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Abstract: Defining nutrient management zones (MZs) is crucial for the implementation of site-

specific management. The determination of MZs is based on several factors, including crop, soil, 

climate, and terrain characteristics. This study aims to delineate MZs by means of geostatistical and 

fuzzy clustering algorithms considering remotely sensed and laboratory data and, subsequently, to 

compare the zone maps in the north-eastern Himalayan region of India. For this study, 896 grid-

wise representative soil samples (0–25 cm depth) were collected from the study area (1615 km2). The 

soils were analysed for soil reaction (pH), soil organic carbon and available macro (N, P and K) and 

micronutrients (Fe, Mn, Zn and Cu). The predicted soil maps were developed using regression 

kriging, where 28 digital elevation model-derived terrain attributes and two vegetation derivatives 

were used as environmental covariates. The coefficient of determination (R2) and root mean square 

error were used to evaluate the model’s performance. The predicted soil parameters were accurate, 

and regression kriging identified the highest variability for the majority of the soil variables. 

Further, to define the management zones, the geographically weighted principal component 

analysis and possibilistic fuzzy c-means clustering method were employed, based on which the 

optimum clusters were identified by employing fuzzy performance index and normalized 

classification entropy. The management zones were constructed considering the total pixel points 

of 30 m spatial resolution (17, 86,985 data points). The area was divided into four distinct zones, 

which could be differently managed. MZ 1 covers the maximum (43.3%), followed by MZ 2 (29.4%), 

MZ 3 (27.0%) and MZ 4 (0.3%). The MZs map thus would not only serve as a guide for judicious 

location-specific nutrient management, but would also help the policymakers to bring sustainable 

changes in the north-eastern Himalayan region of India.  
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1. Introduction 

Agricultural nutrient management is complicated by soil variability. The variation in 

soil fertility to support optimal crop production is a global concern. The growth in crop 

production was found to decelerate in all regions, particularly in developed countries and 

also in East Asia [1]. Several factors limit agricultural production by affecting crops, 

namely climatic, edaphic and biotic factors. At present, the major cause of declining global 

crop production is soil degradation. Soil degradation, as measured by diminishing 

fertility, is a key factor limiting the crop yield in many regions of the world, including 

India’s north-eastern region [2]. The spatial variability of soil nutrients is affected by the 

landform, soil type, vegetation, climate and different anthropogenic activities. Moreover, 

hilly and mountainous regions influence the spatial variability of soils due to the wide 

range of environmental factors. Improper application of fertilizers in highly variable soils 

has increasingly become a serious threat to sustainable crop production and, at the same 

time, fertilizer losses have some associated environmental hazards [3,4]. On the other 

hand, deficiency of nutrients is more prevalent in all agricultural soils and crops. Blanket 

fertilizer application in fields often leads to over and under input application [5]. To 

achieve a high return with less adverse impacts on the environment, fertilizer application 

in excess should be avoided [6]. Hence, the calibration of fertilizer rates based on estimates 

to achieve a targeted yield is required to address spatial variability within targeted fields 

[7,8]. Therefore, efficient techniques should be implemented to precisely gauge variations 

in soil attributes within the fields, which is important for delineating homogeneous 

management zones (MZs) [9]. Wide variation in content, as well as in the availability of 

soil nutrients is present both within and between the fields [5]. Most of these studies were 

based on agro-ecological zones that were similar in topography, climate and the major 

soil types. The wide variation within the study area was hypothesized considering 

varying degrees of terrain attributes that affect soil biogeochemical properties. In the 

predictive models, different covariates, e.g., terrain factors, climate and remotely sensed 

imagery, are widely used [10]. However, terrain with digital elevation model (DEM) 

derivatives would be the main predictor variable, as it is easily quantified and correlated 

directly with the state factors [11]. 

Recently, digital soil mapping (DSM) approaches have been used to estimate the 

distribution of soil attributes at spatial scales [12]. The delineation of MZs with the aid of 

DSM helps to enhance site-specific nutrient management (SSNM) more sustainably. The 

delineation of management zones (MZs) by creating several subsets in an area based on 

homogeneous soil or plant properties is the most popular [13]. However, to delineate the 

proper MZs of an area, better know-how regarding soil fertility status is of utmost 

importance and ultimately assists in better crop management and environmental 

protection. Several scholars have employed principal component analysis (PCA) and 

fuzzy c-means clustering to designate MZs based on soil properties, among other 

approaches [14–16]. In addition to this, numerous alternate methods viz. top sheet and 

soil survey [17], crop yield-based management zone techniques [18,19] and nutrient index 

techniques [20–22] were utilized for delineating management zones. 

Recently, two prime steps involved in the delineation of MZs are the use of PCA to 

reduce the dataset and their subsequent classification into management areas by using 

cluster analysis. PCA is mostly used to characterize the relationship between attributes 

and related environmental factors, and the subsequent quantification of the spatial 

variability pattern of these attributes [23–25]. However, the major limitation of any 

standard aspatial statistic is that it does not account for geographical variations in the 

observed value or any relationship between them [26]. Moreover, PCA does not consider 
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spatial relationships and was not designed for the identification of spatial structures [27]. 

Geographically weighted PCA (GWPCA) can be used to address such limitations of PCA 

in which weights are fixed based on the location of each sampling point [26,28]. This 

methodology is used to study the correlation between each soil attribute and locally 

derived components, and thus consider geographic variations in numerous soil attributes 

across space. Later work involves several cluster analyses, and several researchers have 

used several clustering techniques to classify management zones, such as c-means [29], 

possibilistic c-means (PCM) [30], and fuzzy c-means (FCM) [9]. However, possibilistic 

fuzzy c-means (PFCM), which inherits the properties of both PCM and FCM, has a better 

clustering algorithm that reduces the coincidence of clustering as well as noisy sensitivity. 

Therefore, PFCM gives more value to typicality or membership values [31]. 

The north-eastern Himalayan region of India (NEHR) is a unique fragile ecosystem 

due to its strategic setting, occupying 8% of the total geographical area (TGA) of the 

country. Soil nutrient losses pose a threat to crop cultivation due to undulating terrain 

with steep ridges and intermountain valleys [32]. However, data regarding the variability 

of soil nutrients at a regional scale in the NEHR of India are very limited. Here we aimed 

to utilize the GWPCA algorithm to explore these fertility parameters through a case study, 

evaluating the degree of spatial correlation among the surface soil nutrients. More 

particularly, studies that use GWPCA are very limited, and none of them have evaluated 

the spatial distribution of the soil nutrients. Keeping this as background information, the 

present study was conducted (a) to predict the spatial distribution of soil attributes and 

available nutrients using the regression kriging approach, (b) to identify possible 

management zones (MZs) using GWPCA and PFCM and (c) to study the potential of the 

identified MZs for site-specific nutrient and crop management in the NEHR of India. 

2. Materials and Methods 

2.1. Details of the Study Area 

The study was conducted in the Mokokchung district of Nagaland state in India, 

lying in the north-eastern Himalayan region. The region lies between 26°11′33.01″N to 

26°45′47.18″N latitude and 94°17′36.74″E to 94°45′34.45″E longitude, with a total area of 

1615 km2 (Figure 1). It shares its boundary with the Longleng and Tuensang districts in 

the east, Wokha district in the west, Zunheboto district in the south of the Nagaland state 

and Assam state in the north. The climate varies from hot to warm sub-tropical to warm 

sub-temperate type depending upon the elevation variations, which range from 110 to 

1835 m above MSL. It receives 1733 mm of mean precipitation annually and has 1219 mm 

of potential evapotranspiration (PET). The mean annual air temperature varies from 15 °C 

in winter to about 23 °C in summer depending on elevation. Umbric Dystruchrepts, Typic 

Dystruchrepts and Typic Udorthents are the major soil subgroups [33]. The dominant soil 

order of the study area is Inceptisols, followed by Entisols. The dominant land use and land 

covers are mixed dense forest, mixed open forest, grasslands, shifting cultivation and 

agricultural croplands.  

2.2. Soil Sampling and Analysis 

Grid-wise representative soil samples (0–25 cm depth) were collected during 2013 

and 2014 (December 2013 to March 2014). The samples were collected at 1 km intervals in 

the north to south direction and at 2 km intervals in the east to west direction due to the 

difficult hilly terrain. The soil sampling exercise was part of one collaborative project 

between the ICAR-National Bureau of Soil Survey and Land Use Planning, Jorhat, Assam 

and the Department of Agriculture, Govt. of Nagaland, India. Each soil sample bag was 

tagged with the sample number, grid number and topographical sheet number 

mentioning the village and land use information. A total of 896 soil samples were collected 

in a rectangular fashion to cover the entire study area. The samples were dried in air under 

shade and stones and debris were removed. Dried samples were ground, sieved (2 mm 
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sieve), and stored in a tagged polythene bottle for the analysis of soil properties and 

available nutrients in the laboratory of ICAR-National Bureau of Soil Survey and Land 

Use Planning, Jorhat, Assam. 

 

Figure 1. Study area located in Nagaland state, India’s north-eastern Himalayan region, and 

adopted grid sampling scheme. 

The soil samples from grid points were analysed for pH, organic carbon, available 

macro- (N, P and K) and micronutrients (Fe, Mn, Zn and Cu) following standard 

procedures. The soil pH was measured in a 1:2.5 (w/v) soil–water suspension as per the 

standard procedure [34]. The soil organic carbon (OC) was analysed by the Walkley and 

Black method [35], available nitrogen (N) was determined by the alkaline KMnO4 method 
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[36], available phosphorus (P) by the Bray P-1 method [37] and the available potassium 

(K) was measured by the neutral normal NH4OAc method [38] and then measured by a 

flame photometer (ELICO CL 361). The micronutrients were extracted by diethylene 

triamine penta-acetic acid [39] and measured using an atomic absorption 

spectrophotometer (Simadzu model No. AA-6300).  

2.3. Environmental Covariates and Model Used 

The ArcGIS 10 data management toolbox was used to process a DEM (30 m 

resolution) obtained from SRTM (https://earthexplorer.usgs.gov, accessed on 31 January 

2022). Saga-GIS (6.3.0 version, University of Hamburg, Hamburg, Germany) was used to 

derive the data from the DEM, such as elevation, slope (Slp), slope height (SH), aspect 

(Asp), texture, convergence index (CI), valley depth (VD), channel network distance 

(CND), channel network base level (CNBL), convexity (CONV), normalized height (NH), 

standardized height (StH), mid-slope position (MSP), relative slope position (RSP), down-

slope curvature (DC), local curvature (LC), local down-slope curvature (LDC), local 

upslope curvature (LUC), upslope curvature (UC), plan curvature (PlC) and profile 

curvature (PrC), LS factor, topographic ruggedness index (TRI), topographic wetness 

index (TWI), and topographic position index (TPI), multi-resolution ridge top flatness 

(MRRTF), multi-resolution index of valley bottom flatness (MRVBF) and total catchment 

area (TCA). The enhanced vegetation index (EVI) and the normalized difference 

vegetation index (NDVI) were employed (https://earthexplorer.usgs.gov, accessed on 31 

January 2022) as variables to predict soil parameters in addition to DEM features (Table 

1). To predict the soil properties, environmental variables were extracted for all 896 

sampling points. The descriptive statistics were computed for each soil property in R 

software [40]. For each soil property as well as elevation under consideration, Pearson’s 

correlation coefficient analysis was performed. 

Table 1. Variety of environmental covariates included in the model. 

Predictor Source Resolution 

Elevation SRTM DEM 30 m 

Slope (Slp) SRTM DEM 30 m 

Slope Height (SH) SRTM DEM 30 m 

Aspect (Asp) SRTM DEM 30 m 

Texture SRTM DEM 30 m 

Convergence Index (CI) SRTM DEM 30 m 

Valley Depth (VD) SRTM DEM 30 m 

Channel Network Distance (CND) SRTM DEM 30 m 

Channel Network Base Level (CNBL) SRTM DEM 30 m 

Convexity (CONV) SRTM DEM 30 m 

Standardized Height (StH) SRTM DEM 30 m 

Mid Slope Position (MSP) SRTM DEM 30 m 

Normalized Height (NH) SRTM DEM 30 m 

Relative Slope Position (RSP) SRTM DEM 30 m 

Down slope Curvature (DC) SRTM DEM 30 m 

Local Curvature (LC) SRTM DEM 30 m 

Local Down slope Curvature (LDC) SRTM DEM 30 m 

Local Upslope Curvature (LUC) SRTM DEM 30 m 

Upslope Curvature (UC) SRTM DEM 30 m 

Profile Curvature (PrC) SRTM DEM 30 m 

Plan Curvature (PlC) SRTM DEM 30 m 

Topographic Wetness Index (TWI) SRTM DEM 30 m 

Topographic Positioning Index (TPI) SRTM DEM 30 m 
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Predictor Source Resolution 

Topographic Ruggedness Index (TRI) SRTM DEM 30 m 

LS-Factor SRTM DEM 30 m 

Multiresolution Index of Valley 

Bottom Flatness (MRVBF) 
SRTM DEM 30 m 

Multiresolution Index of the Ridge 

Top Flatness (MRRTF) 
SRTM DEM 30 m 

Total Catchment Area (TCA) SRTM DEM 30 m 

Enhanced Vegetation Index (EVI) MOD13Q1v6.1 (2013–2014) 250 m, 16 days 

Normalized Difference Vegetation 

Index (NDVI) 
MOD13Q1v6.1 (2013–2014) 250 m, 16 days 

To analyse the relationship between the soil properties and environmental variables, 

stepwise multiple linear regression (SMLR) was used. Before performing regression, the 

soil properties were tested for normality, and the best normalization method found with 

respect to each soil property was used for data normalization. The standardized box cox 

transformation method was used for pH, OC, N and Fe, whereas Standardized Yeo-

Johnson Transformation was conducted for P, Zn and Cu. Standardized asinh (x) 

Transformation and Order normal transformation was conducted in the case of K and Mn, 

respectively. The second step includes a spatial interpolation of the residuals using 

kriging. Before the semivariogram modelling and kriging, the residuals were tested for 

spatial dependency using the Moran’s I test. Then, the application of the regression model 

on the covariate raster was performed to generate the regression map; similarly, kriging 

maps of residuals were generated. The addition of a regression map and residual map 

followed by back-transformation resulted in a final regression kriged map of the predicted 

variables. The detailed framework of the regression kriging (RK) approach is available 

[41]. 

Validation was performed with the current available dataset (2019) in the study area 

(https://www.soilhealth.dac.gov.in, accessed on 31 January 2022) to evaluate the accuracy 

of the models, as well as to check the reliability of the data in order to generate valid MZs. 

In the study, different types of evaluation indices were used, such as coefficient of 

determination (R2), mean absolute error (MAE) and root mean square error (RMSE), to 

measure the accuracy of prediction [42]. 

��� =  
�

�
∑ ��(��) − �(��)� ��

���   (1)

where �(��)�  is the predicted value at location i. MAE has a direct relationship with error. 

The MAE measure does not disclose the magnitude of error that might occur at any point 

and, hence, RMSE was computed. The measure of RMSE has an inverse relationship with 

the accuracy of estimation, point-by-point. 

���� =  �
�

�
∑ ��(��) − �(��)� �

��
���   (2)

2.4. Geographically Weighted Principal Components Analysis (GWPCA) 

The predicted maps of soil properties generated using regression kriging were used 

for GWPCA. In global principal component analysis (GPCA), only a few components are 

used to explain the covariance structure of a multivariate dataset, and all of these are 

independent of location. GWPCA is a replacement for GPCA, where components depend 

on the location to capture spatial heterogeneity in a multivariate data structure in a 

geographical setting [43]. GWPCA has the ability to capture the influence of the original 

variable on each spatially varying component and change in spatial data dimensionality 

[28]. The covariance matrix for GW is calculated as follows:  
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�(�, �) = X��(�,�)  X (3)

where X is the data matrix with ‘n’ data points and ‘p’ covariates, and W(u,v) is a ‘n’-

dimensional symmetric diagonal distance weight matrix based on location (u,v) 

coordinates. Again, for each spatial location (ui,vi), the local eigenstructure under GWPCA 

setup defines as follows: 

L(��,��)V(��,��)L�(��,��) = ∑(��, ��) (4)

where L(ui,vi) is the eigenvector matrix and V(ui,vi) is a diagonal matrix based on 

eigenvalues, representing the variances of each principal component. Again, the score of 

each principal component ‘Z’ can be computed as:  

Z(��,��) = X(��,��)L(��,��) (5)

From the summary statistics, it was evident that altitude had the maximum standard 

deviation (σ = 316.03), while pH had the lowest (σ = 0.38). To avoid variables with 

substantial variances from dominating the first major component of the data, a 

standardization technique was applied. Again, to prevent the effect of an outlier in the 

data, a robust GWPCA was adopted instead of a basic GWPCA based on the minimum 

covariance determinant (MCD) estimator [44]. The MCD estimator helped to select the 

best subset of data points (h) required for robust GWPCA based on its minimum value. 

The detailed procedure followed for robust GWPCA is as follows: 

(1) Data were standardized and PCs were computed using the covariance matrix. The 

same GWPCA calibrations were performed using the same standardized data, which 

were similarly specified with (local) covariance matrices [45]; 

(2) As a rule of thumb, those components (such as k) were retained in GWPCA having 

eigenvalue ≥1, assuming the best representative of soil properties [46];  

(3) Based on the minimum cross-validation score for the above-mentioned retained 

components, GWPCA determined the optimal bandwidth. A bi-square kernel 

function was used to provide an appropriate adaptive bandwidth for robust GWPCA 

analysis and to build a weighted matrix. The bi-square kernel function is calculated 

in the following way: 

��� =  � �1 − �
���

�
�

�

�

�   

������� < �,

                   0                          ��ℎ������

 (6)

where ‘b’ is the bandwidth (geographical distance) and ���  is the spatial location distance 

between the ith and jth row in the data matrix. 

(4) After the standardised data were translated into a spatial data frame, the robust 

GWPCA was conducted using the GW model of the ‘R package’ [47]. Outliers can 

artificially increase local variability and obfuscate crucial aspects in local data 

structures. Each local covariance matrix was estimated using the robust MCD 

estimator to generate a robust GWPCA [48]. From an array of h values (0.6 to 1), the 

MCD estimator finds the suitable “h” data points with the smallest sample covariance 

matrix;  

(5) The GWPCA score was computed for “k” components for each location, which was 

subsequently used in the PFCM algorithm. 

2.5. Possibilistic Fuzzy c-Means Algorithm (PFCM) 

The PFCM was applied to the component scores of the GWPCA to partition the 

whole field into different distinct management zones (clusters). In order to produce 

distinct homogenous clusters by limiting within-cluster variability, the PFCM algorithm 

maximizes between-cluster variability. PFCM is a powerful algorithm and has been 
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proposed to address the limitation of the fuzzy c-means (FCM) and possibilistic c-means 

(PCM) algorithms. The PFCM method solves FCM’s noise sensitivity-handling restriction 

as well as PCM’s limitation in the situation of coincidence clusters. This algorithm’s 

primary premise is to minimize the following objective function: 

����
(�,�,�)

��(�, �, �, �) = � ������
� + ����

�
�‖�� − ��‖

� +  � �� �(1 − ���)�

�

���

�

���

�

���

�

���
� (7)

Subject to the constraint ∑ ���
�
��� = 1 ∀�  and ��� ≥ 0, ��� ≤ 1 . The user-specified 

constants b > 0, a > 0, η > 1, m > 1 and �� > 0 are utilised here. The constants a and b define 

the proportional fraction of typicality and membership values. � = [���]  is the 

membership matrix similar to FCM and � = [���] the typicality matrix similar to PCM. Z 

is the dataset, �� =  {��, �� , … , ��} and the list of cluster centres is represented by �� =

 {��, �� , … , ��}. The different steps followed for the PFCM algorithm are given below: 

(1) Decide on the number of clusters, e.g., “c”. The number of clusters in this study was 

initially set at a minimum of two and a maximum of 10; 

(2) Distribute the cluster centroids at random. The study took into account a minimum 

of two centroids and a maximum of 10 centroids; 

(3) The membership values of each data point for unique clusters were computed by 

minimising the following objective function: 

����
(�,�,�)

��(�, �, �) = � � ���
�‖�� − ��‖� 

�

���

�

���
� (8)

(4) By using the previous step results, a suitable penalty parameter �� for each cluster 

was assigned; 

�� = �
∑ ���

�‖�� − ��‖
� �

���

∑ ���
��

���

 (9)

(5) The membership values were calculated, and � = [���] when the distance between 

the centroid and the data point exceeded 0; 

��� =
1

∑ �
‖�� − ��‖

��� − ���
�

�
���

�
���

 
(10)

(6) When the data point’s distance from the centroid was more than 0, � = [���] was 

used to determine the typicality values;  

��� =
1

1 + �
�
�

‖�� − ��‖
��

�
(���)

 
(11)

(7) The centre vector “vi” was calculated using:  

�� =
∑ �����

� + ����
�

����
���

∑ �����
� + ����

�
��

���

 (12)

(8) Stop when the error is less than � (‖���� − ��‖ < �), if not, go to step 6.  

The PFCM was carried out in this investigation using the R package “ppclust” [49]. 

The default parameter settings provided in “ppclust” were used for a, b and η. The 

following parameters were set: fuzziness exponent (m) = 1.5; convergence criteria (�) = 

0.0001; and the minimum and the maximum number of clusters, respectively, were 2 and 

10. The optimum number of clusters was decided based on the two most powerful cluster 

validation indexes, such as the fuzzy performance index (FPI) [50] and normalized 

classification entropy (NCE) [51], which are defined as follows: 
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FPI = 1−
�

���
�1 −

∑ ∑ (���)��
���

�
���

�
� (13)

NCE = 
�

���
�−

∑ ∑ ��� ���������
�
���

�
���

�
� (14)

where μik defines the fuzzy membership of each observation. The letters c and n stand for 

the number of clusters and observations, respectively. The FPI calculates the degree of 

fuzziness of a particular number of clusters and it varies from 0 to 1. The number ‘0’ 

suggests crisp/distinct clusters with low membership sharing, but values approaching 1 

imply no separate clusters due to a high degree of observation membership sharing 

among multiple clusters. The NCE value indicates the degree of disorganization 

generated by a set of classes. The best number of clusters was determined by the lowest 

value of both the FPI and NCE indexes, which indicated the least amount of members 

sharing and the most organization in data portioning [52]. Furthermore, to evaluate the 

heterogeneity among various MZs, an analysis of variance followed by Tukey’s HSD test 

was used to validate the reliability of distinct MZs. In the current study, all statistical 

analysis was performed using R software. The methodology adopted in the present study 

is illustrated in Figure 2.  



Remote Sens. 2022, 14, 2101 10 of 25 
 

 

 

Figure 2. Methodology flowchart. 

3. Results 

3.1. Variability of Soil Properties and Available Nutrients 

The soil reaction (pH) ranged from 3.60 to 6.50, which is extremely acid to slightly 

acid in nature (Table 2).  
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Table 2. Descriptive statistics of soil properties in India’s north-eastern Himalayan area. 

Soil Properties Mean Min. Max. Median CV (%) SD SE Skewness Kurtosis 

Altitude (m) 597.48 100.00 1835.00 567.50 52 316.03 10.56 0.57 −0.24 

pH 4.56 3.60 6.50 4.5 8.39 0.38 0.01 0.93 2.05 

OC 2.19 0.19 5.12 2.04 42.7 0.93 0.03 0.31 −0.53 

N 427 50.8 997 410 36.6 156 5.22 1.21 4.13 

P 44.7 21.8 118 39.7 38.9 17.4 0.58 5.00 61.4 

K 306 67.0 996 271 51.0 156 5.22 1.43 2.70 

Fe 61.6 0.51 143 62.4 38.8 23.9 0.80 0.15 0.05 

Mn 27.5 0.03 96.9 22.2 71.2 19.5 0.65 0.80 −0.09 

Zn 1.40 0.01 7.70 1.03 83.2 1.16 0.04 2.30 6.43 

Cu 0.90 0.07 16.6 0.75 84.0 0.75 0.03 10.81 212 

OC, soil organic carbon (%); N, available nitrogen (kg ha−1); P, available phosphorus (kg ha−1); K, 

available potassium (kg ha−1); Fe, Mn, Zn and Cu represent DTPA-extractable iron, manganese, zinc 

and copper in soil (mg kg−1), respectively; CV, coefficient of variation; SD, standard deviation; SE, 

standard error. 

The mean N (ranging from 50.8 to 997 kg ha−1), P (ranging from 21.8 to 118 kg ha−1) 

and K (ranging from 67 to 996 kg ha−1) values were medium to high, with values of 427, 

44.7 and 306 kg ha−1, respectively. The mean values of Fe, Mn, Zn and Cu in this region 

were 61.6, 27.5, 1.40 and 0.90 mg kg−1, respectively, and their concentrations varied widely. 

The CV values of macronutrients were moderate, ranging from 37% for N to 51% for K. 

As compared to macronutrients, the micronutrients’ CV values were high (71% for Mn to 

84% for Cu), except for Fe (39%).  

3.2. Relationship between Soil Characteristics and Nutrient Availability 

The correlation matrix showed that almost all of the soil chemical properties, except 

N, were significantly correlated with each other (Table 3). N, OC and Fe were negatively 

correlated with the soil pH, whereas Cu, Zn, Mn, K and P were positively affected. 

Increases in soil pH within this range (3.6 to 6.5) resulted in lower N and Fe concentrations 

and higher K, P, Mn, Zn and Cu concentrations in these soils, according to our findings.  

Table 3. Correlation matrix for soil properties in India’s north-eastern Himalayan area. 

 pH OC N P K Fe Mn Zn Cu Altitude 

pH 1.00          

OC −0.01 1.00          

N −0.05 0.53 b 1.00         

P 0.33 b 0.03 0.12 b 1.00        

K 0.41 b 0.28 b 0.23 b 0.38 b 1.00       

Fe −0.08 b 0.25 b 0.22 b 0.14 b 0.03 1.00      

Mn 0.30 b 0.18 b 0.19 b 0.24 b 0.41 b 0.15 b 1.00     

Zn 0.18 b 0.15 b 0.20 b 0.25 b 0.35 b 0.31 b 0.49 b 1.00    

Cu 0.03 a 0.04 0.09 b −0.01 0.12 b 0.12 b 0.17 b 0.33 b 1.00   

Altitude 0.09 b 0.45 b 0.34 0.06 b 0.21 0.01 b 0.18 a 0.07 0.04 b 1.00 

OC, soil organic carbon; N, available nitrogen; P, available phosphorus; K, available potassium; Fe, 

Mn, Zn and Cu represent DTPA-extractable iron, manganese, zinc and copper in soil, respectively. 
a Correlation is significant at the 0.05 level; b Correlation is significant at the 0.01 level. 

3.3. Spatial Nature of Soil Properties and Available Nutrients 

Attention was paid to surface soil properties, such as pH, OC, available N, P, K, Fe, 

Mn, Zn and Cu. Table 4 presents the best predictor (environmental covariates) identified 

through the SMLR model. The SMLR model for OC and available N had R2 (coefficient of 
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determination) values of 0.26 and 0.16, respectively, showing moderate prediction power. 

Meanwhile, for the others, the R2 showed a poor correlation between the predicted 

variables and the predictors. However, the p-values for each variable were significant. 

Table 4. Results of the stepwise multiple linear regression model relating soil properties to 

environmental covariates. 

Variable Significant Predictors Intercept R-Squared p-Value 

pH −1.12 + 0.023 × CONV − 0.001 × SH + 0.0002 × CNBL Significant 0.07 0.03969 

OC 
−1.43 + 0.002 × CNBL + 0.13 × LDC + 0.22 × NH + 1.22 × Slp − 0.04 

TRI 
Significant 0.26 2.2 × 10−16 

N −1.26 − 0.001 × CND + 0.001 × Elevation + 0.001 × VD Significant 0.16 2.2 × 10−16 

P −0.04 + 0.002 × RSP − 0.59 × CND Significant 0.12 0.04261 

K −0.78 + 0.001 × CNBL + 0.54 × NH − 0.0006 × StH + 0.0005 × VD Significant 0.09 1.201 × 10−8 

Fe 
−0.14 × CNBL − 0.035 × CND − 0.4 × DC − 0.24 × LUC + 0.32 × MSP − 

0.44 × SH + 0.03 × Elevation + 0.04 × TPI + 0.02 × TRI 
Significant 0.08 0.001885 

Mn 
−0.45 + 0.03 × CNBL + 0.03 × CND + 0.16 × DC − 0.18 × LDC − 1.38 × 

RSP 
Significant 0.10 7.922 × 10−7 

Zn −0.22 + 0.0005 × CNBL + 0.002 × CND − 1 × RSP Significant 0.06 0.0002717 

Cu 
1.05 + 0.04 × Asp − 0.003 × CNBL − 0.02 × CONV − 1.25 × LDC − 1.84 

× LUC − 1.04 × RSP + 0.0037 × Elevation 
Significant 0.11 7.02 × 10−6 

The prediction residuals obtained through semivariogram analysis are shown in 

Figure 3. The residuals of Zn showed a strong spatial correlation with a percent nugget of 

11% and a range of 5738 m with the Gaussian model. Moderate spatial correlation was 

shown in the case of OC (percent nugget of 70% and range of 5369 m; Gaussian model), P 

(percent nugget of 69% and range of 4108 m; Circular model) and K (percent nugget of 

74% and range of 2259 m; Exponential model). The residuals of pH, N, Fe, Mn and Cu had 

high percent nugget (81–87%) with varied ranges (4321–10,260 m) because of a nugget 

effect (Table 5).  

Table 5. Semivariogram parameters of soil property residuals in India’s north-eastern Himalayan 

area. 

Variable Model Nugget 
Partial 

Sill 
Sill 

Nugget/ 

Sill 

Nugget/ 

Sill (%) 

Range 

(m) 

Moran’s I 

Test Value 

p-

Value 

Spatial 

Autocorrelatio

n 

Spatial 

Dependenc

e 

pH Circular 0.818 0.188 1.006 0.81 81 6443 0.042215 <0.001 Present Weak 

OC Gaussian 0.560 0.243 0.803 0.70 70 5369 0.022289 <0.001 Present Moderate 

N Gaussian 0.765 0.112 0.877 0.87 87 10260 0.019618 <0.001 Present Weak 

P Circular 0.696 0.312 1.008 0.69 69 4108 0.016005 <0.001 Present Moderate 

K Exponential 0.687 0.244 0.931 0.74 74 2259 0.020067 <0.001 Present Moderate 

Fe Gaussian 0.789 0.172 0.961 0.82 82 4321 0.017918 <0.001 Present Weak 

Mn Circular 0.790 0.176 0.966 0.82 82 6777 0.014049 <0.001 Present Weak 

Zn Gaussian 0.108 0.851 0.959 0.11 11 5738 0.020812 <0.001 Present Strong 

Cu Circular 0.795 0.189 0.984 0.81 81 7846 0.02022 <0.001 Present Weak 

OC, soil organic carbon; N, available nitrogen; P, available phosphorus; K, available potassium; Fe, 

Mn, Zn and Cu represent DTPA-extractable iron, manganese, zinc and copper in soil, respectively. 
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Figure 3. Semivariograms of residuals were calculated, with the lines showing the best-fit model 

based on the RMSE and R2 values. pH; OC, soil organic carbon; N, available nitrogen; P, available 

phosphorus; K, available potassium; Fe, Mn, Zn and Cu represent DTPA-extractable iron, 

manganese, zinc and copper in soil, respectively. 

The performance of the stepwise multiple linear regression equation was evaluated. 

The validation with respect to the current dataset (Figure 4) demonstrated that combining 

diverse variables improved the variability of the predicted soil parameters viz., pH, 

organic carbon, available N, P, K, Fe, Mn, Zn and Cu. Medium to high variability was 

captured by the model (R2 = 0.32–0.81). The highest variability was captured in the case of 

N (0.81) followed by pH (0.76), OC (0.71), P (0.67), Cu (0.45), K (0.42), Fe (0.34), Mn (0.33) 

and Zn (0.32). 
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Figure 4. Validation of soil properties and available nutrients with current available datasets. pH; 

OC, soil organic carbon; N, available nitrogen; P, available phosphorus; K, available potassium; Fe, 

Mn, Zn and Cu represent DTPA-extractable iron, manganese, zinc and copper in soil, respectively. 

The predicted maps of the studied soil properties (pH, OC, available N, P, K, Fe, Mn, 

Zn and Cu) in the surface soil using stepwise multiple regression kriging are presented in 

Figure 5. The predicted soil reaction (pH) varied from 4–5 and soil organic carbon varied 

from 0.4 to 3.7. The predicted macronutrients viz., N, P and K varied from 268.9 to 652.8 

kg ha−1, 31 to 78.8 kg ha−1 and 112.6 to 139.0 kg ha−1, respectively. Similarly, in the case of 
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available micronutrients viz. Fe, Mn, Zn and Cu, the predicted maps varied from 7.9 to 

139.0 mg kg−1, 4.0 to 77.2 mg kg−1, 0.4 to 2.9 mg kg−1 and 0.1 to 2.3 mg kg−1, respectively.  

 

Figure 5. Predicted soil properties map in India’s north-eastern Himalayan area. pH; OC, soil 

organic carbon; N, available nitrogen; P, available phosphorus; K, available potassium; Fe, Mn, Cu 

and Zn represent DTPA-extractable iron, manganese, copper and zinc in soil, respectively. 
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3.4. Delineation of Management Zones 

The projected soil parameters for the entire region were used to define the 

management zones. The soil properties were predicted for each pixel value (total 17, 

86,985 data points) using the model described in the previous section. To gain a better 

understanding of the geographically weighted model output, in this study, the usual 

global model was fit, which excludes the spatial effect. Therefore, a PCA was conducted 

on the predicted variables (regression kriging), such as the soil properties, and available 

nutrients. The first three PCs explained the cumulative percentage of the total variance 

(PTV) as 67.7% having eigenvalues greater than one (Table 6). 

Table 6. Soil properties and loading coefficients: global principal component analysis. 

Principal Component Eigenvalues Proportion of the Total Variance (PTV) Cumulative PTV 

PC1 1.707 0.338 0.338 

PC2 1.275 0.189 0.527 

PC3 1.137 0.150 0.677 

PC4 0.855 0.085 0.762 

PC5 0.814 0.077 0.839 

PC6 0.739 0.063 0.902 

PC7 0.623 0.045 0.947 

PC8 0.525 0.032 0.979 

PC9 0.425 0.021 1.000 
 PC loading 
 pH OC N P K Cu Zn Mn Fe 

PC1 −0.141 −0.502 −0.436 −0.066 −0.404 −0.167 −0.391 −0.394 −0.187 

PC2 0.432 −0.262 −0.436 0.509 −0.063 −0.064 0.291 0.185 0.410 

PC3 −0.348 0.051 0.006 −0.121 −0.413 0.580 0.192 −0.190 0.531 

OC, soil organic carbon; N, available nitrogen; P, available phosphorus; K, available potassium; Fe, 

Mn, Zn and Cu represent DTPA-extractable iron, manganese, zinc and copper in soils, respectively. 

The variance explained by PC1, PC2 and PC3 was 33.8, 18.9 and 15.0%, respectively. 

The most significant influence was found for OC, N, K and Mn in PC1. In PC2, P, pH and 

Fe contributed more. Likewise, in PC3, Cu had the most significant influence. As a result, 

the distribution maps for OC and N were found to have similarity to the GPCA scores 

map of PC1. The PC2 and PC3 score maps were identical to the Cu, Fe and Mn maps. 

However, the PCA combined nine variables into three PCs, accounting for gross spatial 

variability in these variables. High negative scores were concentrated in the south-eastern 

part of the study area, whereas large positive scores were concentrated in the northern 

and central parts (Figure 6), with no discernible geographical trend. All soil samples 

described 92.05 to 98.47% of the data variability, with an average of 95.78%, explaining 

28.08% more variability than GPCA (67.7%). In the spatial data structure, GWPCA was a 

clear winner over GPCA. When PCAs explained more variability, they observed the soil 

nutrient properties of different samples with more clarity. Further, these PCAs were used 

for the computation of the PCA score, which was an input for possibilistic fuzzy c-means 

clustering in the final MZs decision. When the data showed more variability, they 

indirectly enhanced the crisp clustering of soil samples, which is the objective of this 

study.  

For management zone analysis, the first three PCs’ scores of GWPCA and GPCA 

were used as inputs separately in the “ppclust” package of R to perform the PFCM 

algorithm to segregate the three PCs into MZs. For 2 to 10 MZs, the method was repeated 

numerous times to obtain cluster validity indices. The cluster validity indices (FPI and 

NCE) were plotted against the number of classes on a graph (Figure 7). As a consequence 

of clustering, the optimal number of clusters was determined when each index reached 
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the lowest value, signalling minimal membership sharing (FPI) or highest amount of 

organization (NCE). Thus, it was found that, for both methods of data redundancy, the 

number of reasonable clusters was four.  

 

Figure 6. Principal component (PC) score maps for global principal component analysis (GPCA) 

and geographically weighted principal component analysis (GWPCA). 
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Figure 7. Calculated indices for locating the best clusters in the research region based on the GPCA 

score (a) and GWPCA score (b). 

3.5. Comparison of Delineated Zones 

The characterization of the variability with respect to space while considering both 

methods, i.e., GPCA and GWPCA, for the delineated MZs was conducted using Tukey’s 

multiple comparison test (Table 7); it was observed that the PFCM clustering based on 

GWPCA was found to be superior to PFCM clustering based on GPCA. Therefore, by 

considering the pixel-wise cluster values resulting from the PFCM clustering based on 

GWPCA, the final MZs map was generated using R software (Figure 8).  

Table 7. Variance analysis of soil properties in management zones and Tukey multiple comparisons 

test based on the GPCA score and GWPCA score in India’s north-eastern Himalayan area. 

Soil Properties 
PFCM Clustering Based on GPCA Score PFCM Clustering Based on GWPCA Score 

1 2 3 4 1 2 3 4 

pH 4.50 c 4.66 a 4.50 c 4.50 b 4.53 b 4.54 a 4.52 d 4.53 c 

OC 1.99 c 2.12 b 2.13 b 3.06 a 2.28 a 2.11 d 2.15 c 2.18 b 

N 402.81 b 380.37 d 387.95 c 513.14 a 408.25 b 394.91 c 413.59 a 406.73 b 

P2O5 39.88 c 45.66 a 39.96 b 38.07 d 41.46 a 40.59 c 40.13 d 40.83 b 

K2O 272.84 c 306.38 a 255.17 d 295.29 b 284.81 a 265.97 d 273.01 b 270.79 c 

Fe 54.24 d 63.96 b 64.47 a 61.30 c 62.33 a 60.10 b 58.70 c 60.12 b 

Mn 20.15 c 30.05 a 21.89 b 29.93 a 24.91 a 22.61 d 23.92 b 23.26 c 

Zn 0.94 c 1.19 a 1.09 b 1.09 b 1.09 a 1.06 c 1.02 d 1.06 b 

Cu 0.69 c 0.69 c 0.76 b 0.77 a 0.74 a 0.73 b 0.71 d 0.72 c 

p ≤ 0.01 indicates that values in a row followed by different letters are significantly different. OC, 

soil organic carbon; N, available nitrogen; P, available phosphorus; K, available potassium; Fe, Mn, 

Zn and Cu represent DTPA-extractable iron, manganese, zinc and copper in soils, respectively. 

MZ 1 covered the maximum area (43.3%), followed by MZ 2 (29.4%), MZ 3 (27.0%) 

and MZ 4 (0.3%). The analysis of variance indicated significant differences among MZs 

with reference to all soil properties, except for N and Fe. There were no significant 

differences between MZ 1 and MZ 4 in the case of N, and, similarly, no significant 

differences between MZ 2 and MZ 4 in the case of Fe.  
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Figure 8. Map of management zones for four clusters in India’s north-eastern Himalayan area. 

4. Discussion  

It is indeed critical to monitor the nutrient level of soil on a regular basis. In such 

rugged terrain, timely surveying is a difficult and costly task. In light of the foregoing, 

samples gathered in the research region were analysed to determine the relationship with 

environmental variables and then segregated to create a reasonable number of 

management zones that can be controlled. In this study, it was found that the soil 

properties were quite variable, with a significant coefficient of variance. The OC content 

was high in the soils of Nagaland state due to thick vegetation cover [53]. Forest diversity, 

geographical factors, and climate change impacts have all been linked to the higher OC in 

this region [54]. The soil’s physical and chemical characteristics and alterations in the 

quality and quantity of organic matter input into the soils are being primarily influenced 

by the mean annual temperature, hence regulating the OC stability [55]. The variation in 

the concentration of available nutrients may be attributed to prevailing climatic 

conditions, contrasting landforms, parent materials and dynamic land-use patterns [56–

58]. The studied soil properties showed low to very high variability. Out of all of the soil 

properties, the lowest CV value was registered by the pH. Several authors have 

documented modest and moderate variations in the soil pH and OC concentration in 

India’s acid soils, which are consistent with our findings [16,57,59]. 

The substantial diversity in soil micronutrient availability throughout space might 

be due to changes in parent materials and paedogenic processes, which are the two major 



Remote Sens. 2022, 14, 2101 20 of 25 
 

 

causes of variance [60]. The high CV values of soil parameters indicated spatial variability, 

which pushed for site-specific fertilizer management to boost crop output. 

A correlation study suggested that variations in soil pH are causing changes in 

micronutrient solubility and distribution [39]. Tripathi et al. [59] also reported the positive 

correlation between the soil pH and available Zn and Mn in the rice cultivation soils of 

Odisha. In addition to these, the micronutrients were positively and substantially 

connected with each other, and there was a positive and significant link between OC and 

accessible Fe, Mn, Zn and Cu. The present results corroborated the findings of others 

[61,62]. 

It was observed in the case of the SMLR model in the present study that the prediction 

power was moderate for OC and N, but low prediction was observed for other soil 

attributes with a significant contribution of covariates in the model. In comparison to 

previous research, the outcomes differ depending on the models employed, the projected 

soil properties, and the study’s location. Mapping macronutrients in agricultural (depth 

0–15 cm) lands in Iran with the cubist model yielded a lower validation R2 of 13% for N, 

but a higher, though still low, R2 of 17% for P, compared to the current work [63]. With 

the QRF in the semiarid tropics of South India at a 30 cm depth, Dharumarajan et al. [64] 

obtained substantially lower R2 values of 0.23 for OC. In the prediction of soil parameters, 

factors such as the sampling intensity in relation to the geographical extent, topography 

features and bioclimatic variables may have played a critical impact. The soil 

characteristics displayed a pattern of spatial dependency that might be attributable to 

internal variables, such as chemical, physical and mineralogical features, external 

influences, such as human activities, or both [24,65]. The pH and OC ranges in the research 

region were moderate. Reza et al. [66] found a similar pH range in the alluvial soils of 

India; however, Fathi et al. [67] found a smaller range of pH and organic matter variability. 

The influence zones for N, P and K were arranged in decreasing order. It was relatively 

high for N, but not so much for P or K. Reza et al. [68] showed a similar and larger 

geographical range for available N (2.0 km) and available K (2.3 km) at the district level 

of soil fertility mapping. When considering the zone of effect at the district level, the trend 

in soil micronutrients was moderate. While using kriging interpolation approaches, some 

authors observed varying micronutrient ranges [69–71]. The effect of random factors and 

the resolution of gridded soil data might explain these contradicting results in terms of 

the spatial range of soil attributes. Apart from the spatial range, another key indication is 

spatial dependency. The soil pH, N, Fe, Mn and Cu had modest spatial dependence, but 

OC, P and K had moderate geographical dependence, except for Zn, which had large 

geographical dependence. This is due to topography, prevailing climate conditions, soil 

types and changing land-use patterns, such as shifting farming. In the research region, 

around 101 km2 of land was subjected to intermittent shifting cropping [72]. 

The soil properties showed high variations in the spatially predicted maps, which 

were ascribed to the changing nature of the environment, land use and management [12]. 

Such predicted maps with high spatial resolution are necessary for assessing and 

monitoring soil health and, at the same time, they will act as a guide for developing a 

proper land-use plan. 

The methodology of delineation of MZs solely considered the available nutrients, but 

the abeyance of spatial information in PCA does not justify our hypothesis concerning the 

segregation of distinct MZs. Distinct spatial variation was observed in the maps of soil 

characteristics; however, it is impossible to identify the variables responsible for regional 

variations. In terms of variance decomposition for spatial data sets, the use of a GPCA in 

a spatial data structure provides an incomplete view. GPCA does not consider the local 

structure (i.e., longitude/latitude) of soil nutrients, which tends to provide an incomplete 

understanding of soil nutrient distribution over space. To avoid such problems, GWPCA 

was used to adopt a local distribution pattern of soil nutrients over space, which is 

essential for the delineation of MZs. GWPCA is nothing but the local adaptation of 

classical PCA in a spatial data structure. 
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Considering the additional advantages of the former, the anticipated spatial 

heterogeneity in the soil properties and available nutrients was due to the GWPCA. The 

results from GWPCA and GPCA were compared throughout. The comparison between 

GWPCA and GPCA was conducted for the first three components from each calibration 

and the PC scores were mapped (PC1 to PC3) (Figure 6). For GWPCA, the total n = 17, 86 

and 985 valued scores dataset (raster data) was generated through regression kriging for 

each location, i.e., 30 m spatial resolution of each component. In GWPCA, there were 17, 

86 and 985 PCAs (corresponding to each pixel) for each soil nutrient in comparison to 

GPCA, where only one PCA existed for each nutrient. As a result, the GWPCA scores 

corresponding to their location were computed. A matrix of three main components 

(eigenvalue ≥ 1) was chosen for each site, together with their corresponding amount of 

variance explained and the winning variables for downstream analysis. The best 

bandwidth (bw) was calculated by using a bi-square method for k = 3 components based 

on the minimum CV, and was found to be bw = 1, 10, 207. A sample of h = 0.85 n (n = 17, 

86, 985) data points was chosen based on the shortest MCD estimator for robust GWPCA 

estimation [73]. It was clear that the MZs generated through the former procedures were 

evidently (based on analysis of variance) different from each other (Table 7) [14,59,74]. 

Variations in mineralogy, microclimatic variables, and other anthropogenic 

activities, such as soil and crop management, may account for the differences across the 

four MZs [13,57]. The study area is located on the western slope of the Purvanchal hills of 

the north-eastern Himalayan region, where the elevation decreases from east to west and 

the climate, vegetation and parent material vary significantly with elevation, from warm 

to humid thermic ecosystems at higher elevations to the hot moist sub-humid 

hyperthermic ecosystem at lower elevations. As a result, the altitude was a component 

that contributed to the variation in soil properties. Greater mean amounts of these 

nutrients might be linked to higher levels of OC, acidic pH, high altitude with temperature 

changes and forest vegetation, notwithstanding the substantial diversity across the MZs. 

Especially in the case of micronutrients, several authors also reported that the availability 

of micronutrients in the acidic and highly weathered soils of the north-eastern hilly 

regions are quite high [20–22,75,76]. Only 2.11% of the study area is covered by 

agriculture, with the majority of the land covered by various forest vegetation (87.93%), 

followed by other land cover classifications. The main source of concern in the district, 

which covers 6.31% of the total land area, is shifting agriculture [72]. This zonation concept 

based on essential nutrient availability combined with the land use–land cover layer will 

aid in identifying suitable areas for growing cereals, pulses, vegetables and tuber crops 

through judicious nutrient applications, as previous studies have suggested land use 

planning based on pedological attributes, rather than considering soil fertility parameters. 

The method would also provide an effective and efficient means for scientific nutrient 

management. The above study on geostatistical analysis illustrated the regional 

heterogeneity of soil properties in terms of spatial dependency, especially macro and 

micronutrients. As a result, knowledge of soil qualities in individual MZs might be 

valuable for farmers and other stakeholders to make informed decisions about nutrient 

management on a site-by-site basis. 

5. Conclusions 

The current work used geospatial modelling to propagate regional variation in soil 

characteristics and available nutrients in the NEHR, which was then translated into MZs 

using GWPCA and probabilistic fuzzy clustering techniques. The latter demonstrates the 

benefits of GWPCA over normal GPCA, since GWPCA provides information on the 

geographical distribution of variance and the factors that have the greatest effect on each 

component, whereas GPCA suppressed such information. Since it is doubtful that all of 

the yield-limiting parameters are known ahead of time, MZs produced by a set of 

characteristics are more likely to characterize the complex regional variation of soil 

fertility. Indeed, various variables may impact fertility in different regions of the same 
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field. The regression kriging model predicted the soil properties and available nutrients 

reasonably well. The prediction of soil properties and available nutrients by the present 

model was good, except for N, Zn and Cu. The GWPCA and fuzzy clustering by 

considering predicted soil properties had segregated the study area into four MZs, which 

indicated the heterogeneity in the soil properties among them. MZ maps created with 

these approaches are simple, easy to comprehend and cost-effective, and might be used 

as key guidance for farmers when it comes to site-specific fertilizer management. As 

information on conventional fertilizer dosage recommendations is scarce in this region, 

the mean values of soil characteristics in each MZ can be utilized as a reference for 

variable-rate fertilization and liming. Therefore, fuzzy cluster analysis would minimize 

variability within the zone and would provide an effective and efficient means for various 

interventions for the agricultural purpose, not only in this region, but also elsewhere. 

Further research should concentrate on the inclusion of more covariates viz., climatic data, 

geological and other remote sensing information to enhance the prediction and to monitor 

the effect of temporal changes of nutrients on soil and crop management practices.  
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