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Abstract: It is usually difficult for prevalent negative co-location patterns to be mined and calculated.
This paper proposes a join-based prevalent negative co-location mining algorithm, which can quickly
and effectively mine all the prevalent negative co-location patterns in spatial data. Firstly, this paper
verifies the monotonic nondecreasing property of the negative co-location participation index (PI)
value as the size increases. Secondly, using this property, it is deduced that any prevalent negative
co-location pattern with size n can be generated by connecting prevalent co-location with size 2
and with an n − 1 size candidate negative co-location pattern or an n − 1 size prevalent positive
co-location pattern. Finally, the experiment results demonstrate that while other conditions are
fixed, the proposed algorithm has an excellent efficiency level. The algorithm can eliminate the
90% useless negative co-location pattern maximumly and eliminate the useless 40% negative co-
location pattern averagely.

Keywords: spatial data mining; negative co-location; join-based algorithm; directional mining

1. Introduction

After Yoo et al. proposed two co-location algorithms based on join and join-less
methods [1–5], the method for co-location mining received increasing attention. Sub-
sequently, in order to mine co-location patterns quickly, Wang et al. proposed a new
co-location mining algorithm, CPI-Tree [6,7]. In recent years, many scholars were inspired
by the transaction-based approach [8–12] and the transaction-free approach [13–17]. An
increasing number of co-location pattern algorithms were also developed, including “fuzzy
co-location pattern mining”, “parallel co-location pattern mining”, “the adaptive maximal
co-location (AMCM) algorithm”, “efficient co-location pattern mining” and “co-location
pattern mining with rare features” [18–26]. With the popularity of the join-less co-location
mining algorithms, Zhou et al. applied co-location patterns to decision trees and proposed
a co-location-based decision tree (CL-DT, a method of decision tree) [27] and the CL-DT
method of maximum variance expansion [28]. Subsequently, to further study the join-less
co-location algorithm, the maximal instance algorithm for the fast mining of spatial co-
location patterns [29] and a book about data mining for co-location patterns [30] proposed
by Zhou et al. have made great contributions to spatial mining [31–36]. To mine negative
relationships in the dataset, Zheng et al. proposed some constraint conditions and mining
algorithms for negative sequence PT [37]. Cao et al. proposed the E-NSP algorithm, which
can effectively identify negative sequence PT [38–43], and Dong et al. proposed the F-NSP
algorithm [44–48]. Although there are an increasing number of algorithms for spatial
data mining at present, there are still some potentially useful patterns that are not fully
developed, including the negative co-location pattern. In the study of negative co-location
rules, many scholars proposed mining algorithms for association rules.
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• Related Work

In 2004, in order to more effectively mine the co-location patterns in spatial data,
Huang et al. [4] first proposed a join-based algorithm on the basis of the Apriori algorithm.
This algorithm can efficiently handle continuous spatial data and keep track of spatial
information that is not modeled by transactions. However, this algorithm did not extend
to mine nonlinear distribution spatial data sets. In 2016, Zhou et al. [28] proposed an
MVU(maximum variance unfolding)-based CL-DT algorithm, which extend co-location
mining method to nonlinear distribution in spatial data sets. This algorithm overcomes the
deficiency of the traditional CL-DT method, in which the Euclidean distance of instances
that are nonlinear distributions in high-dimensional space cannot accurately reflect the
co-location relationship between instances. To further shorten the calculation amount and
time, in 2021, Zhou et al. [29] first defined maximal instances and proposed a maximal
instance algorithm. This algorithm constructed the RI-tree to find maximal instances from
a spatial data set and pruned it to prevalent co-location patterns. Although both algorithms
can find co-location very efficiently, they do not extend to negative co-location.

A mutually exclusive relationship is extremely important in aspects such as investment
and construction planning. In order to solve the problem that the traditional co-location
cannot mine the mutually exclusive relationship, in 2004, Wu et al. [37] first proposed a
new pattern of negative co-location and defined the prevalent negative co-location pattern
in order to research the negative relationship patterns in space. They called all unexpected
patterns except positive co-location negative co-location, which solved the basic concept
of negative co-location. The practical application significance of negative co-location is
explained by taking the example of the mutually exclusive relationship between coffee
and tea in the shopping baskets of supermarket customers. However, their definition
about negative co-location has not been detailly given, and it is not clearly defined and
inefficient. So, a more precise definition is needed. In 2010, Jiang et al. [49] proposed the
accurate concept of negative co-location patterns and the calculation method of the PI
value of negative co-location in order to more accurately define the negative co-location
pattern and speed up the mining speed. They also proposed a “mining algorithm for spatial
positive and negative patterns”, which is called the traditional algorithm in this paper. This
algorithm can effectively mine negative co-location patterns and calculate whether negative
co-location is prevalent. However, the disadvantage of this algorithm is that it cannot
distinguish useless negative co-location and eliminate it, and a large number of useless
negative co-location patterns need to be calculated. In 2021, Wang et al. [50] proposed
an upward inclusive negative co-location pattern algorithm and proposed the concept
of minimal negative co-location in order to find the co-location pattern more effectively.
Their algorithm uses the upward inclusiveness of negative co-location patterns to mine
all negative co-location patterns by adding the features to minimal negative co-locations.
However, this algorithm does not save much calculation time because it needs to search
for the minimal negative co-location pattern first, and the calculation method of minimal
negative co-location is complicated; therefore, upward inclusion cannot effectively and
completely remove the useless co-location pattern.

Spatial data mining with a negative co-location pattern can be significant because
it can find features with strong negative correlations and determine mutually exclu-
sive relationships between spatial features, which can play a vital role in many appli-
cations. For example, Cao et al. [39] proposed that with negative mining being ap-
plied to the detection of gene sequences, the birth of disabled babies can be effectively
avoided by mining the negative co-location relationship between certain diseases and
specific gene sequences. It is also possible to prevent the occurrence of diseases in
advance by mining gene sequences. Zheng et al. [38] proposed an Apriori-like nega-
tive mining algorithm to mine the data of supermarket shopping baskets. He defined
negative correlation as (1) A ∩ B = ∅; (2) supp (A) ≥ ms and supp (B) ≥ ms;
(3) supp (A ∪ ¬B) ≥ ms (or supp (¬A ∪ B) ≥ ms, or supp (¬A ∪ ¬B) ≥ ms). However,
the algorithm was not extended to the mining of spatial negative co-location. Moreover,
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because a large number of useless negative mining need to be calculated, the pruning of
the algorithm needs to be further improved. The two negative mining examples above
discover that it must calculate a large number of useless negative co-location patterns
to obtain prevalent negative co-location patterns. For this reason, this paper proposes
a join-based algorithm, which avoids calculating a large number of useless co-location
patterns and effectively mines prevalent negative co-location patterns. This paper also

provides a directional mining algorithm. Given a specified space feature set
–
Y and size

number, the prevalent candidate negative co-location pattern can be quickly determined.
In summary, the main innovations of this paper can be condensed as follows:

• A candidate negative co-location pattern is proposed based on the definition [49] of
prevalent negative co-location patterns. Additionally, we prove that any prevalent
negative co-location pattern of size n can be generated by connecting the prevalent
co-location of size 2 with an n − 1 size candidate negative co-location pattern or an
n − 1 size prevalent positive co-location pattern.

• For the specified spatial feature set
–
Y, the negative co-location pattern T = X ∪

–
Y of

the specified size can be calculated directly through the join-based algorithm.
• According to the definition of a negative co-location pattern, the monotonous non-

decrement of the PI value of a negative co-location pattern is strictly proven, and a
quick pruning method is proposed by using this monotonous non-decrement of the
PI value.

• By combining the negative co-location patterns from small to large size, two patterns
in extreme cases and their meanings are proposed: a “single positive of negative co-
location pattern” and a “single negative of negative co-location pattern”. Additionally,
an algorithm for solving the pattern is given.

2. Negative Co-Location Definition and Lemma
2.1. Preliminary Definitions

In this section, the abbreviations are explained as follows (Table 1):

Table 1. Abbreviation explanation.

Terms Abbreviation Definition

Co-location C-L Co-location is two spatial feature instances that satisfy R (e.g., Euclidean
distance metric). [2]

Co-location pattern C-LP
The co-location pattern is the co-location combination of spatial instance

S = {s1, s2, s3, . . . , sn} satisfying R in a given spatial feature
F = { f1, f2, f3, . . . , fn}. [2]

The PI value of the C-LP C-LPI In this paper, the C-LPI is the value of the participation index for the
co-location pattern.

Pattern PT In this paper, the pattern represents a specific spatial instance
co-location relationship.

Participation Index PI The participation index (PI) of a co-location c = { f1, f2, f3, . . . , fn}. [49]

The value of the participation index TVPI The value of the participation index is the minimum in all PR (c, , fk) of
co-location C. [49]

Size SZ In this paper, size is the number of spatial feature sets
F = { f1, f2, f3, . . . , fn}.

Co-location of Size C-LSZ Co-location of size is the number of spatial feature sets
F = { f1, f2, f3, . . . , fn}. [2]

2.2. Basic Definition of Negative Co-Location

Given a spatial feature set F = { f1, f2, f3, . . . , fn}, the corresponding spatial
feature instance set is S = {s1, s2, s3, . . . , sn}. Given a relation R in a spatial feature
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instance, where R is assumed to be Euclidean distance and the threshold is
d A.1, B.1 ∈ S, R (A.1, B.1)⇔ (distance (A.1, B.1) ≤ d , R can represent topological rela-
tionships (e.g., linked, intersection), distance relationships (e.g., Euclidean distance metric)
and mixed relationships (e.g., the shortest distance between two points on a map) [49].

For a set of spatial instances, as shown in Figure 1, if two instances satisfy the relation
R, they are connected by solid lines. If there is a candidate negative C-L relationship, it is
connected with a dotted line.

Figure 1. Spatial negative co-location example.

Definition 1 (prevalent negative co-location pattern) [49]. “Given a minimum prevalent

threshold (min_prev), a negative C-LP T = X ∪
–
Y is a prevalent negative C-LP if T meets the

following conditions.”
“(1) PI(X) ≥ min_prev, PI(Y) ≥ min_prev and PI(X ∪Y) < min_pre
(2) PI(T) ≥ min_prev”

Example 1. In Figure 1, set the minimum threshold min_prev = 0.6, T = {A ∪
–
B}. The

PI(T) = PI(T, A) = 1 − PR({A, B}, A) = 2/5. PI(T) < min_prev , so T = {A ∪
–
B}

is not prevalent.

Example 1 shows that it is impossible to directly calculate the participation rate PI of a
negative C-LP at present. Only by calculating all the negative C-LP and corresponding PI
of the C-LP can we judge whether it is a prevalent negative C-LP. However, the number
of combinations of all negative C-LP is very large, and the amount of computation is very
large. Most combinations are useless C-LP. The number of candidate negative C-LP that
can be generated by an infrequent C-LP of size n is C1

n + C2
n + C3

n + . . . + Cn
n = 2n − 1.

Therefore, the number grows exponentially. Once there are too many spatial features, the
amount of calculation will be very large. To solve this problem, this paper proposes a
join-based negative C-LP algorithm, which can quickly determine prevalent negative C-LP
and greatly reduce the computation amount of useless negative C-LP.

2.3. Lemma and Definition of Join-Based Algorithm

Definition 2 (Single positive of negative co-location pattern). If a negative C-LP T = F ∪
–

M

and |
–

M| = 1, this negative C-LP is called a single positive of negative C-LP.

If in a negative C-LP, there is only one negative spatial feature and the others are all
positive, then M has a strong negative correlation with spatial feature objects such as F. For
example, fungicides, herbicides and mosquito-repellent incense can kill or strongly repel a
certain type of spatial characteristic object.
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Definition 3 (Single negative of negative co-location pattern). If a negative C-LP T = F ∪
–

M

and |
–
F| = 1, this negative C-LP is called a single positive of negative C-LP. The meaning is similar

to the previous one.

Both of these PTs can be directly solved using the algorithm proposed in this paper,
and the candidate negative C-LP with a specified spatial feature set and arbitrary size can
be obtained.

Lemma 1. For any negative C-LP T = F ∪
–

M, increase its spatial feature object; that is, with
the increase in the size of the negative C-LP, the participation rate and participation degree are
monotonically nondecreasing.

Proof. (1) The instance number of spatial features Fi in negative C-LP F∪
–

M is Number_1i.

The number of instances of spatial feature F′i in negative C-LP F ∪
–

M is Number_2i.

T = F ∪
–

M, N = F′ ∪
–

M, F′ ⊆ M. F and F′ in the same space features, in the F instance,
will be in the F′ line of instance. However, due to the instance of rows that appear in F′, they
do not have to be in F. Thus, PR(T, Fi) = |Fi | − Number_1i

|Fi |
≥ |Fi | − Number2 i

|Fi |
= PR(N, Fi),

PI(T) = min
(
|Fi | − Number_1i

Fi

)
≥ min

(
|Fi | − Number_2i

|Fi |

)
= PI(N).

(2) Assume T = F ∪
–

M, N = F ∪
—
M′, M′ ⊆ M T′ = F ∪M, N′ = F ∪M′.

Because M′ ⊆ M MaxPR
(

T′, F
)
≤ MaxPR

(
N′, F

)
and PI(T, F) = 1 − MaxPR

(
T′, F

)
,

PI(N, F) = 1 − MaxPR(N′, F). There f ore, PR(N, F) ≤ PR(T, F).
The equal sign holds if and only if MaxPR(T′, F) = MaxPR(N′, F).

(3) Assume T = F∪
–

M, N = F′ ∪
–

M, M′ ⊆ M, F′ ⊆ F, T ′ = F∪M, N′ = F′ ∪M′.
Because M′ ⊆ M, F′ ⊆ F MaxPR

(
T′, F

)
≤ MaxPR

(
N′, F

)
andPI(T, F) = 1 − MaxPR

(
T′, F

)
,

PI(N, F) = 1 − MaxPR
(
N′, F

)
PR(N, F) ≤ PR(M, F). �

The equal sign holds if and only if MaxPR(T′, F) = MaxPR(N′, F).

Lemma 2. For a prevalent negative C-LP T = F ∪
–

M, if F ⊆ F′ and F′ is a prevalent C-LP, then

T = F′ ∪
–

M is a prevalent negative C-LP.

Proof. For T = F′ ∪
–

M, because T = F ∪
–

M is a prevalent negative C-LP, PI(M) ≥
min_prev, PI(F∪M) ≤ min_prev, PI(F∪

–
M) ≥ min_prev. As the size of the C-LP increases,

its PI is monotonically nonincreasing. Then, F ⊆ F′, PI
(

F′ ∪M
)
≤ min_prev. Because F′

is a prevalent C-LP , PI
(
F′
)
≥ min_prev, namelPI(M) ≥ min_prev, PI

(
F′
)
≥ min_prev,

PI
(
M∪ F′

)
≤ min_prev. Because PI(F∪

–
M) ≥ min_prev, F ⊆ F′, It can be obtained from

Lemma 1 that PI(F′ ∪
–

M) ≥ PI(F∪
–

M) ≥ min_prev. It is thus proved that T = F′ ∪
–

M is a
prevalent negative C-LP. �

Lemma 3. For a prevalent negative C-LPT = F ∪
–

M, if M ⊆ M′ and M′ is a prevalent C-LP,

then T = F ∪
—
M′ is a frequently negative C-LP.

Proof. T = F∪
–

M is a prevalent negative C-LP. Therefore, PI(F) ≥ min_pre, PI(F∪M) ≤
min_prev, PI(F∪

–
M) ≥ min_prev. As the size of the C-LP increases, its PI is

monotonically nonincreasing. In addition, M ⊆ M′; therefore, PI
(
F∪M′

)
≤ min_prev.

Because M′ is a prevalent C-LP, PI
(
M′

)
≥ min_prev. Therefore, PI

(
M′

)
≥ min_prev,

PI(F) ≥ min_prev, PI
(
F∪M′

)
≤ min_prev. Because PI(F∪

–
M) ≥ min_prev , M ⊆ M′.

It can be obtained from Lemma 1 that PI(F∪
—
M′) ≥ PI(F∪

–
M) ≥ min_prev. It is thus

proved that T = F∪
—
M′ is a prevalent negative C-LP. �
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Definition 4 (Candidate negative co-location). According to the definition of prevalent nega-
tive C-LP in Jiang et al. [49], to better calculate the prevalent negative C-LP, the negative C-LP that
meets the following conditions is called the candidate negative C-LP:

“PI(X) ≥ min_prev, PI(Y) ≥ min_prev and PI(X ∪Y) < min_prev”.

Lemma 4. For any size n candidate negative C-LP, it must be composed of an SZ n − 1 candidate
negative C-LP or prevalent C-LP connected to an SZ 2 prevalent C-LP.

Proof. Assume an SZ n candidate negative C-LP, T = F ∪
–

M. There f ore PI(F) ≥ min_prev,
PI(M) ≥ min_prev.

(1) For any spatial feature in F = {F1, F2, F3, . . . , Fn}, if one of them is removed,
PI(F) ≥ min_prev will still be true. The C-LP composed of any two spatial features
in F = {F1, F2, F3, . . . , Fn} must be the SZ 2 prevalent C-LP. In addition, if
F′ = {F1, F2, F3, . . . , Fn −1 } ∪ M, PI(F′) ≥ min_prev, PI(M) ≥ min_prev. If
PI(F′ ∪M) ≥ min_prev, then it is prevalent C-LP. If PI(F∪M) < min_prev, it is
a candidate negative C-LP. There f ore, PI(F′) ≥ min_prev, PI(M) ≥ min_prev. If
PI(F′ ∪M) ≥ min_prev, it is prevalent C-LP. If PI(F∪M) < min_prev, it is a candidate
negative C-LP.
(2) This is the same as M = {M1, M2, M3, . . . , Mn}. It is thus proved that any SZ n
candidate negative C-LP must be composed of an SZ n − 1 candidate negative C-LP or
prevalent C-LP connected to an SZ 2 prevalent C-LP. �

Lemma 5. For any spatial feature set M, |M| = m, specify the prevalent negative C-LP of

T = F ∪
–

M of SZ n. F must be an n m SZ prevalent C-LP in the space set and F ∩M = ∅.

Proof. Because T is a prevalent C-LP, F, M must be a prevalent C-LP. In addition, T is size
n, so F is SZ n-m, and F ∩M = ∅. �

2.4. An Illustrative Example of Join-Based Co-Location

For example, in Figure 1, given min_prev = 0.5, the steps to find all of its candidate
negative C-LP are shown in Figures 2 and 3.

Figure 2. Join-based algorithm with a connect example.
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Figure 3. Join-based algorithm with a complete example.

After the candidate mode is determined, all prevalent C-LP can be quickly determined
by the pruning method and PI value comparison.

3. Join-Based Negative Co-Location Algorithm

In this section, the J-B prevalent negative C-LP algorithm and J-B directional prevalent
negative C-LP mining algorithm are proposed. The specific steps are as follows: Section 3.1.
J-B Prevalent Negative C-LP Algorithm.

3.1. Join-Based Prevalent Negative Co-Location Pattern Algorithm

The join-based prevalent negative co-location pattern algorithm includes the
following steps:

(1) Calculate the positive C-LP of all instances and use any algorithm for mining
prevalent positive C-LP. Store all prevalent C-LP of SZ 2 and above and store PI values for
all C-LP of size 2.

(2) Compare the PI value of the SZ 2 C-LP with the threshold value of min_prev. Find
and store all the SZ 2 candidate negative C-LP. The prevalent negative C-LP of SZ 2 is
calculated to facilitate pruning.

(3) Starting from SZ 2, an SZ 2 prevalent C-LP or candidate negative C-LP is connected
to an SZ 2 prevalent C-LP to generate an SZ 3 candidate negative C-LP. Then, an SZ 3
prevalent C-LP or candidate negative C-LP is connected to an SZ 2 prevalent C-LP to
generate an SZ 4 candidate negative C-LP, and so on.

(4) The candidate negative C-LP obtained is pruned. According to Lemmas 2 and 3,
if the SZ 2 candidate negative C-LP connected is a prevalent negative C-LP, then it is a
prevalent negative C-LP. The remaining unpruned candidate negative C-LP are judged by
the comparison between the PI value and the set threshold value of min_prev to obtain
prevalent negative C-LP.

3.2. Join-Based Prevalence Negative Co-Location Pattern Directional Mining Algorithm

This section introduces a J-B mining algorithm for directional prevalent negative
C-LP. The algorithm proposed in this paper can quickly find the prevalent negative

C-LP T = X ∪
–
Y for the specified

–
Y. Based on Lemma 5, once

–
Y and the size of the

final prevalent negative C-LP T are determined, then the SZ of X is also determined. Then,

the determined prevalent C-LP X and
–
Y are selected from the entire data set to be connected

to become the candidate T. However, the traditional algorithm cannot give feedback to
–
Y

and can only calculate all the negative C-LP. We need to count 2n − 1 negative C-LP to
solve this. The specific steps are as follows:
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(1) Calculate the C-L relationships for all instances. The prevalent positive C-LP is
mined using any existing algorithm. Store all prevalent C-LP of SZ 2 and above.

(2) For the specified mining SZ k
–
Y.

(3) According to Lemma 5, the negative C-LP of the specified SZ c
–
Y must be formed

by the prevalent C-LP of SZ (c − k) and the connection of
–
Y.

(4) Loop through all the prevalent C-LP of SZ (c − k) and connect them with
–
Y to

generate a negative C-LP of SZ c.
(5) Finally, all candidate negative C-LP are obtained. These are compared with the

threshold value to screen out the final SZ c prevalent negative C-LP
–
Y.

4. Experiment and Analysis

To date, there are only a few studies on the mining of negative C-LP. To evaluate the
filtering rate and effectiveness of the J-B prevalent negative C-LP algorithm proposed in
this paper, Algorithms 1 and 2 proposed in this paper are compared with the algorithm in
Jiang et al. [49] (referred to as the traditional algorithm) on real and synthetic datasets. All
algorithms are written in Python, and the experimental environment is PyCharm running
in Windows10.

Algorithm 1: Join-based prevalent negative co-location pattern algorithm.

1. Input
2. F: Collection of spatial { f1, f2, f3, . . . , fn}
3. S: Set of spatial instances {S1, S2, S3, . . . , Sm}
4. R: C-L relationship
5. min_prev: Minimum PI threshold
6. Output:
7. nPPC: SZ n prevalent positive C-L collection
8. 2CNC: SZ 2 candidate negative C-L collection
9. 2PNC: SZ 2 prevalent negative C-L collection
10. nCNC: SZ n candidate negative C-L collection
11. nPNC: SZ n prevalent negative C-L collection
12. Variable:
13. NT: Instance C-L relation
14. Method:
15. Calculate all NT
16. Mine the set Nppc = {nPPC1, nPPC2, nPPC3, . . . , nPPCm}
17. for each PT in 2CNC & 2PPC{
18. PT & 2PPC→ 3CNC
19. if 3CNC is not repetitive
20. put 3CNC in Set3CNC}
21. for each PT in 3CNC & 3PPC{
22. PT & 2PPC→ 4CNC
23. if 4CNC is not repetitive
24. put 4CNC in Set4CNC}
25. so on . . .
26. for each PT in (n− 1)CNC & (n− 1)PPC{
27. PT & 2PPC→ nCNC
30. if nCNC is not repetitive
31. put nCNC in SetnCNC}
32. for each PT in nCNC{
33. if PT ⊇ lowPNC
34. PT is a nPNC}
35. for other PT in nCNC{
36. if PI > min_prev
37. PT is a nPNC}
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Algorithm 2: Join-based prevalent negative co-location pattern directional algorithm.

1. Input:
2. F: Collection of spatial features { f1, f2, f3, . . . , fn}
3. S: Set of spatial instances {S1, S2, S3, . . . , Sm}
4. R: C-L relationship
5. min_prev: Minimum PI threshold
6. C: The SZ of the final directional mining

7. K: The SZ of
–
Y

8. Output:
9. nPPC: SZ n prevalent positive C-L collection
10. nCNC: SZ n candidate negative C-L collection
11. nPNC: SZ n prevalent negative C-L collection
12. Variable:
13. NT: Instance C-L relation
14. Method:
15. Calculate all NT
16. Mine the set Nppc = {nPPC1, nPPC2, nPPC3, . . . , nPPCm}
17. for each PT in (c − k)PPC{
18. for each Xi ⊆ (c− k)PPC{
19. Xi &

–
Y→ cCNC

20. if cCNC is not repetitive
21. put in SetcCNC
22. }
23.}
24. for each PT in cCNC{
25. if PI ≥min_prev
26. PT is cPNC
27. else delete}

4.1. Experiment and Analysis of Real Data Sets

The real data set selected in the experiment is the distribution data from Shopping,
Traffic, Dining and Companies in Jinan, Shandong, with a total of 11,189 data points.
Among these four features, there is a negative C-L relationship between each of them. For
example, most companies have their own staff canteens, and they are all free. Therefore,
around the company, the number of other dining rooms may decrease. As another example,
people do not choose to be next to their workplace most of the time when shopping, and
they are more likely to choose entertainment complexes. In addition, most companies have
commuter buses for their own employee routes, so other traffic may also be reduced. In
this section of the experiment, different strong and weak negative C-LPs are mined by
controlling the size of the min_prev value.

Convert the latitude and longitude of the data in Table 2 into the corresponding XY
coordinate axes, as shown in Figure 4.

Table 2. In the real data, the number and category of 4 kinds of features.

Type Abbreviation Number

Shopping S 7284
Traffic T 582

Dining Room D 1963
Companies C 1360
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Figure 4. The position of each feature in Jinan is displayed.

In the experiment in this section, the distance threshold was fixed at d = 1000 m. The
participation threshold was changed from 0.1 to 0.7, and the relevant tests were performed.

According to the obtained data, a positive C-LSZ 1–4 was obtained, as shown in
Figure 5. The line charts represent the sum of the total number of positive C-LP for each
SZ, and the bar charts represent the number of detailed positive C-LP for each SZ.

Figure 5. The number of JINAN positive C-LP.

4.2. Experiment-1 with Join-Based Prevalent Negative Co-Location Pattern Algorithm

In this experiment, the traditional mining algorithm and J-B algorithm were used to
mine all negative C-LP under different thresholds.

As seen in Figures 6 and 7, the effect of the J-B algorithm changed with the change
in min_prev. In this experiment, the prevalent negative C-LP under each threshold was
certain. We observed that the two algorithms required a certain number of prevalent
negative C-LP, the calculations that needed to be carried out, and the number of infrequent
negative C-LP produced to determine the quality of the algorithm. When the number
of prevalent C-LSZ 2 was equal to the number of candidate negative C-LSZ 2, it was the
most complex, and the effect was the worst, but its number was approximately 0.6 of the
traditional algorithm. The traditional algorithm enumerates all negative C-LP, independent
of the value of min_prev, without fluctuations.
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Figure 6. A comparison between the negative C-LP algorithm based on the J-B and traditional
algorithms with the change in threshold value.

Figure 7. The relationship between the ratio of the number of positive and negative PT and the
pruning rate.

4.3. Experiment-1 with Join-Based Prevalent Negative Co-Location Pattern Directional
Mining Algorithm

In this section, the experiment was carried out for directional mining with min_prev = 0.3

and different specified
–
Y and SZs. And the results are shown in Figures 8 and 9. The

efficiency of filtering useless negative C-LP and the amounts of computation required by
the different algorithms were compared. This experiment aimed to determine the number

and filtration rate of candidate negative C-LP of
—
Y1 = {SHOP},

—
Y2 = {SHOP, TRAFFIC},

—
Y3 = {TRAFFIC, DINING ROOM, COMPANY}.

Figure 8. A comparison between the negative C-LP algorithm based on the J-B and traditional

algorithms with the change in
–
Y and SZ.
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Figure 9. Comparison of running times between traditional mining and directional mining under
different numbers of features.

In the experiment of this section, we compared the calculation amount required for a
certain number of frequent negative C-LP under the same features. Additionally, we also
made a comparison between the calculation time of the algorithm proposed in Section 3
and the traditional algorithm. The traditional algorithm cannot cope with the change of
–
Y. It can only calculate all the negative C-LP to obtain prevalent negative C-LP. So, its

time and computational complexity were not affected by
–
Y. Traditional algorithms are not

directional. We can clearly see that the original algorithm could only calculate each negative
C-LP and then compare min_prev. Therefore, the J-B algorithm can connect directly and
save considerable time.

4.4. Experiments with Real Data-2

As shown in Table 3, to further validate the performance of the algorithm proposed
in this paper, the real data, kindergartens, automobile services, restaurants, shops and
Guilin per capita income, which include 1466 kindergartens, 1193 automobile services,
4202 restaurants and 473 shops, were used. According to the nature of the schools, kinder-
gartens were classified into four types: public, private, public institutions and local busi-
nesses. The number of teachers and the size of the kindergarten were judged according
to the number of classes and degrees in the kindergarten. In this paper, the per capita
income of Guilin was divided as follows according to the “Guilin per capita disposable
income from January to September 2021” issued by the Guilin Statistics Bureau of Guangxi
Province. For urban personnel, a monthly income of more than 3500 RMB is rich, a monthly
income of 3300~3500 RMB is medium and a monthly income of less than 3300 RMB is poor.
For rural people, a monthly income of more than 1400 RMB is rich, a monthly income of
1100~1400 RMB is medium and an income of less than 1100 RMB is poor.

Table 3. In the real data, the number and category of 4 kinds of features.

Type Abbreviation Number

School S 1466
Automobile Service A 1193

Restaurant R 4202
Shop SP 473

Because the number of some kindergarten types was small, the co-location PI and
negative co-location PI for kindergartens in special data analysis were the PI values of the
spatial features for kindergartens and were not the minimum values in the co-location
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pattern. The experiments were conducted to compare the performance of algorithms with
spatial analysis by setting different thresholds of min_prev.

• Algorithm performance analysis

This section analyzes the performance of the algorithm. Figure 10 show the compari-
son between our algorithm and the traditional algorithm, in which the broken line Rate
represents the elimination rate of the useless co-location in the traditional algorithm by
our algorithm, and the histogram is the calculation amount of each algorithm. It can be
analyzed from Figure 10 that in this experiment, the elimination rate of the algorithm in
this paper increased first and then decreased with the increase of the min_prev value. It can
be seen that when min_prev was 0.25, the elimination rate was the largest, which was 0.7.
It can be seen from Figure 11 that in this group of experimental data, the algorithm running
time decreased first and then increased with the increase of min_prev. When min_prev
was 0.25, the running time was the shortest, which was 1437 s. Through the experiments
in this section, it was proved once again that our algorithm is faster than the traditional
algorithm [49] and reduces the operation of useless negative co-location.

Figure 10. A comparison between the negative C-LP algorithm based on the J-B and traditional
algorithms with the change in threshold value (experiment-2).

Figure 11. Comparison of running times between traditional mining and directional mining under
different Min_prev.

• Spatial co-location analysis

This section conducts a spatial analysis of co-location PI values and negative co-
location PI values for different types of kindergartens and the surrounding spatial features
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in Guilin. The analysis revealed the relationship between PI value and the size of kinder-
gartens, as well as the economic situation of kindergarten families. The result is shown in
Figure 12. As observed in Figure 12, the spatial analysis for private and public kindergartens
is as follows:

Figure 12. Different school types of the value of PI.

(1) The PI value for the total co-location pattern F0 = { private and public kindergarten,
restaurant, shop, automobile service} is 0.11, and the PI value for the total negative co-location

pattern
—
F0 = { private and public kindergarten,

——————
restaurant,

———
shop,

———————————
automobile service } is 0.89.

The negative co-location PI value is large, indicating that its mutual exclusion is greater than
its correlation, showing that private and public kindergartens are widely distributed. In
order to meet the schooling needs of most families, whether the surrounding environment
of the kindergarten is prosperous is not the focus of the construction of private and public
kindergartens.

(2) The size 2 co-location PI values for F1 = { private and public kindergarten, restaurant},
F2 = { private and public kindergarten, shop}, F3 = { private and public kindergarten,
automobile service} are 0.28, 0.17 and 0.21. Additionally, the negative co-location PI

values for private and public schools
—
F1 = { private and public kindergarten,

——————
restaurant },

—
F2 = { private and public kindergarten,

———
shop },

—
F3 = { private and public kindergarten,

———————————
automobile service } are 0.72, 0.83 and 0.79. The total negative co-location PI value may
be too large because one of the features is mutually exclusive. By analyzing the size 2
negative co-location PI value, it can be seen that private and public kindergartens have
no strong correlation with the surrounding features, indicating that their geographical
location is indeed not very good, which is consistent with the conclusion of the total
negative co-location.

(3) The co-location PI value and negative co-location PI value for the kindergarten and
the surrounding features also discover the relationship between the size of the kindergarten
and the economic status of students’ families. For example, the average number of private
and public kindergarten classes is 5.38, and the average number of degrees is 139.13. This
shows that there are fewer teachers and students in the kindergarten, which is consistent
with the high negative co-location value (negative C-LPI: 0.89). Similarly, it can be seen
from Figure 13 that in the family income of private and public kindergartens, poor families
account for the highest proportion of 60%. The PI value of negative co-location is high, and
the schools’ geographical location is not good; therefore, the families of the nearby schools
are not wealthy, and teachers and students are scarce.
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Figure 13. The relationship between per capita income and school type.

As observed in Figure 12, the spatial analysis for local business kindergartens is
as follows:

(1) The PI value for the total co-location pattern F0 = { local business kindergarten,
restaurant, shop, automobile service} is 0.66, and the PI value for the total negative co-

location pattern
—
F0 = { local business kindergarten,

——————
restaurant,

———
shop,

———————————
automobile service }

is 0.34. The negative co-location PI value for local business kindergartens is significantly
lower than private and public kindergartens (negative C-LPI: 0.89), indicating that it has a
good correlation with the surrounding spatial features. It shows that local businesses often
build their own kindergartens next to business districts with better environments.

(2) The size 2 co-location PI value for local business kindergartens F1 = { local business
kindergarten, restaurant}, F2 = { local business kindergarten, shop}, F3 = { local business
kindergarten, automobile service} are 0.88, 0.82 and 0.82. Additionally, the negative co-

location PI value for local business kindergartens
—
F1 = { local business kindergarten,

——————
restaurant },

—
F2 = { local business kindergarten,

———
shop },

—
F3 = { local business kindergarten,

———————————
automobile service } are 0.12, 0.18 and 0.18. From the size 2 co-location and negative
co-location, it can be seen that the local business school has a good correlation with the
surrounding spatial features, which is consistent with the total negative co-location.

(3) The average number of local business kindergarten classes is 11.17, and the average
number of degrees is 316. Both of them are higher than public and private kindergartens
(classes: 5.38, degrees: 139.13), indicating that there are many teachers and students in
local business kindergartens, and the size of the kindergarten is large. Additionally, its
negative co-location PI value of 0.34 is also smaller than public and private kindergartens
(negative C-LPI: 0.89). This reveals that the smaller the negative co-location PI value, the
larger the school size and the larger number of teachers and students. It can be seen from
Figure 13 that 90% of the household economic income for local business kindergartens are
high-income groups, and 10% are middle-income groups. This indicates that the smaller
the negative co-location PI, the better the location of the kindergarten and the more affluent
families that attend kindergartens nearby.

As observed in Figure 12, the spatial analysis for public institution kindergartens is
as follows:

(1) The PI value for the total co-location pattern F0 = { public institution kindergarten,
restaurant, shop, automobile service} is 0.58, and the PI value for the total negative co-location

pattern
—
F0 = { public institution kindergarten,

——————
restaurant,

———
shop,

———————————
automobile service } is 0.42.

The negative co-location PI value for public institution kindergarten is less than 0.5, indicat-
ing that its correlation with surrounding spatial features is greater than mutual exclusion.
The kindergartens of public institutions are basically affiliated schools of universities, which
is in good correlation with spatial features such as shops and restaurants.

(2) The size 2 co-location PI values for public institution kindergartens F1 = { public
institution kindergarten, restaurant},F2 = { public institution kindergarten, shop}, F3 = { public
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institution kindergarten, automobile service} are 0.75, 0.58 and 0.58. Additionally, the

negative co-location PI values for public institution kindergartens
—
F1 = { public institution

kindergarten,
——————
restaurant },

—
F2 = { public institution kindergarten,

———
shop },

—
F3 = { public

institution kindergarten,
———————————
automobile service } are 0.25, 0.42, 0.42. The size 2 negative

co-location PI value for public institution kindergartens is higher than local business
kindergartens (negative C-LPI: 0.34) and lower than public and private kindergartens
(negative C-LPI: 0.89). This is because although there are many restaurants and shops
near the kindergarten affiliated with the university, it is not as numerous and dense as the
kindergartens around the business district.

(3) The average number of classes in public institution kindergartens is 8.33, and the
average number of degrees is 244.83. Both of them are higher than public and private
kindergartens (classes: 5.38, degrees: 139.13) and lower than local business kindergartens
(classes: 11.17, degrees: 316). Therefore, the number of the kindergartens’ students is “local
business’s number > public institution’s number > number of private and public”, which
is inversely proportional to the negative co-location PI value (each negative C-LPI: 0.34,
0.42 and 0.89). However, it is shown that the high-income families account for 100% of
the household income for the kindergartens in public institutions in Figure 13, which is
higher than local business kindergartens (high-income family: 90%). According to the
negative co-location PI value (local business: 0.39, public institution: 0.42), it should be
that the family income of local business kindergartens is higher than public institutions.
This is because some low-level employees’ children in the local business also study in the
school, but the staff and teachers in the university are basically senior intellectuals and
have higher incomes.

Based on the above analysis, it can be seen that the lower the negative co-location PI
value of the kindergarten and its surrounding features, the more prosperous the kinder-
garten is located, the more teachers and students the kindergarten has and the better the
economic conditions of the family.

4.5. Experiments and Analysis with Synthetic Data Sets

As shown in Figure 14, in the experiment on the synthetic data set, the data set is
seven sets generated by random numbers, and the total number of instances is 1000.

Figure 14. Synthetic data used to detect the generality of the algorithm. In the figure, random
numbers are used to generate 7 sets of coordinates that are irregular.

In this experiment section, the fixed distance threshold d = 150, and the participation
threshold min_prev vary from 0.55 to 0.7. Since the experimental data are a random
generation number, the data points are too random to generate a high-order negative C-LP.
Therefore, this experiment is conducted on the SZ 3 negative C-LP. For example, the C-LP
T = {0, 1, 2}. PI value of set 0 is 0.319, the PI value of set 1 is 0.248 and the PI value of
the set is 0.207. Set the threshold min_prev = 0.5. For any negative C-LP generated by T,

such as R = {
–
0, 1, 2} and F = {

–
0,

–
1, 2}, it must not satisfy the (1) of definition 3, and cannot
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become the prevalent negative C-LP, so we can just throw it out. However, traditional
algorithms cannot deal with that, so they do a lot of useless calculations. With the change of
the participation threshold, the number of candidate negative C-LPs mined by Algorithm 1
and the number of candidate negative C-Ls mined by the traditional algorithm are shown
in Figure 15. When the threshold changes, the traditional method does not respond to it,
and the algorithm starts filtering out the useless negative C-LP. When participation reaches
0.7, it is impossible to generate prevalent negative C-LP, but the traditional algorithm still
needs to calculate all the PI values in the 198 PT to reach this conclusion. The curve above
represents the actual number of prevalent negative C-LP.

Figure 15. The traditional algorithm and the J-B negative C-L algorithm need to calculate the
comparison between the number of PT and the actual negative C-LP.

The filtering rate of Algorithm 1 for the prevalent negative C-LP in the traditional
algorithm is shown in Figures 15 and 16. In Figure 15 the blue bar chart shows the number
of candidates and useless negative C-LP required to calculate all the negative C-Ls under
the set threshold. The orange bar chart shows the number of excluded PTs compared to the
amount of computation required by traditional algorithms. The PI rate of the data in this
randomized experiment is too dense, so the filtering rate can reach 100%, but there may be
some differences in the actual situation.

Figure 16. Filtration rate of connection algorithm for useless negative C-LP.

5. Conclusions

To obtain the prevalent negative co-location pattern quickly and effectively, this paper
proposes a join-based algorithm to mine them. Firstly, the algorithm mines the candidate
negative co-location patterns at each size and then combines them with size 2 prevalent co-
location patterns. This method can generate size n candidate negative co-location patterns
by combining size n−1 candidate negative co-location patterns with size 2 prevalent co-
location patterns. The join-based method can avoid a lot of calculations for useless negative
co-location patterns by combining each of them. Finally, the prevalent negative co-location
patterns can be obtained by eliminating a small number of useless candidate negative
co-location patterns.

From the experimental results, the following conclusions can be drawn up. The pro-
posed algorithm, which calculates prevalent negative co-location patterns, is 30% faster than



Remote Sens. 2022, 14, 2103 18 of 20

the traditional algorithm. Additionally, the algorithm reduces the calculations for useless
negative co-location patterns by an average of about 40% relative to the traditional algorithm.

Although our method can mine prevalent negative co-location patterns effectively, it
cannot perform an analogy for those similar negative co-location patterns with different
spatial features. It is hopeful that we can solve this problem by adding convolution into the
algorithm in the future.
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