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Abstract: We present a simple modeling technique based on linear spectral mixture analysis to
assess satellite detectability of sub-pixel burned area. Pixel observations are modeled using a linear
combination of pure land covers, called endmembers. We executed an experiment using spectral
data from Yellowstone National Park, USA. Using endmember samples from spectral libraries, pixel
samples were assessed on burn detectability using the widely used differenced Normalized Burn
Ratio (dNBR). While individual samples yielded differing results for Landsat 8, Sentinel-2, and the
Moderate Resolution Imaging Spectroradiometer (MODIS), the average park-wide detectability of
burned area was consistent across satellites. For the commonly used dNBR threshold of 0.15, the
results indicated that detectability is reached when around a quarter of a pixel’s area is burned.
However, a significant percentage of the modeled burned pixels remained undetectable, especially
those with low pre-fire vegetation cover. This has consequences for burned area estimates, as
smaller fires in sparsely vegetated terrain may remain undetected in moderate resolution burned
area products.

Keywords: burned area detection; differenced Normalized Burn Ratio; spectral mixture analysis;
Yellowstone National Park

1. Introduction

Wildfires have severe impacts on the natural environment and human lives. They accel-
erate changes in ecosystems by removing vegetation [1,2], and, as such, can exacerbate soil
erosion [3,4]. Furthermore, the release of large amounts of greenhouse gases from fires can
contribute to climate warming when ecosystems do not fully recover [5]. In addition, air pollu-
tion from the fire’s smoke can be deadly [6,7], and the economic costs of both prevention and
damage repair are substantial [8]. For these reasons, monitoring fires is extremely important.

Satellite remote sensing is the only practical means of gathering information on fires
over large areas. Two remote sensing techniques are often used to detect fires. Firstly,
active fires can be detected by the thermal anomalies from their heat release [9]. Secondly,
burned areas can be detected based on surface reflectance changes after the fire [10,11].
Fires remove vegetation, produce charcoal, and can expose soil. Active fires can only be
detected during the fire, and detection accuracy thus depends on orbital characteristics of
the satellites. In contrast, surface reflectance can be mapped after the fire from cloud-free
images. This method is thus more suitable to map the extent of fires [12].

There are, however, also limits to the detection capabilities based on changes in surface
reflectance. Image pixels, no matter how small, are always a composite of the constituents
within them, and this sub-pixel heterogeneity can impact the analyses [13]. If only a small
area within a pixel is burned, this may not be detectable by satellites, which can result in
high omission errors [14].
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An often-used metric for burned area detection (e.g., [15–19]), the Normalized Burn
Ratio (NBR), may also suffer from this limitation. This metric takes advantage of spectral
differences between reflectance of healthy vegetation and burned area in the near-infrared
(NIR, ∼0.75–0.90 µm) and shortwave infrared (SWIR, ∼2.09–2.35 µm) domains of the
electromagnetic spectrum [20,21]:

NBR =
NIR − SWIR
NIR + SWIR

(1)

Healthy vegetation typically has high reflectance values in the NIR domain, but low
values for SWIR. Reflectances for charcoal, soil, and bare rock are typically opposite of
that, giving low NIR and high SWIR values in deforested or burned areas. As a result,
a significant decrease in NBR is an indication of vegetation loss.

However, if only a small fraction of a pixel has burned, the NBR may not decrease
much, leading to the burned area remaining undetectable. A large unknown here is how
large the fraction of burned area needs to be before detection is possible. This results in
some underestimation of fire impacts, as smaller contributions remain undetected. We
aim to improve our understanding of this detection threshold by modeling the response
of satellites to increasing burned fractions. To achieve this, the study area of Yellowstone
National Park, USA, was selected to model spectral responses of burned area.

2. Materials and Methods

In this project, the linear version of spectral mixture analysis (SMA) was used to
calculate satellite spectral response to burned areas. SMA is a widely used technique
for modeling the composite nature of pixels [22]. For studies on wildfires, it has been
used to estimate fire severity (e.g., [23,24]), intensity (e.g., [25]), and vegetation recovery
(e.g., [26]). The technique is relatively simple, has been extensively tested, and has proven
to be reliable [22]. The approach in SMA is to model the spectral signatures of a pixel as
a mixture of pure land covers, called endmembers. A burned pixel may, for example, be
a combination of the endmembers grass, bare soil, and charcoal. Typically, SMA is used
to estimate abundances of such endmembers in pixels imaged by satellites. Here, we did
not use satellite imagery; instead, we created artificial pixel samples from combining these
endmembers and used these to determine satellite response. To our knowledge, no prior
study has modeled satellite detectability of burned area in such a way.

Firstly, endmember samples were selected for the study area and obtained from
spectral databases (see Section 2.2). Next, the samples were grouped and combined to
model sub-pixel environments located within the park. A fire in these environments
was subsequently modeled by introducing the spectral contribution of a charcoal sample.
Finally, we assessed burned area detectability of our modeled spectral mixtures.

2.1. Study Area

The study area for which endmembers were selected is Yellowstone National Park
(shortened here to Yellowstone), a nature preserve in Wyoming, USA [27]. The park covers
8903 km2, and is a landscape characterized by high volcanic plateaus eroded by glaciers and
rivers and flanked by mountains. Lakes cover around 5% of the park’s area. Elevation ranges
between 1637 m and 3512 m, averaging at 2479 m [28]. The area is volcanically active and
contains three large calderas [29]. The park was selected as a study area because the available
vegetation spectral data are complete and easily accessible. Additionally, wildfires occur
often in the park during the summer season. The burned environments for this region were
modeled using a linear combination of three endmembers: vegetation, substrate, and charcoal.

The dominant vegetation community in Yellowstone is coniferous forest, which repre-
sents around 85% of the surface area. The United States National Park Service classifies them
under four communities. Of them, forests dominated by lodgepole pine (Pinus contorta subsp.
latifolia) are by far the most common. In addition, there are forests dominated by spruce
fir (Picea engelmannii and Abies lasiocarpa), whitebark pine (Pinus albicaulis), and douglas fir
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(Pseudotsuga menziesii). This last vegetation community is interesting as it has the highest
frequency of fire [27]. The vegetation patterns in the region vary greatly with elevation and
topography, with douglas fir being located at lower elevations, lodgepole pine between 2000
and 2400 m, and the other communities reaching to the upper tree line [30]. Other vegetation
communities in the park are grasslands, meadows, sagebrushes, and hydrothermal areas.
These are classified under non-forested vegetation. Finally, scattered throughout the park are
smaller communities of aspen forests, wetlands, and streamside vegetation [27].

2.2. Endmember Selection

The reflectance spectra of the environments in Yellowstone were modeled using three
categories of endmembers: vegetation, substrate, and charcoal. Vegetation spectral data were
obtained from the United States Geological Survey’s (USGS) spectral library, which includes
data collected from laboratory, field, and airborne spectrometers. Covering wavelengths
between 0.2 and 200 µm, the library contains measurements of vegetation, minerals, chemical
compounds, and manmade materials. Among this library, averaged spectral reflectance data
of the dominant vegetation communities in Yellowstone National Park are available. These
are averaged top-of-canopy measurements of vegetation communities, previously collected
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [31]. The used spectra span
wavelengths between 370 and 2500 nm at an interval of 10 nm. The vegetation samples that
were used in this study are summarized in Table 1. It is common in spectral mixture analysis
to subdivide the vegetation endmember into two: green and non-photosynthetic parts of the
vegetation cover. However, as the vegetation samples used are averages of plant communities,
they represent spectra that contain both green and non-photosynthetic parts of the plants.
Thus, the vegetation endmember samples from AVIRIS represent the vegetation spectra as
they would be measured by a satellite instrument.

Table 1. Overview of vegetation samples used in the analysis. More detailed descriptions of the
samples can be found in the USGS spectral library [31].

Type Vegetation Community Dominant Species No. of Samples

Forest

Douglas fir Pseudotsuga menziesii 3
Lodgepole pine Pinus contorta subsp. latifolia 11
Spruce fir Picea engelmannii, Abies lasiocarpa 5
Whitebark pine Pinus albicaulis 2

Nonforest

Bacterial mat Chloroflexus aurantiacus, Synechococcus lividus 1
Conifer–meadow mix 1
Grass Festuca idahoensis 5
Sagebrush Artemisia tridentata 4
Sedge 1
Willow–sedge mix 1

The endmembers that were used to simulate the substrates in Yellowstone were obtained
from the NASA Jet Propulsion Laboratory’s ECOSTRESS spectral library. This library is a
collection of laboratory measurements covering a wavelength range between 350 and 15,400 nm
of (green and non-photosynthetic) vegetation, rocks, soils, minerals, and some manmade
materials [32]. From this library, both rock and soil samples were obtained to simulate the
substrate conditions of the park. Rock spectral samples were selected according to the geology
of Yellowstone, as described by Keefer [33]. At the wavelengths used in this work (up to
2350 nm), the spectral samples from this library had a measurement interval of 1 nm.

The inclusion of soil samples is important, as some soil-forming processes influence the
spectral signature. For example, increases in organic matter result in lower reflection in the
NIR domain [34]. Furthermore, in the presence of charcoal, the Normalized Burn Ratio is
highly sensitive to soil type [35]. However, selecting soils is less straightforward compared
to rocks, as the characteristics of soils are highly variable. Apart from the lithology in which
the soil is formed, it is highly dependent on the local climate characteristics [36]. Soils in
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Yellowstone are typically in the frigid or cryic temperature regime, although warmer regimes
form around hydrothermal areas. The climate of the park is characterized as moderately
dry [28], and mostly falls within the udic moisture regime [36]. The most common soil types
in the park are mollisols (thick, organic soils) and inceptisols (weakly developed mineral soils);
however, entisols, andisols, and alfisols are present as well. For a full overview of the soils in
Yellowstone, see Rodman et al. [28].

We only selected soils for the more common lithologies, as these have a higher impact
on the park-wide results. Initially, the selected soils matched parent materials with the
rocks in the park, could form in the temperature and moisture regimes of Yellowstone [36],
and are similar to the soils described by Rodman et al. [28]. The rock and soil samples were
grouped in accordance with the geological units, as shown in Table 2.

Table 2. Overview of substrate samples used in the analysis. More detailed descriptions of the
samples can be found in the ECOSTRESS library [32].

Geological Unit Rock/Soil Name No. of Samples

Precambrian Gneiss and Schist

Gneiss 19
Schist 26

Inceptisol dystrochrept 1
Inceptisol haplumbrept 1

Paleozoic Formations

Dolomite 3
Limestone 33
Sandstone 21

Shale 25

Mesozoic Formations
Limestone 33
Sandstone 21

Shale 25

Tertiary Formations Conglomerate 3
Sandstone 21

Diorite Intrusions Diorite 2
Granodiorite 4

Absaroka Volcanic Breccias

Andesite 6
Basalt 35

Mafic tuff 1
Inceptisol haplumbrept 1

Mollisol cryoboroll 1

Yellowstone Tuffs

Felsic tuff 8
Alfisol fragiboralf 1
Alfisol haplustalf 2

Inceptisol xerumbrept 1

Plateau Rhyolite

Rhyolite 24
Inceptisol cryumbrept 1

Inceptisol plaggept 1
Mollisol cryoboroll 1

Basalt Flows Basalt 35

Quartenary Deposits

Travertine 2
Alfisol fragiboralf 1
Alfisol haplustalf 2
Alfisol paleustalf 1

Inceptisol cryumbrept 1
Inceptisol haplumbrept 1

Inceptisol plaggept 1
Inceptisol xerumbrept 1

Mollisol cryoboroll 1
Mollisol haplustall 1
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However, some very common parent materials were greatly underrepresented in
the soil samples due to a lack of soils that fit all the criteria. In these cases, some soils
were chosen that are technically outside of this climatic regime, but fit well with the
soil descriptions and parent material. Most notably, there was no soil sample found for
volcanic ash that also fit the climatic regimes. Thus, the otherwise well-fitting “inceptisol
xerumbrept” (which forms in deserts) was added.

The charcoal endmembers were collected by Veraverbeke et al. [37] from the 2011
Canyon fire scar in Kern County, California. Their spectra were measured at NASA’s Jet
Propulsion Laboratory, in the same fashion as the used rock and soil samples from their
ECOSTRESS library. Three charcoal endmember samples were available and used.

2.3. Sample Preparation

The first step of the analysis was to calculate the near-infrared (NIR) and shortwave
infrared (SWIR) response of the endmember samples (Figure 1). To perform this, we
followed the procedure outlined by Barsi et al. [38]. For every wavelength of an endmember
sample, the response of a satellite band was calculated:

ρems,b,λ = ρems,λ · βb,λ (2)

where ρems,b,λ is the spectral reflectance of an endmember sample ems as observed by
a satellite instrument band b at wavelength λ. ρems,λ is the spectral reflectance of the
endmember sample from library (again at wavelength λ), and βb,λ is the spectral response
of a satellite at that wavelength. Both vary between 0 and 1. The satellites for which
detectability was assessed are Landsat 8, Sentinel-2, and the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Table 3). Their response functions are shown in Figure 2.
The spectral response functions were linearly interpolated to match the spectral resolution
of the endmember sample.

Figure 1. Near-infrared (NIR) and shortwave infrared (SWIR) band responses of Landsat 8 for the
endmember samples.
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Table 3. Details of the satellite instrument bands used in the analysis. Used are the near-infrared
(NIR) and shortwave-infrared (SWIR) bands for Landsat 8, Sentinel-2 (two satellites; A and B), and
the Moderate Resolution Imaging Spectroradiometer (MODIS, two satellites; Terra and Aqua).

NIR Band SWIR Band

Satellite Instrument Band No. λ Range
(µm)

Resolution
(m) Band No. λ Range

(µm)
Resolution

(m)
Data

Source

Landsat 8 5 0.85–0.88 30 7 2.11–2.29 30 [39]
Sentinel-2 A & B 8 0.78–0.89 10 12 2.01–2.37 20 [40]
MODIS Terra & Aqua 2 0.84–0.89 250 7 2.11–2.16 500 [41]

Figure 2. Instrument response functions of the instruments used: (a) Near-infrared (NIR) spectral
bands. (b) Shortwave infrared (SWIR) spectral bands. The spectral response of the Sentinel-2 A and B
instruments are slightly different, whereas the responses of the two Moderate Resolution Imaging
Spectroradiometer instruments (MODIS Terra and Aqua) are identical.

The responses to these reflectances were then averaged over the band’s wavelength range:

ρems,b =
∑λ1

λ=λ0
ρems,b,λ · ∆λ

∑λ1
λ=λ0

βb,λ · ∆λ
(3)

where ρems,b is the spectral response for the endmember sample ems of a given instrument
band b, λ0 and λ1 are the wavelength boundaries of the instrument band, and ∆λ is the
wavelength distance between the measurements of the endmember sample. In this case,
multiplying the endmember reflectance with the satellite response functions automati-
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cally sets the wavelength range (as the responses are set to 0 outside of the band of the
instrument). If ∆λ is constant over the wavelength domain, Equation (3) can be simplified:

ρems,b =
∑ ρems,b,λ

∑ βb,λ
=

∑ ρems,λ · βb,λ

∑ βb,λ
(4)

For every endmember sample, Equation (4) was used to calculate the NIR and SWIR
band values for the different satellite sensors.

2.4. Modeling Burned Area Response

In linear spectral mixture analysis, spectral endmembers are combined linearly to
simulate the spectrum of a pixel [42]:

ρp =
n

∑
ems=0

ρems · fems (5)

Here, ρp is the reflectance of a pixel, which is a weighted average of the reflectances
of the endmembers used to simulate the pixel (0 ≤ ρems ≤ 1), with weights given by their
spectral contribution fractions (0 ≤ fems ≤ 1). In linear SMA, these fractions can also
be interpreted to represent the surface area covers of the endmembers, and therefore are
non-negative and have to add up to unity.

In this work, pixel spectra were modeled using three endmembers: vegetation, sub-
strate, and charcoal. This yields the following calculation for the pixel reflectances:

ρp = ρv · fv + ρg · fg + ρc · fc (6)

In this equation, ρp, ρv, ρg, and ρc are the reflectance values of the pixel and its
vegetation (v), substrate (g), and charcoal (c) endmembers, respectively. fv, fg, and fc are
the respective cover contribution fractions. The letter g (from ground) is used for substrate
endmembers to disambiguate from the s used for starting values in later equations.

The endmember reflectances in this equation (and further equations) are those obtained
by Equation (4). Thus, the obtained pixel reflectance is for a given instrument band and
is already scaled with the band’s response function. This means that the NIR and SWIR
values obtained from this equation are the reflectances of the pixel as would be obtained
from the satellites.

Before a fire, a pixel only contains vegetation and substrate endmembers ( fc = 0); thus,
Equation (6) yields

ρp,s = ρv · fv,s + ρg · (1 − fv,s) (7)

ρp,s is the pixel’s (p) pre-fire (starting, s) reflectance. fv,s is the vegetation cover of the
pixel sample before the fire. This value was varied between 0.05 and 1 in steps of 0.05,
yielding 20 pixel samples per ground-vegetation endmember combination. The substrate
endmember takes up the rest of the area of the pixel; therefore, its contribution fraction is
equal to 1 − fv,s. From this pre-fire pixel reflectance, the Normalized Burn Ratio before fire
(NBRp,s) could be calculated:

NBRp,s =
ρp,NIR,s − ρp,SWIR,s

ρp,NIR,s + ρp,SWIR,s
(8)

The cover contributions for the pixels were then altered by replacing parts of the
ground and vegetation with charcoal, simulating a burn in the pixel. The model calculates a
decrease in the contribution of vegetation ( fv) using a variable fraction of burned vegetation
( fb). The fraction of burned vegetation (0 ≤ fb ≤ 1) gives the fraction of the original
vegetation ( fv,s) that is currently burned. The fraction of vegetation ( fv) could then be
calculated using

fv = fv,s · (1 − fb) (9)
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Along with changes in fv, the contribution of ground ( fg) and charcoal ( fc) also need
to change, as the total fraction of the pixel needs to be 1. The parameter ∆c (or ∆char) gives
the change in charcoal cover fraction per unit of vegetation lost (burned). The remaining
contributions could thus be calculated using

fc = fb · fv,s · ∆c (10)

fg = 1 − ( fv + fc) (11)

∆c = 0 represents vegetation loss without charcoal input. ∆c = 1 represents a fire
in which all vegetation is replaced by charcoal; the contribution of ground stays constant.
0 < ∆c < 1 represents an increase of both charcoal and bare ground. ∆c > 1 indicates that
part of the ground will be covered by charcoal in addition to vegetation loss. The parameter
can not be negative, as this would result in an illogical mechanism where forest cover
increases as it is burned. In the model, results were calculated for ∆c’s between 0 and 1 in
steps of 0.25.

Vegetation was removed until the vegetation contribution became 0, or the burned
area became detectable. The detectability was assessed using the differenced Normalized
Burn Ratio (dNBR), which is calculated by taking the difference between the pre- and
post-fire NBR. After an increase in the burned vegetation fraction, the pixel’s NBR (NBRp)
and, subsequently, dNBR were calculated:

NBRp =
ρp,NIR − ρp,SWIR

ρp,NIR + ρp,SWIR
(12)

dNBR = NBRp,s − NBRp (13)

If the dNBR was greater than a certain threshold, the fire was set to be detectable and
the cover fractions of the different endmembers fv, fg, and fc were saved. A burned pixel
was set to be undetectable if the burned fraction reached 1 before the dNBR threshold was
exceeded. In the model code, multiple threshold values were used to be able to assess the
influence of this parameter. The dNBR thresholds varied between 0.05 and 0.25 in steps
of 0.05.

The cover fractions were calculated for every substrate sample combined with every
vegetation and charcoal sample. However, we were only interested in the range of these
values for a certain combination, not necessarily the outputs for the individual library
samples. For example, the combination of gneiss (19 samples) with lodgepole pine forest
(11 samples) and charcoal (3 samples) has a total of 19 × 11 × 3 = 627 model output values.
However, the interest is only in the detectability of the gneiss–lodgepole pine combination.
Therefore, of these 627 results, only the minimal, mean, and maximal values were saved.
This reduced the number of results for this combination to three per variable.

From the burned fraction fb, the endmember contributions can be calculated. The goal
of the model was then to find the value of fb for which the burn could be detected. This can
be achieved using a root-finding algorithm; for example, iteratively, by increasing stepwise
fb, testing the resulting dNBR and checking if it is above the threshold. Then fb could
be tweaked to attain closer approximations of the threshold. However, it is possible to
directly calculate the burned fraction needed for detection. The methodology is explained
in Appendix A. The direct calculation is faster and more precise, allowing more samples to
be processed within a reasonable amount of time.

2.5. Data Aggregation

With a high number of endmember sample combinations, aggregation of the results
was required to draw conclusions. The results were aggregated at different levels (Table 4),
allowing conclusions to be drawn at different scales.
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Table 4. Result aggregation level details.

Level Name Results Count Notes

0 Endmembers 49,572,000 Results are not saved at this level.
1 Groupings 1,170,000 Contains min, mean, and max values of sample combination groupings.
2 Geologies 300,000 Substrate groupings aggregated to their geological units.
3 Park-wide 6000 Weighted average using abundances of geology–vegetation combinations.

The direct result outputs are defined at level 0. At this level, the results are given
per endmember sample combination; each one is calculated using a combination of one
substrate, vegetation, and charcoal spectral sample.

As we are not interested in the variation between the samples of a particular end-
member (e.g., between basalt samples), we can reduce the amount of data. We perform
this by only saving some statistical properties of a collection of these sample combinations.
Here, we save only the mean, minimal, and maximal values of the model results in a
collection or grouping, essentially giving one value with uncertainty. This yields results at
aggregation level 1. In this case, spectral samples are grouped according to their soil name,
rock name (see Table 2), or vegetation community (see Table 1). Every grouping is then a
combination of a named substrate with a vegetation community. For example, one of the
grouping combinations is basalt with lodgepole pine, containing all model results that are
a combination of basalt and lodgepole pine.

Higher aggregation levels than the groupings level require some information on the
area covers of the substrate and vegetation combinations. However, the surface area covers
of rocks or soils within a geological unit are largely not documented. For aggregation
level 2, this is accounted for as follows. We assign every rock and soil to a geological unit
(per Table 2). For the mean value of a unit, we assume the rock and soil types to be equally
abundant on the surface. The high uncertainty in this assumption is taken into account by
obtaining the minimal and maximal value of combinations assigned to a geological unit.
These extreme values thus assume that the entire unit is dominated by the most extreme
spectral samples within them, providing a constraint on the variability.

The final aggregation level, aggregation level 3, assesses burned area detectability at a
park-wide scale. To achieve this, the results for the geological units were weighed with their
surface area. To find these weights, a geological map [43] and vegetation habitat map [44]
of Yellowstone National Park were reclassified and combined to show the geological unit–
vegetation community combinations. Area sizes of these combinations were subsequently
set as the weights in the result analysis. The classes and corresponding weights are shown
in Table 5.

Table 5. Estimated area cover % of the lithology–vegetation combinations.

Douglas Fir Lodgepole
Pine Spruce Fir Whitebark

Pine Nonforest Total

Precambrian Formations 0.675 0.607 0.007 0.130 0.517 1.94
Paleozoic Formations 0.141 0.653 0.038 0.344 0.509 1.69
Mesozoic Formations 0.106 0.919 0.234 0.749 0.694 2.70
Tertiary Formations 0 0.002 0 0.001 0.001 0.003
Diorite Intrusions 0.081 0.079 0.005 0.148 0.236 0.549

Absaroka Volcanics 1.18 5.74 0.842 7.63 5.78 21.2
Yellowstone Tuffs 0.826 10.8 1.26 1.09 0.519 14.5
Plateau Rhyolite 0.073 18.8 1.74 2.14 1.75 24.5

Basalt Flows 0.230 1.39 0.045 0.039 0.145 1.86
Quartenary Deposits 1.11 13.4 6.30 1.97 8.25 31.0

total 4.42 52.5 10.5 14.2 18.4 100
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At aggregation level 3, the model contains three results (min, mean, max) for the
entire park. However, parameterization adds additional dimensions; thus, the park-wide
results are dependent on a given dNBR threshold (5 options), ∆char (5), instrument (4), and
starting vegetation fractions fv,s (10), totaling 6000 result values.

3. Results

The outputs of the model vary depending on the parameter settings used. Thus,
we analyze the detectability by assessing the influences of the parameters. For most of
the results, the starting fraction of vegetation ( fv,s) is set as the independent variable,
as detection characteristics are highly dependent on it.

3.1. Differences between Satellite Sensors

First, we identified the differences introduced by the various satellite instruments. We
use the aggregation level 2 for this purpose, as it still contains all the variability of the lower
aggregation levels while being attributable to certain areas of the park. The deviation in
burned fraction ( fb) on detection is shown in Figure 3, illustrating how much vegetation
loss is required before detection.

A few observations are of note here. Firstly, deviations are larger with increases in
starting vegetation fractions. With higher starting fractions of vegetation, the spectral
changes as a result of a burn can be larger. Secondly, the mean values of burned fraction
(shown in boxplots) vary only very slightly, deviating up to 0.1 from the average of the
satellites. This is in contrast with the extreme sample results (range shown in gray),
which can deviate up to 0.5 from the average. We can conclude from this that the satellite
sensor influence is relatively unimportant when looking at averaged values of sample
combinations, but can vary wildly with individual sample results.

It is important to note that the satellites show a characteristic deviation from the
mean. Typically, the Sentinel-2 satellites required higher values of burned fractions before
detection, essentially being slightly less sensitive to spectral impacts of fire. The opposite
is true for the MODIS instrument, which also had the highest deviations from the other
instruments. Finally, Landsat 8 had the least skewed, as well as the lowest absolute, devia-
tion from the mean. However, the sensitivity to spectral changes does not directly translate
to burned area sensitivity. The large differences in pixel sizes between the instruments is,
for example, another important factor.

For subsequent results, the differences between the satellite instruments are small
when compared to the variation introduced by other parameters. Therefore, the data
in this section are shown for the Landsat 8 satellite, as it has the most balanced detec-
tion characteristics. The results for Sentinel-2A, Sentinel-2B, and MODIS are shown in
Appendix B.
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Figure 3. Deviation from mean of satellite instruments of burned fraction required for detection as a
function of starting vegetation fraction. This compares model results with equal parameter settings
and sample combinations when measured with the different satellite sensors. From top to bottom:
Landsat 8, Sentinel-2 A, Sentinel-2 B, and the Moderate Resolution Imaging Spectroradiometer
(MODIS). Total variation within the model results are shown in gray, while distribution of the
expected (mean) values are shown in boxplots.
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3.2. dNBR Threshold Influence

Detectability of a sample pixel was dependent on the detection threshold. When the
dNBR threshold increases, a stronger burn spectral signal is required for detection to be
reached. As a result, higher fractions of burned area were required, and the number of
pixels that were undetectable increased (Figure 4).

(a) (b)

(c)

Figure 4. Park-wide detectability results for a pure burn scenario (where loss of vegetation fraction
results in equal increase in charcoal fraction (∆char = 1), Landsat 8. The mean values are shown in
colored lines, with total model result variation shown in gray. (a) Fraction of vegetation burned at
detection. (b) Percentage of undetectable pixels. (c) Charcoal contribution on detection.

In that sense, lower thresholds would be more desirable. However, this also increases
the detection of non-burn-related changes in the spectral signal. For example, removal
of vegetation changes the spectral signal in a similar way to a burn, as bare soil or rock
typically has a lower NBR. We modeled this by setting ∆char to zero, where the removal of
vegetation is compensated only by increases in substrate contribution ( fg). The resulting
detection for this model run is shown in Figure 5.

Comparing the results of Figures 4 with 5, the conclusion can be taken that on aver-
age for the park, a vegetation removal scenario required higher levels of vegetation loss
compared to a pure burn scenario. In addition, the percentage of undetectable pixels was
higher. However, there seems to be no objectively optimal setting for the dNBR threshold.
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(a) (b)

(c)

Figure 5. Park-wide detectability results for a vegetation removal scenario without fire (∆char = 0),
Landsat 8. The mean values are shown in colored lines, with total model result variation shown in
gray. (a) Fraction of vegetation burned at detection. (b) Percentage of undetectable pixels. (c) Increase
in substrate fraction on detection.

3.3. Park-Wide Detectability

Assessing the average number of undetectable pixels as a function of dNBR threshold
and ∆char parameters (Figure 6), some important results become apparent. We can expect
a burn’s spectral impact to be somewhere between a pure burn scenario and a vegetation
removal scenario; thus, the variability in detectability introduced by the ∆char parameter
indicates a possible range of results. Here, it is notable that a significant fraction of the
modeled pixels were undetectable. At the common dNBR threshold of 0.15, we find that
even in the best case scenario (a pure burn scenario: ∆char = 1), more than a quarter of
pixels were undetectable.
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Figure 6. Percentage of undetectable burned pixels as a function of dNBR threshold and ∆char
parameter settings, park-wide for Landsat 8. Mean values are shown in colored lines, with total
model result variation shown in gray.

However, as shown previously, pixels with smaller burnable areas (low starting
vegetation fractions) have lower detectability. The results for dNBR = 0.15 are shown in
Figure 7. It shows that nearly all pixels with a starting vegetation fraction smaller than
0.2 were undetectable. For the best-case (pure burn) scenario, even at starting vegetation
fractions of 0.4, 20% of burned pixels remained undetectable.

Figure 7. Percentage of undetectable pixels as a function of starting vegetation fraction and ∆char
parameter setting, park-wide for Landsat 8, dNBR threshold = 0.15. Mean values are shown in
colored lines, with total model result variation shown in gray.

Figure 8 shows the required vegetation cover area loss, before either detection or
otherwise complete burn of the vegetation. These were calculated by multiplying fraction
burned with the starting vegetation fractions, or alternatively by summing charcoal con-
tribution and increases in substrate contribution. The mean values show that even pixels
that started completely covered in vegetation ( fv,s = 1) required, on average, a vegetation
loss at around 20% of the area of the pixel before detectability was reached. Pixels with a
balanced starting contribution of vegetation ( fv,s ≈ 0.5) resulted in the highest vegetation
losses before detection, at 30 to 45% of the pixel’s area.
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Figure 8. Vegetation loss results depending on starting vegetation fraction and ∆char parameter
setting, park-wide for Landsat 8, dNBR threshold = 0.15. Mean values are shown in colored lines,
with total model result variation shown in gray.

4. Discussion

There are notable uncertainties in our analysis, as denoted by the large range of
possibilities in Figures 4–8. This range resulted from outliers within vegetation–geology
groupings. These outliers represent burned pixels in which specific vegetation and geology
spectral samples were combined. It is unlikely, yet not entirely impossible, that these
combinations are fully representative for real-world combinations. The mean spectral
responses of the vegetation–geology groupings showed much less variability, and those
likely more realistically represent the real-world variability.

Our results indicate that more than 15% of an average pixel needs to burn before
detection is reached, even in pixels with high vegetation covers. This is also illustrated by
Randerson et al. [45], who estimated increases in burned area with 25 to 54% when including
small fires that were not detected in the MODIS burned area product. The detection results
are irrespective of pixel sizes; the estimated fraction of the pixel required to burn does not
change with increasing resolution. However, its implication for burned area estimates is
dependent on spatial resolution. With smaller pixel sizes, the burned area omission errors
should decrease. Small burns cover larger fractions of smaller pixels, and, as such, have
increased detectability. This means that burned area detection will be easier when using
Landsat 8 and Sentinel-2 compared to using MODIS, which has much larger pixel sizes.
For example, Ramo et al. [14] and Glushkov et al. [46] found significant increases in burned
area estimates when reassessing MODIS burned area products with the higher-resolution
Sentinel-2 imagery. However, the results shown in this work indicate that some omission
errors are expected to persist, even for these smaller pixel sizes.

Our results shown in Figure 8 indicate that the highest omission errors are to be
expected in sparsely vegetated terrain, as such pixels require nearly complete vegetation
loss before detection. This effect may be further exacerbated, as sparsely vegetated areas
may be more conducive to smaller fires because of fuel limitations [47]. Additionally,
in regions that show high short-term spectral changes unrelated to fire, the small burned
areas may be more difficult to discern from non-fire-related spectral shifts. This includes
desert spring environments, where, as a result, small burned area detection from satellites
is especially limited [48].

As our analysis uses linear spectral mixture analysis, it assumes that the light reflected
by the surface interacts with only one component of the pixel and that there is no spectral
influence of potential neighboring pixels. While this is a common assumption in spectral
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mixture analysis, it is also a large simplification of reality, especially in vegetated areas
where multiple and nonlinear scattering are common [49].

There are other factors in burned areas that may further influence detectability but
were not considered in our analysis. The vegetation community spectral samples were
collected from AVIRIS and therefore represent the vegetation at a specific time of the year.
In this case, the measurements were taken on 6 August, near the peak of the growing
season [31]. The assumption made in this work is that the pre-fire and post-fire satellite
measurements occur on the anniversary date, and thus phenological shifts are minimal.
However, any changes in spectral reflectance due to phenological shifts, moisture content,
or shadows may alter the detectability of the burned areas [50].

We also did not explicitly account for different fire severity levels in our study, and this
can be a major influence on the detectability of burned areas [51,52]. In our spectral
modeling experiment, the fire effects were modeled by partly or fully replacing vegetation
cover by soil and charcoal cover. In low to moderate fire severity plots, vegetation is often
scorched. We have not accounted for the possibility of scorched vegetation; however, its
inclusion in burned pixels instead of vegetation replacement by charcoal would likely even
further decrease detectability.

One method for improving detectability of pixels with lower vegetation fractions
is proposed by Miller and Thode [50], in which they scale dNBR by the pre-fire NBR.
This results in the so-called Relative differenced Normalized Burn Ratio (RdNBR). This
method increases sensitivity of the dNBR when the pre-fire NBR is close to 0. This improves
detectability of burned areas in sparsely vegetated terrain. As our results indicate a high
dependence on the pre-fire NBR of the pixels on their detectability, the RdNBR metric may
yield significant detection improvements and should be further evaluated for burned area
mapping in heterogeneous and sparsely vegetated areas.

Burned areas that cover small fractions of a pixel are more likely to be found either
as a result of small, isolated fires or near the edges of larger fires. One way of limiting
commission errors in the latter is by using region-growing algorithms [53]. In this method,
pixels at the core of a burned region are first classified using a strict classification threshold.
Next, a more relaxed threshold is used in the vicinity of these core burned pixels. This
assumes that changes in NBR in vicinity to core burned pixels are likely resulting from the
same fire. It allows more leniency towards smaller burned areas near the fringe of a fire,
while changes in NBR unrelated to fire are not included. This technique may be used to
improve detectability of burn fringes, but is not suitable for detecting small isolated fires.

We used dNBR thresholds to delineate burned area. While the dNBR has often been
used as a burned area discriminator (e.g., [15,54]), we acknowledge that spectral reflectance
in individual bands and other spectral indices are also often used (e.g., [11,19]). While
small differences may exist depending on which spectral discriminator is used for burned
area, we think that there would be commonalities with some of the main findings of our
work with regards to, for example, the effect of pre-fire vegetation cover, burn fraction,
and threshold values on burned area detectability.

The results presented in this work are representative for Yellowstone National Park,
the region where the spectral endmembers were obtained from or selected for. While the
park contains varied types of vegetation and substrate, Table 5 shows that the dominant
lithologies in the park are various volcanic rocks, in total representing around 60% of
the surface cover. In addition, more than 80% of the park’s vegetation is represented
by coniferous forests. In other regions, especially those with very different landscape
characteristics, burned area detectability may yield different results.

5. Conclusions

We present a viable method for assessing satellite response to burned area. Using
spectral data of vegetation, substrates, and charcoal and combining them using linear
spectral mixture analysis, it was possible to model pre- and post-fire environments in
Yellowstone National Park.
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Differences between the spectral sensitivity of the Landsat 8, Sentinel-2, and MODIS
to burned area were small. The MODIS instrument is slightly more sensitive towards
burn spectral characteristics, while the Sentinel-2 satellites are relatively less sensitive.
The Landsat 8 sensor showed a balanced response to burned area. These small influences
may lead to slightly higher commission errors for MODIS and relatively higher omission
errors for Sentinel-2.

Our results indicated that significant fractions of a pixel’s vegetation need to burn
before detection is reached. In addition, a significant percentage of the modeled pixels
would remain undetectable. At the widely used dNBR threshold of 0.15, the average park-
wide results showed that around a quarter of the pixel needs to be burned before detection
becomes possible, and more than a quarter of the burned pixels remained undetectable.
These results show that detection of burned area using dNBR may be accompanied by
substantial omission errors.

Our spectral sensitivity analysis is independent of spatial scale, yet the implications
become larger for coarser resolution sensors such as MODIS. Our results thus further
support the continued investments in ongoing large-scale burned area mapping efforts at
resolutions around 20 to 30 m from Sentinel-2 and Landsat 8. Using instruments with higher
spatial resolutions directly lowers omission errors. Such efforts are especially important to
quantify burned area from small isolated fires that often burn small amounts of fuels.
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NIR Near-infrared
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USGS United States Geological Survey
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
NASA National Aeronautics and Space Administration
ECOSTRESS Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station
MODIS Moderate Resolution Imaging Spectroradiometer

Appendix A. Calculating Burned Fraction Directly

Given a target dNBR threshold, the endmember reflections, and cover contributions
before the fire, it is possible to directly calculate the burned fraction needed for detection.
This can be performed algebraically as the contribution fractions are all a linear function of
fb. The equations for fv (Equation (9)) and fc (Equation (10)) are already written as such,
and the equation for fg can be rewritten using those:

fg = 1 − ( fv,s · (1 − fb) + fb · fv,s · ∆c) (A1)

Leading to
fg = fb · fv,s(1 − ∆c)− fv,s + 1 (A2)

The term fv,s(1 − ∆c) is constant when calculating dNBR for a given pixel sample;
thus, let us compact the equation by

kg = fv,s(1 − ∆c) (A3)

Yielding
fg = fb · kg − fv,s + 1 (A4)

Subsequently, Equation (6) can be rewritten to calculate NIR and SWIR reflectances as
a function of fb:

ρp,NIR = ρv,NIR · fv + ρg,NIR · fg + ρc,NIR · fc

ρp,NIR = ρv,NIR · fv,s · (1 − fb)

+ ρg,NIR · ( fb · kg − fv,s + 1)

+ ρc,NIR · ( fb · fv,s · ∆c)

(A5)

ρp,SWIR = ρv,SWIR · fv + ρg,SWIR · fg + ρc,SWIR · fc

ρp,SWIR = ρv,SWIR · fv,s · (1 − fb)

+ ρg,SWIR · ( fb · kg − fv,s + 1)

+ ρc,SWIR · ( fb · fv,s · ∆c)

(A6)

The postfire, or target, NBR given a certain dNBR threshold and pre-fire NBR can be
calculated according to Equation (13), which gives the following inequality:

NBRp,s − NBRp ≥ dNBRthresh (A7)

NBRp,s − dNBRthresh ≥ NBRp (A8)

Inserting Equation (12) then yields

NBRp,s − dNBRthresh ≥
ρp,NIR − ρp,SWIR

ρp,NIR + ρp,SWIR
(A9)

which is the inequality to solve to obtain the range of burned fraction for which it is
detectable. NBRp,s can be calculated beforehand using Equation (8), and remains constant
during the burn. The dNBR threshold (dNBRthresh) is also constant. ρNIR,p and ρp,SWIR can
be written as a function of fb and some parameters, as shown in Equations (A5) and (A6).
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To solve the inequality, we first find the intercept between NBRp,s − dNBRthresh and
ρp,NIR−ρp,SWIR
ρp,NIR+ρp,SWIR

. As we want to isolate fb, it is useful to first multiply by the denominator:

(NBRp,s − dNBRthresh) · (ρp,NIR + ρp,SWIR) = ρp,NIR − ρp,SWIR (A10)

Inputting Equations (A5) and (A6):

ρp,NIR + ρp,SWIR = (ρv,NIR + ρv,SWIR) · fv,s · (1 − fb)

+ (ρg,NIR + ρg,SWIR) · ( fb · kg − fv,s + 1)

+ (ρc,NIR + ρc,SWIR) · fb · fv,s · ∆c

(A11)

ρp,NIR − ρp,SWIR = (ρv,NIR − ρv,SWIR) · fv,s · (1 − fb)

+ (ρg,NIR − ρg,SWIR) · ( fb · kg − fv,s + 1)

+ (ρc,NIR − ρc,SWIR) · fb · fv,s · ∆c

(A12)

For compactness sake, let us set the following shorthands for constants:

N = NBRp,s − dNBRthresh (A13)

Rx+ = ρx,NIR + ρx,SWIR (A14)

Rx− = ρx,NIR − ρx,SWIR (A15)

where x can be substituted to indicate the pixel (p) or any of the endmembers (v, g, c).
Yielding for Equations (A10)–(A12):

N · Rp+ = Rp− (A16)

Rp+ = Rv+ · fv,s · (1 − fb) + Rg+ · ( fb · kg − fv,s + 1) + Rc+ · fb · fv,s · ∆c (A17)

Rp− = Rv− · fv,s · (1 − fb) + Rg− · ( fb · kg − fv,s + 1) + Rc− · fb · fv,s · ∆c (A18)

We can isolate fb in these equations:

Rp+ = Rv+ · fv,s − fb · Rv+ · fv,s + fb · kg · Rg+ + Rg+ · (1 − fv,s) + fb · Rc+ · fv,s · ∆c (A19)

Rp− = Rv− · fv,s − fb · Rv− · fv,s + fb · kg · Rg− + Rg− · (1 − fv,s) + fb · Rc− · fv,s · ∆c (A20)

and inserting them into Equation (A16) yields

N·Rv+ · fv,s − fb · N · Rv+ · fv,s + fb · N · kg · Rg+ + N · Rg+ · (1 − fv,s) + fb · N · Rc+ · fv,s · ∆c

= Rv− · fv,s − fb · Rv− · fv,s + fb · kg · Rg− + Rg− · (1 − fv,s) + fb · Rc− · fv,s · ∆c
(A21)

Then, we can start solving for fb:

− fb · N · Rv+ · fv,s + fb · Rv− · fv,s + fb · N · kg · Rg+ − fb · kg · Rg−

+ fb · N · Rc+ · fv,s · ∆c − fb · Rc− · fv,s · ∆c

= Rv− · fv,s − N · Rv+ · fv,s + Rg− · (1 − fv,s)− N · Rg+ · (1 − fv,s)

(A22)

fb · ( fv,s · (Rv− − N · Rv+) + kg · (N · Rg+ − Rg−) + fv,s · ∆c · (N · Rc+ − Rc−))

= fv,s · (Rv− − N · Rv+) + (Rg− − N · Rg+) · (1 − fv,s)
(A23)

Yielding fburned at the intercept:

fb,intercept =
fv,s · (Rv− − N · Rv+) + (Rg− − N · Rg+) · (1 − fv,s)

fv,s · (Rv− − N · Rv+) + kg · (N · Rg+ − Rg−) + fv,s · ∆c · (N · Rc+ − Rc−)
(A24)



Remote Sens. 2022, 14, 2075 20 of 31

The detectability status of the burn changes at fb,intercept, with the burn being detectable
at fb values higher or lower than this intercept. However, it turns out that fb,intercept always
shows the lowest burned fraction at which the pixel becomes detectable. This is because
NBRp,s is always higher than the intercept (as the dNBR threshold is always positive) and
the asymptote cannot be between 0 ≤ fb ≤ 1. This is the case, because for the asymptote to
be in this domain, the denominator in Equation (A10) would need to be 0. This will never
happen for any combination of real endmember samples, as their reflectances would need
to be equal to 0. Given that these reflectances are averages over a wavelength band, this
does not occur. Thus, we can use Equation (A24) to directly calculate the burned fraction
required for detection.

To check whether the outputs of our calculation are correct, every 1000 sample com-
bination results were also calculated using a simple iteration method. The results for
the geological unit Precambrian Gneiss and Schist is shown in Figure A1. The line has
a stepped character due to the discretization used in the iterating method. This leads to
deviations from calculation = iteration of, at maximum, the used step-size of fb. None of the
tested samples show a higher deviation than this step-size, indicating that the calculation
is correct.

Figure A1. Model outputs tested with both iteration and direct calculation.

Appendix B. Results for Other Satellite Sensors

Here, the results for the Sentinel-2A, Sentinel-2B, and the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors are given.
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Appendix B.1. Results for Sentinel-2A

(a) (b)

(c)

Figure A2. Park-wide detectability results for a pure burn scenario (where loss of vegetation fraction
results in equal increase in charcoal fraction (∆char = 1), Sentinel-2A. The mean values are shown in
colored lines, with total model result variation shown in gray. To compare, the results for Landsat 8
are shown in black, with mean values shown by circles and total model result variation shown by
dashed lines. (a) Fraction of vegetation burned at detection. (b) Percentage of undetectable pixels.
(c) Charcoal contribution on detection.
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(a) (b)

(c)

Figure A3. Park-wide detectability results for a vegetation removal scenario without fire (∆char = 0),
Sentinel-2A. The mean values are shown in colored lines, with total model result variation shown in
gray. To compare, the results for Landsat 8 are shown in black, with mean values shown by circles
and total model result variation shown by dashed lines. (a) Fraction of vegetation burned at detection.
(b) Percentage of undetectable pixels. (c) Increase in substrate fraction on detection.
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Figure A4. Percentage of undetectable burned pixels as a function of dNBR threshold and ∆char
parameter settings, park-wide for Sentinel-2A. Mean values are shown in colored lines, with total
model result variation shown in gray. To compare, the results for Landsat 8 are shown in black, with
mean values shown by circles and total model result variation shown by dashed lines.

Figure A5. Percentage of undetectable pixels as a function of starting vegetation fraction and ∆char
parameter setting, park-wide for Sentinel-2A, dNBR threshold = 0.15. Mean values are shown in
colored lines, with total model result variation shown in gray. To compare, the results for Landsat 8
are shown in black, with mean values shown by circles and total model result variation shown by
dashed lines.
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Figure A6. Vegetation loss results depending on starting vegetation fraction and ∆char parameter
setting, park-wide for Sentinel-2A, dNBR threshold = 0.15. Mean values are shown in colored lines,
with total model result variation shown in gray. To compare, the results for Landsat 8 are shown in
black, with mean values shown by circles and total model result variation shown by dashed lines.

Appendix B.2. Results for Sentinel-2B

(a) (b)

(c)

Figure A7. Park-wide detectability results for a pure burn scenario (where loss of vegetation fraction
results in equal increase in charcoal fraction (∆char = 1), Sentinel-2B. The mean values are shown in
colored lines, with total model result variation shown in gray. To compare, the results for Landsat 8
are shown in black, with mean values shown by circles and total model result variation shown by
dashed lines. (a) Fraction of vegetation burned at detection. (b) Percentage of undetectable pixels.
(c) Charcoal contribution on detection.
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(a) (b)

(c)

Figure A8. Park-wide detectability results for a vegetation removal scenario without fire (∆char = 0),
Sentinel-2B. The mean values are shown in colored lines, with total model result variation shown in
gray. To compare, the results for Landsat 8 are shown in black, with mean values shown by circles
and total model result variation shown by dashed lines. (a) Fraction of vegetation burned at detection.
(b) Percentage of undetectable pixels. (c) Increase in substrate fraction on detection.
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Figure A9. Percentage of undetectable burned pixels as a function of dNBR threshold and ∆char
parameter settings, park-wide for Sentinel-2B. Mean values are shown in colored lines, with total
model result variation shown in gray. To compare, the results for Landsat 8 are shown in black: with
mean values shown by circles and total model result variation shown by dashed lines.

Figure A10. Percentage of undetectable pixels as a function of starting vegetation fraction and ∆char
parameter setting, park-wide for Sentinel-2B, dNBR threshold = 0.15. Mean values are shown in
colored lines, with total model result variation shown in gray. To compare, the results for Landsat 8
are shown in black, with mean values shown by circles and total model result variation shown by
dashed lines.
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Figure A11. Vegetation loss results depending on starting vegetation fraction and ∆char parameter
setting, park-wide for Sentinel-2B, dNBR threshold = 0.15. Mean values are shown in colored lines,
with total model result variation shown in gray. To compare, the results for Landsat 8 are shown in
black, with mean values shown by circles and total model result variation shown by dashed lines.

Appendix B.3. Results for MODIS

(a) (b)

(c)

Figure A12. Park-wide detectability results for a pure burn scenario (where loss of vegetation fraction
results in equal increase in charcoal fraction (∆char = 1), for the Moderate Resolution Imaging
Spectroradiometer (MODIS). The mean values are shown in colored lines, with total model result
variation shown in gray. To compare, the results for Landsat 8 are shown in black, with mean values
shown by circles and total model result variation shown by dashed lines. (a) Fraction of vegetation
burned at detection. (b) Percentage of undetectable pixels. (c) Charcoal contribution on detection.
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(a) (b)

(c)

Figure A13. Park-wide detectability results for a vegetation removal scenario without fire (∆char = 0),
for the Moderate Resolution Imaging Spectroradiometer (MODIS). The mean values are shown in
colored lines, with total model result variation shown in gray. To compare, the results for Landsat 8
are shown in black, with mean values shown by circles and total model result variation shown by
dashed lines. (a) Fraction of vegetation burned at detection. (b) Percentage of undetectable pixels.
(c) Increase in substrate fraction on detection.

Figure A14. Percentage of undetectable burned pixels as a function of dNBR threshold and ∆char
parameter settings, park-wide for the Moderate Resolution Imaging Spectroradiometer (MODIS).
Mean values are shown in colored lines, with total model result variation shown in gray. To compare,
the results for Landsat 8 are shown in black, with mean values shown by circles and total model
result variation shown by dashed lines.
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Figure A15. Percentage of undetectable pixels as a function of starting vegetation fraction and ∆char
parameter setting, park-wide for the Moderate Resolution Imaging Spectroradiometer (MODIS),
dNBR threshold = 0.15. Mean values are shown in colored lines, with total model result variation
shown in gray. To compare, the results for Landsat 8 are shown in black, with mean values shown by
circles and total model result variation shown by dashed lines.

Figure A16. Vegetation loss results depending on starting vegetation fraction and ∆char param-
eter setting, park-wide for the Moderate Resolution Imaging Spectroradiometer (MODIS), dNBR
threshold = 0.15. Mean values are shown in colored lines, with total model result variation shown in
gray. To compare, the results for Landsat 8 are shown in black, with mean values shown by circles
and total model result variation shown by dashed lines.
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