z1 − z3)(y2 − y3)− (z2 − z3)(y1 − y3)

(x1 − x3)(y2 − y3)− (x2 − x3)(y1 − y3)
(7)

B =
(z2 − z3)− A(x2 − x3)

y2 − y3
(8)

C = z1 − Ax1 − By1 (9)

The plane equation can be obtained by substituting A, B, C into the Formula (1).

3.3. Counting the Number of Points on the Plane Range

For any point P(xp, yp, zp), the plane equation is z = Ax + By + C. We substitute
(xp, yp) into the plane equation to obtain z = Axp + Byp + C. The distance from point P to
the plane is d =| z− zp |.

If the distance d from the point P to the fitting plane is less than the rejection threshold
hd, then the point P belongs to the plane. The rejection threshold hd is manually set based
on accuracy requirements of different scenarios.

3.4. Determining the Best Plane

The traditional process of determining the optimal plane is to first determine a plane
by selecting random points. Then, the number of points in the plane is judged by the
distance from the point to the plane, repeating this process until the plane with the largest
number of points is obtained. There is no doubt that this process is inefficient.

The Preemptive RANSAC algorithm will evaluate a fixed number of hypothesis
sets in parallel, multi-stage. The scoring mechanism selects candidate hypotheses from
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a predefined number of candidate hypotheses with a small, fixed time to meet real-time
requirements. This process replaces the scoring function of the classic RANSAC algorithm
with a Preemptive scoring mechanism, thereby, avoiding over-scoring the useless candidate
hypotheses distorted by noise. The scoring function ρ(o, h) is used in the Preemptive
RANSAC algorithm to represent the scalar value of the log-likelihood of the observed
value. At this point, the log-likelihood function Li(h) of the candidate hypothesis with
index h is as follows:

Li(h) =
i

∑
o=1

ρ(o, h) (10)

where o is the observation, and there are N in total. h is the candidate hypothesis, h = 1, . . . , M.
The Preemptive RANSAC algorithm defines the number of candidate hypotheses

reserved by the function f (i) for each stage as shown in the formula:

f (i) =
⌊

M2−|
i
B |
⌋

(11)

where f (i) is modified after every B observations, bc denotes downward truncation.
All observations are first randomly permuted, yielding a set of candidate hypotheses

with indices h = 1, · · · , f (1). We compute the score L1(h) = ρ(1, h) for each candidate
hypothesis, adjusting i = 2. Then, all candidate hypotheses are sorted according to the
corresponding Li−1(h) values, and for h = 1, · · · , f (i), the first f (i) candidate poses are
selected to enter the next iteration. The iteration is stopped when i > N or f (i) = 1. Oth-
erwise, for the hypothesis h = 1, . . . , f (i), its score Li(h) = ρ(i, h) + Li−1(h) is calculated,
and the step of ranking the candidate hypotheses is continued.

Based on the analysis of Preemptive RANSAC, we designed a method to quickly
determine the optimal plane. We set the constraints of initial point selection through the
above method, and then selected n sets of points to calculate n plane equation models. The
point cloud is downsampled to calculate the number of points within the bounds of each
plane equation. We choose the m plane equations with the largest number of points. The
above calculation is repeated in the selected plane equation using the origin point cloud.
The plane equation with the largest number of points is the optimal plane equation. Among
them, the parameters m and n have a great influence on the accuracy and speed of point
cloud filtering. Therefore, comprehensive consideration should be given to the selection
of parameters.

4. Experiments and Discussion

We use the tools provided by CloudCompare to label ground points and non-ground
points in different colors. Then, we use the proposed method to label the ground points,
and conduct a qualitative and quantitative comparative analysis. The point clouds used are
from the KITTI data set [45] and the International Society for Photogrammetry and Remote
Sensing (ISPRS) datasets [46].

• KITTI: The KITTI data set was jointly established by the Karlsruhe Institute of Tech-
nology (KIT) and Toyota Technological Institute at Chicago (TTI-C). It is currently the
largest computer vision algorithm evaluation dataset in the world for autonomous
driving scenarios. KITTI contains real data collected in urban, rural and highway
scenes. A Velodyne HDL-64E 3D laser scanner was used to acquire point clouds. The
laser scanner spins at 10 frames per second, capturing approximately 100 k points per
cycle. The KITTI data is mainly ground scenes with many details, which can test the
ability of the algorithm to process details.

• ISPRS: ISPRS provides two airborne data sets, including Toronto and Vaihingen. The
data set is the data used for the test of digital aerial cameras performed by the German
Association of Photogrammetry and Remote Sensing (DGPF). Toronto covers an area
of approximately 1.45 km2 in the downtown area. This area contains low-rise and high-
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rise buildings. The average point density is 6 points/m2. Vaihingen includes historic
buildings with rather complex shapes and also trees. The average point density is
4 points/m2. The terrain of Toronto is relatively flat, and the terrain of Vaihingen is
uneven. The common feature is that the scene is complex. These two data can test the
ability of the algorithm to handle complex scenes.

The parameter settings are as follows. The slopes of the point clouds used in this
experiment are not very steep. Therefore, the point cloud is divided into 4 × 4 parts, and
each part of the ground is close to the plane. The tools provided by PCL are used to
observe the height of the ground of each part of the point cloud, and then we can set the
height parameter of the fitted plane. The number of points in the point cloud used in the
experiment is more than 100 k points, and the parameters m and n to determine the optimal
plane are set to 100 and 10, respectively, at this time, the accuracy and efficiency can meet
the requirements. If the number of points in the point cloud is small, the size of m and n
can be appropriately increased to improve the accuracy.

4.1. Ground Filtering

We select two point clouds in the KITTI data set. Both point clouds are road scenes
with 110 k points. We manually label the point cloud. As shown in Figure 5a, the green
points are ground points, and the blue points are non-ground points. The red frame marked
area in Figure 5a is enlarged as shown in Figure 5c.

(a) (b)

(c) (d)

Figure 5. The result of the proposed method. The red box area in (d) is classified incorrectly. (a) The
point cloud manually labeled. (b) The point cloud processed by the proposed method. (c) The red
box area in (a). (d) The red box area in (b).

The height of the ground of the first point cloud part is about −3 to 0.2 m. We set the
fitting plane height parameter (Hz, Lz) to (−3, 0.2) and set the rejection threshold hd to 1.5.
After the parameter setting is completed, the point cloud is processed by the proposed
method. The filtering result of the proposed method is shown in Figure 5b. The red frame
marked area in Figure 5b is enlarged as shown in Figure 5d. Comparing Figure 5a,b, the
method in this article can effectively distinguish ground points from other objects.
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The results obtained by the proposed method are essentially consistent with the results
of manual labeling. Comparing Figure 5c,d, the method in this article handles the details of
the point cloud well, and can accurately distinguish ground points from non-ground points.
A fact that can be demonstrated in Figure 6 as in Figure 5 is that the proposed method can
better preserve details in the filtering results.

Toronto is an urban scene composed of 750 k points. The ground is relatively flat as
shown in Figure 7a. We set the fitting plane height parameter (Hz, Lz) to (40, 50) and set
the rejection threshold hd to 5. The result is shown in Figure 7b. Comparing Figure 7a,b,
it can be seen that the method in this article can better distinguish large buildings from
the ground. At the same time, it can take into account the details of the ground, and some
small objects can be distinguished from the ground.

Vaihingen is a village scene with a total of 720 k points. The ground in this village
is uneven as shown in Figure 8a. We set the fitting plane height parameter (Hz, Lz) to
(251, 270) and set the rejection threshold hd to 15. The processing result of the proposed
method is shown in Figure 8b. It can be seen from the figure that the method in this article
can adapt to complex scene of the point cloud with uneven ground.

(a) (b)

(c) (d)

Figure 6. The result of the proposed method. The red box area in (d) is classified incorrectly. (a) The
point cloud manually labeled. (b) The point cloud processed by the proposed method. (c) The red
box area in (a). (d) The red box area in (b).
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(a)

(b)

Figure 7. The result of the proposed method. (a) The point cloud manually labeled. (b) The point
cloud processed by the proposed method. The red box area in (b) is classified incorrectly.

(a)

(b)

Figure 8. The result of the proposed method. (a) The point cloud manually labeled. (b) The point
cloud processed by the proposed method. The red box area in (b) is classified incorrectly.
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4.2. Accuracy Comparison

The proposed method is compared with eight methods. Among these methods
are recent and classic. Method I is the original RANSAC. Method II is progressive TIN
densification [47]. Method III is cloth simulation filter [48]. Method IV is the multiscale
curvature classification [49]. Method V is active contours [50]. Method VI is regularization
method [51]. Method VII is modified slope based filter [52]. Method VIII is hierarchical
modified block-minimum [53]. The comparison of the first four methods is shown in
Table 1, and we show the different performance of each method applied to different data.
The comparison of the last four methods is shown in Table 2. We show the total error
of filtering.

We use two data provided by ISPRS and two data in the KITTI dataset as experimental
data. Error Type I, Error Type II, and the total error are used as evaluation indicators. The
type I error represents the proportion of ground points erroneously assigned as nonground
points, and the type II error represents the proportion of nonground points erroneously
assigned as ground points. The total error is the proportion of all the point-cloud data that
is misjudged and is used to evaluate the overall quality of the filtering results [54].

As shown in Table 1, compared with other methods, the error of the method in this
article is relatively small. The mean value of the total errors of the proposed method is
about 7.86%. The mean values of the total error of the remaining four methods are 18.4%,
9.57%, 8.5%, and 9.54%, respectively. Compared with Method I, the average error of the
proposed method is reduced by about 10.54%. The comparison of the filtering results of
these two methods is shown in Figure 9. Compared with the current commonly used
methods, the average error of the proposed method is reduced by at least 0.64%. The
proposed method has a better comprehensive performance on the KITTI dataset and the
datasets provided by ISPRS.

Compared with other methods, the proposed method can adapt to complex scenes
and deal with the details in the point cloud. The advantage of this method is that it has high
filtering accuracy on relatively flat ground. The comparison with the last four methods
is shown in Table 2. The average errors of other methods are significantly higher than
those of the proposed method. This further confirms the high filtering accuracy of the
proposed method.

Table 1. Comparison of the errors of the proposed method and other methods.

Method Data Type I Error (%) Type II Error (%) Total Error (%)

Proposed Method

Toronto 8.11 2.52 5.41
Vaihingen 2.38 17.74 9.28

KITTI1 0.94 10.15 6.25
KITTI2 5.67 15.97 10.50

Method I

Toronto 10.59 25.62 18.45
Vaihingen 24.65 19.75 22.53

KITTI1 18.64 12.65 15.86
KITTI2 16.47 17.57 16.75

Method II

Toronto 8.45 6.87 7.86
Vaihingen 13.58 11.96 12.77

KITTI1 3.42 12.21 7.96
KITTI2 7.65 11.14 9.71

Method III

Toronto 14.56 4.78 9.27
Vaihingen 10.64 6.98 8.40

KITTI1 1.48 8.48 4.71
KITTI2 14.68 8.57 11.67

Method IV

Toronto 12.54 6.86 8.74
Vaihingen 5.76 17.86 11.46

KITTI1 3.86 11.53 7.34
KITTI2 13.75 8.64 10.65
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(a) (b) (c)

Figure 9. The results of the comparison between the method proposed in this article and the RANSAC
plane fitting method. Green points are the ground points, blue points are the non-ground points. The
red boxes in (b,c) are classified incorrectly. (a) The point cloud manually labeled. (b) The point cloud
processed by the RANSAC. (c) The point cloud processed by the method proposed in this article.

Table 2. Comparison of the total errors of the proposed method and other methods.

Data Method V
(%)

Method VI
(%)

Method VII
(%)

Method
VIII (%)

Proposed
(%)

Toronto 12.43 8.54 15.64 6.08 5.41
Vaihingen 9.06 11.53 14.53 11.46 9.28

KITTI1 7.75 9.68 16.34 5.75 6.25
KITTI2 14.64 15.57 11.91 16.45 10.50

average 10.97 11.33 14.61 9.94 7.86

4.3. 3D Object Detection Experiment and Efficiency Analysis

We explore the application of LiDAR ground filtering for 3D-object detection. We use
the KITTI dataset. The vehicle is the detection object. We test three open-source 3D-object
detection methods. Pretrained weights are used to detect objects in point clouds. The
detection results of the unfiltered point cloud and the filtered point cloud are compared.
The results are shown in Table 3. It can be clearly seen that when the filtered point cloud
is used for 3D-object detection in simple or moderate situations, the detection accuracy is
significantly improved.

In the process of object detection, ground points are often interference information.
After removing the ground points, each object is in an isolated state, and the object detection
algorithm only needs to match the detected object from multiple isolated objects. This
can reduce the difficulty of object detection, thereby, improving the performance of object
detection. However, when it is used for difficult 3D-object detection, the detection accuracy
is slightly reduced. The main reason is that the filtering takes away a small part of the point
cloud at the object. The original identification is more difficult, and it is more difficult to
detect if some information is missing.

The LiDAR ground filtering experiment was conducted on a computer with Intel Core
i7 3.19-GHz CPU and 16-GB RAM. The calculation time of the proposed method is about
20 ms to process a point cloud of 100 k points. Current 3D-object detection algorithms
generally run on platforms with high computing power. Furthermore, better computing
platforms have strong parallel computing capabilities, and thus the time used for ground
filtering can be further reduced.

We randomly select 20 point clouds in the KITTI dataset, manually annotate the
ground and non-ground points, and record the number of ground and non-ground points.
We found that the ground points account for about 40–60% of the entire point cloud. The
computation time of the 3D-object detection method is related to the number of points in
the point cloud. The lower the number of points in the point cloud, the lower the runtime.
Therefore, the filtered point cloud can improve the speed of 3D-object detection. The times
for the three object detection methods are shown in Table 4. It can be clearly seen that the
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detection time is significantly reduced. The results show that the proposed method does
not have a large impact on the time of the 3D-object detection method.

Table 3. Comparison of accuracy before and after ground filtering.

Raw Point Cloud (%) No Ground Point Cloud (%)

CIA-SSD

Easy 89.59 90.57
Mod 80.28 82.04
Hard 72.87 74.46

CLOCs

Easy 89.16 90.34
Mod 82.28 83.64
Hard 77.23 75.85

SIENet

Easy 88.22 90.47
Mod 81.71 85.15
Hard 77.22 73.74

Table 4. Comparison of efficiency before and after ground filtering.

Raw Point Cloud (ms) No Ground Point Cloud (ms)

CIA-SSD 30 22
CLOCs 100 70
SIENet 80 55

5. Conclusions

In this paper, we proposed an improved RANSAC LiDAR ground filtering method.
We evaluated the proposed method using point clouds with different characteristics and
compared the filtering accuracy with a variety of commonly used methods. The results
show that the filtering accuracy of this method was improved by about 10% compared
with the original method and by about 1% compared with the current advanced method.
Furthermore, this method has higher filtering efficiency.

The proposed method is intended to be applied to 3D-object detection. Ground
filtering can improve object detection accuracy under simple and moderate conditions on
the KITTI dataset. Furthermore, this can reduce the time of object detection. When the
proposed method is applied to 3D-object detection methods, the influence of the filtering
time on object detection can be ignored. This paper demonstrates that ground filtering can
be used as an auxiliary method to improve the accuracy of 3D-object detection. Therefore,
the LiDAR ground filtering method deserves further in-depth study.
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