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Abstract: Digital elevation models (DEMs) are highly relevant geospatial products, and their posi-
tional accuracy has demonstrated influence on elevation derivatives (e.g., slope, aspect, curvature,
etc.) and GIS results (e.g., drainage network and watershed delineation, etc.). The accuracy assess-
ment of the DEMs is usually based on analyzing the altimetric component by means of positional
accuracy assessment methods that are based on the use of a normal distribution for error modeling
but, unfortunately, the observed distribution of the altimetric errors is not always normal. This paper
proposes the application of a finite mixture model (FMM) to model altimetric errors. The way to
adjust the FMM is provided. Moreover, the behavior under sampling is analyzed when applying dif-
ferent positional accuracy assessment standards such as National Map Accuracy Standards (NMAS),
Engineering Map Accuracy Standard (EMAS) and National Standard for Spatial Data Accuracy
(NSSDA) under the consideration of the FMM and the traditional approach-based one-single normal
distribution model (1NDM). For the NMAS, the FMM performs statistically much better than the
1NDM when considering all the tolerance values and sample sizes. For the EMAS, the type I error
level is around 3.5 times higher in the case of the 1NDM than in the case of the FMM. In the case
of the NSSDA, as it has been applied in this research (simple comparison of values, not hypothesis
testing), there is no great difference in behavior. The conclusions are clear; the FMM offers results
that are always more consistent with the real distribution of errors, and with the supposed statistical
behavior of the positional accuracy assessment standard when based on hypothesis testing.

Keywords: DEM; normal distribution; parametric error models; Gaussian finite mixture models

1. Introduction

Positional accuracy has always been considered a defining and essential element of the
quality of any geospatial data [1], as it affects factors such as geometry, topology, and the-
matic quality; it is directly related to the interoperability of spatial data [2]. Considering the
widespread use of geospatial information and the interoperability requirements of different
geomatics applications and spatial data infrastructures (SDIs), it is crucial to ensure infor-
mation quality, as this is the only means of guaranteeing reliable solutions when making
decisions [3]. A particular case of geospatial data is that of digital elevation models (DEMs).
Currently, there are numerous technologies (GNSS, LiDAR, InSAR, etc.) [3,4], which allow
the generation of DEM data products with very diverse characteristics (numerical precision,
spacing, grid storage, etc.) [3,5]. DEMs are a key data type for many applications domains
because they provide the height component in GIS analysis, the geomorphological descrip-
tion of the land [6], which is a reference surface for all hydrological applications (water
cycle, erosion, floods, etc). In [7], the basis for the development of forestry models [8] and
the base for agricultural parcel rating [9] is useful in every analysis task related to civil
engineering [10]. DEMs are part of the information infrastructure to achieve the Sustainable
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Development Goals and are considered as Global Fundamental Geospatial Themes by the
United Nations [11]; they are also included in the list of geospatial themes of the European
Spatial Infrastructure [12]. The data model most used in the case of DEMs is the grid [13,14].
Usually, in the case of gridded DEMs, the evaluation of positional accuracy is limited to the
errors in the altimetric component (elevation/height) (Case 1D). This 1D perspective is of
interest in this document, since, without loss of generality, it allows a simpler approach to
the proposed method. The positional accuracy in DEMs has a direct influence on elevation
derivatives such as slope, aspect and curvature, and generates erroneous drainage network
or watershed delineation [15,16]. Vertical positional accuracy requirements depend on the
scale and specific use case; in this line, [15,17] present indicative accuracy values for some
usual DEM applications.

Positional accuracy assessment methods (PAAMs) are standardized processes to either
estimate or control the positional quality [18] of geospatial data. The PAAMs understand
the quality of the data product as the presence of errors with a limited size (e.g., lesser
than a tolerance value for the bias or for the dispersion). The accuracy estimation con-
sists of determining a reliable value of the property of interest (e.g., mean bias, standard
deviation, proportion, etc.), in the data product. These methods provide a value and its
corresponding confidence interval as a result (e.g., a mean value and its deviation such as
5.27 m ± 0.15 m). On the other hand, quality control involves deciding whether or not the
property of interest in that data product reaches a certain quality level. These are intended
to provide a statistical basis for making an acceptance/rejection decision as a consequence
of compliance/noncompliance with a specification (e.g., given the specification that no
more than 5% of the elements present 1D-positional errors greater than 1 m, a decision is
made to accept/reject according to the evidence found in the sample). In this sense, specific
recommendations for the positional assessment of DEM can be observed in [18].

Acquisition technologies used in the positional accuracy assessment, such as Global
Navigation Satellite Systems (GNSS) and LiDAR systems, enable the collection of coor-
dinates in the field with high accuracy, which increases the possibility of more accurate
positional accuracy assessments. Moreover, PAAMs have evolved over time, from the
National Map Accuracy Standard (NMAS) [19] to the more recent by the American Society
for Photogrammetry and Remote Sensing, called the Positional Accuracy Standards for
Digital Geospatial Data [20], in which the statistics are based on the National Standard
for Spatial Accuracy (NSSDA) [21]. It should be noted that these PAAMs apply to both
planimetric control (2D-error data) and altimetric control (1D-error data). It is interesting
to analyze these three PAAMs, as they present different and complementary perspectives.
The NMAS can be considered a method with capabilities to work with free-distributed
data [21]. This standard sets out a method of positional accuracy control that establishes an
acceptance/rejection rule in a very simple manner, and is based on the binomial distribu-
tion applied to error counts. This standard is outdated, however, as it refers to tolerances
defined on paper, that is, to the representation scale, but its conceptual basis can be applied
to any tolerance value. The Engineering Map Accuracy Standards [22] assumes that posi-
tional errors are normally distributed and proposes a set of statistical hypothesis tests that
must be overcome for the product to be accepted. Specifically, it establishes two statistical
tests per component, one focused on the detection of biases (Student’s t-test) and the other
on the behavior of dispersion (Chi square test). Finally, the NSSDA assumes the normality
of the error data and is not a positional accuracy control method, as it does not establish
acceptance or rejection; the result is a value and, therefore, is an estimation method.

The normal distribution function remains the theoretical base model for some widely
used PAAMs (e.g., for the EMAS and the NSSDA) because it is a suitable distribution
for representing real-valued random variables generated purely at random. In fact, what
is desirable when working with measurement errors is their normal distribution, as this
implies that there are no other unknown causes—which are therefore uncontrollable—that
affect the measurement result. But, in practice, it is hard to find error data sets that, strictly,
could be adequately modeled with one normal distribution. This circumstance has been
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highlighted specially for the case of DEM [23,24]. This can be due to various causes that
can appear alone or together (e.g., many extreme values, overlap of several processes,
elimination of data, distribution of values closes to zero or the natural limit, and so on).
For these reasons, alternatives based on robust statistics [25]), nonparametric models such
as the observed distribution [26], on error counting [27] or percentiles [28], among others,
have been proposed. Therefore, we have chosen the case applied to DEMs because it offers
a situation where the non-normality of the errors has already been indicated in previous
studies and because dealing with 1D errors is a simpler situation than the case of 2D errors,
which makes it easy to explain.

In this paper, we explore the case when, even assuming underlying normality, errors
come from different normal distributions, that is to say, normal distributions with different
parameters. In this case, an approach based on the use of Gaussian finite mixture models
(FMM) is adequate for obtaining a whole parametric model that reproduces the empirical
distribution of observed data [29–32]. This approach to the problem is chosen because the
FMMs are nothing more than the extension of the traditional model based on a one-single
normal distribution. This offers the user a familiar framework with the advantages of
a parametric model for statistical inference questions. In addition, FMMs offer enough
robustness and adaptability to particular distributions that can demonstrate the very varied
possible use cases.

In this work, a double objective is pursued. Firstly, to study the distribution of the
estimators in the sampling under the FMM, which allows proposing specific hypothesis
tests for the fitted model, and secondly, to apply this study to various positional accuracy
standards (specifically NMAS, EMAS and NSSDA) , for which the theoretical framework
is defined, the procedure is developed and it is verified how its use improves the results
obtained under the assumption of a single normal distribution. Therefore, our ultimate
goal is just to propose a parametric model that can replace the normal univariate statistical
model (widely accepted and applied) and that can be used in all cases that are required, but
not to develop a new model (theoretical or empirical) for the uncertainty or new specific
indices for the evaluation of positional accuracy.

After this section, the conceptual bases of the finite mixture model are presented.
In Section 3, an overview of the methods is presented, which includes the adjustment
process of the FMM and the simulation process to analyse the behavior when applied to
the selected PAAMs. Section 4 presents the data; these are altimetric discrepancies from
two digital terrain models. Section 5 shows the results obtained and the application to the
different standards.It is long because it presents the results of the FMM adjustment process
and also of the simulation process for the three PAAMs under analysis. The Sections 6 and 7
are devoted to presenting the discussions and conclusions.

2. Finite Mixture Models

This article proposes the application of the finite Gaussian mixture model methodology
to fit a set of measurement errors. A detailed analysis can be observed in [29–32] and may
be summarized as follows:

• Let the vector of observed errors X = (X1, . . . , Xn), a random sample that comes from
a mixture of g > 1 distributions Φi = N (µi, σi), i = 1, . . . , g, in the way that each of
which appears with a proportion πi in the mixture, π1 + · · ·+ πg = 1. Then, the value
of the density function of each Xi is given by:

fθ(xi) =
g

∑
j=1

πjφj(xi); xi ∈ R (1)

• Which implies estimating the vector of parameters

Θ =
(
(π1, µ1, σ1), . . . , (πg, µg, σg)

)
(2)
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of dimension 3g.
• The estimation of Θ (2) is made with the EM algorithm [30,33–35], which is obtained

iteratively through the operator

Q
(

θ|θ(t)
)
= E

[
log hθ(C)|x, θ(t)

]
(3)

where θ ∈ Θ, θ(t) is the value of the iteration t and the expectation refers to the
distribution of kθ(c|x) of c given x for the value θ(t) of the parameter.

• In this way, g groups are calculated. The posterior probability of pertaining to the
group i, i = 1, . . . , g is given by

π̂ij =
π̂i fi

(
xj|(µ̂i, σ̂i)

)
∑

g
k=1 π̂k fk(xk|(µ̂k, σ̂k))

; xj ∈ R, i = 1, . . . , g; j = 1, . . . , n (4)

and each sample point xj is assigned to the group where π̂ij is maximum.
• The final density function is:

f (xj) =
g

∑
i=1

π̂ij (5)

where π̂ij are obtained in (4).

In order to determine the best value of g (the final number of mixing distributions),
the use of some information criteria to choose the best fitted model is proposed. In this
case, they are the Akaike Information Criteria, AIC and the Bayesian Information Criteria,
BIC (see for instance [36,37]):

AICg = −2L} + 2p (6)

BICg = −2L} + p ln(n) (7)

where L} is the log-likelihood value in the estimation with g groups and p = 3g is the
number of estimated parameters (2). In both cases, the best value of g corresponds to
the one in which the value obtained by AIC or BIC is the minimum. The difference
between both measures is the presence in the BIC of the sampling size n in order to correct
the criterion value. This criterion penalizes models with a greater number of estimated
parameters by replacing the term “2p” by “p ln(n)”, thus obtaining models of lower order
than those obtained by the AIC, which allows for correcting the tendency to overestimate.
To implement the calculations, the package mixtools of R [38,39] has been employed.

Once selected, the theoretical model provides a whole description about the population
where data come from, and all population probabilities and parameters can be calculated.
In this case:

• Mean:

µ̂ =
g

∑
i=1

π̂iµ̂i (8)

• Variance:

σ̂2 =
g

∑
i=1

π̂iσ̂
2
i +

g

∑
i=1

(µ̂i − µ̂)2 (9)

and, in consequence, σ =
√

σ2

3. Methods

Two well-differentiated parts can be considered:
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1. Estimating of a model based on mixtures (Section 3.1). This step will offer the pa-
rameters of the mixing distribution functions (proportions, means and deviations).
In this way, a parametric model based on the mixture of normal distributions will
be available.

2. Simulation of the behavior of PAAMs in sampling processes (Section 3.2). By means
of the simulation of samples it will be known how the estimates of the variables used
by PAAMS (e.g., mean and standard deviation) behave when a parametric model
based on a finite mixture of normal distributions is applied in comparison with the
traditional approach based on one normal distribution model.

The next two subsections describe these two parts in more detail and set out the
proposed methodology for their use.

3.1. Estimating the Finite Mixture Model

The steps for obtaining this model are:

• To take a sufficiently representative sample.
• To adjust several mixing models with different finite numbers of mixed normal distri-

butions (e.g., 2, 3, 4 and so on).
• To determine the “best fitted” mixing model.

In relation to the first step, the utility of the resulting mixing model is depending on
the representativeness of the sample used for its adjustment. This work uses the whole
error model (discrepancies) of Section 4 dedicated to describing the data. In this way, the
representativeness of the results is assured for this area.

The second step consists on selecting g, which is the number of normal mixing dis-
tributions that provides the best fit according to AIC or BIC values. Once selected, the
third step consist on studying the model density function (5) with the selected value of
parameters (2), and to compare it with the observed data.

3.2. Simulation of the Behavior of PAAMs in Sampling Processes

PAAMs (e.g., NMAS, EMAS, NSSDA, etc.) applied to geospatial data products are
based on samples from which one or several parameters (e.g., a proportion, the mean, the
standard deviation) are derived. Some of these parameters are used for defining a classical
one-single normal distribution model approach (e.g., N (µ, σ)), which is used by several
PAASMs (e.g., EMAS, NSSDA). Therefore, it is interesting to know the distribution in the
sampling of these parameters, and compare their behavior under two approaches: (i) the
model based on a one-single normal distribution (1NDM), and (ii) the Finite Mixture Model
(FMM), fixed following the process indicated in Section 3.1.

Once the parameters of the FMM have been obtained, we are interested in determining
its behavior in sampling processes. In this sense, a Montecarlo simulation will be carried
out. The process consists of generating random samples of different sizes and determining
their quantiles for each one of them under the two approaches. The considered sample sizes
are n ∈ [20, 30, 40, 50, 80, 100, 200, 500], and 5000 iterations are performed in the simulation.
For each simulation, and for each sample size, the sample mean and variance are calculated,
resulting in a vector of 5000 means and standard deviations, which may be considered
as a sample of the sampling distribution of the estimators of the model. Through these
simulations, the distribution of the estimators is estimated and the quantiles to be used are
determined (for example, 5% or 1%). These quantiles will be later used to obtain critical
values for tests. Figure 1 shows a general view of this simulation process.
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Figure 1. The simulation process for the comparison of the analyzed positional accuracy assess-
ment approaches.

4. Discrepancy Data for the Application Case

In order to simplify the example case, 1D-positional-error data are used. In any
case, the process shown here is valid for all PAAMs that consider the components of the
horizontal positional error (ex and ey) as one-dimensional normal variables. In this study
case, the errors are vertical and the 1NDM and FMD models will be applied to discrepancy
data (errors) obtained in a study area around Allo (Navarra, Spain). It is a mid-mountain
area of 504 km2, where the elevation varies between 316 and 1046 m; the average elevation
is 468 m and the standard deviation of elevations is 92.8 m. A map of the studied area
appears on Figure 2.

Figure 2. Map of the zone of Allo in Navarra (Spain).

Discrepancy is derived as the difference between two DEMs:

di = hDEM,i − hREF,i (10)
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where

• hDEM,i: elevation in position i of a DEM product;
• hREF,i: elevation in position i of a reference;
• di: discrepancy in elevation in position i.

In this study, the DEM data sets are:

• REF (Reference): DEM02. In this case, it is a gridded DEM (2 × 2 m resolution).
Its primary data source is an aerial LiDAR survey obtained in 2017 (second coverage
of the PNOA-LiDAR project https://pnoa.ign.es/estado-del-proyecto-lidar/segunda-
cobertura, accessed on 28 March 2022). The informed positional accuracies for the
DEM are RMSEXY ≤ 50 cm and RMSEZ02 ≤ 25 cm.

• DEM (Product): DEM05 is a gridded DEM (5× 5 m resolution) that comes from an aerial
LiDAR survey obtained in 2012 (first coverage of the PNOA-LiDAR project https://
pnoa.ign.es/estado-del-proyecto-lidar/primera-cobertura, accessed on 28 March 2022).
The informed positional accuracies for the DEM are RMSEXY ≤ 50 cm and
RMSEZ05 ≤ 50 cm.

Both data sets can be considered independent in their generation. However, the one
used as a reference (DEM02) does not meet the criteria of being a true reference because its
accuracy is not at least three times better than that of the product to be evaluated (DEM05).
However, this circumstance does not invalidate the proposed procedure and the results
obtained from its application.

Both DEM data sets are freely available on the webpage, http://www.ign.es, (accessed
on 30 March 2022) of the National Geographic Institute of Spain (IGN), and have the same
spatial reference system ETRS89 UTM Zone 30N.

To ensure the overlap of the two grids, and not degrade the quality of the reference
(DEM02), the DEM05 data set was interpolated with a 2 × 2 mesh step by means of a
bilinear interpolation. Following the variance prediction model for the case of bilinear
interpolation developed by [4], considering the equality of all the variances of the four
positions that intervene in the bilinear interpolation, and the case of a high altimetric
correlation; the average variance of the predictor of an altimetric value over any position
is equivalent to the variance of the positions involved in the interpolation. In our case,
according to the information provided by the metadata, it can be considered to be of the
order of 50 cm.

The points analyzed have been obtained through a systematic sampling, for which
a grid of 578 rows and 853 columns was generated, which provides a sample size of
n = 493,034. The discrepancies are in the interval (−54.88, 77.42) m; the mean value of the
discrepancies is 0.00062 m and the standard deviation 0.41835 m. A general spatial vision
of discrepancies appears in Figure 3. Usually, the values assumed for the discrepancies
between a product and a reference must be close to zero, but in this case, the above-
mentioned observed interval means the presence of extreme values (outliers). Therefore,
these data present some extreme points, both on the left and the right. Moreover, the Fisher
asymmetry coefficient is −11.46521 and the Fisher coefficient of kurtosis is 1009.753; both
of them are very high in respect to the normal distribution.

Figure 4 shows the data histogram of the complete data set. Due to the presence
of a relatively small number of extreme values, and the histogram showing the distribu-
tion concentrated around 0, and due to the effect of the scale of the x axis, the values
farthest from 0 are not visible. In order to see the shape of the histogram in more detail,
Figure 5 shows the histogram constrained to the interval (−1, 1), which contains 97.69% of
observed discrepancies.

Finally, the overall non-normality of discrepancy data may be also observed in Figure 6,
where the QQ-plot is shown together with the expected normal line. These graphics
suggest a great deviation of expected normality. This situation opens the possibility that the
underlying discrepancy data model comes from a finite mixture of normal distributions.

https://pnoa.ign.es/estado-del-proyecto-lidar/segunda-cobertura
https://pnoa.ign.es/estado-del-proyecto-lidar/segunda-cobertura
https://pnoa.ign.es/estado-del-proyecto-lidar/primera-cobertura
https://pnoa.ign.es/estado-del-proyecto-lidar/primera-cobertura
http://www.ign.es
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Figure 3. Discrepancies model (error model) of the Allo zone (DEM05-DEM02).

Figure 4. Histogram of the discrepancies model (error model) of the Allo zone (DEM05-DEM02).

Figure 5. Trimmed histogram of the discrepancies model (error model) of the Allo zone (DEM05-DEM02).
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Figure 6. Normal QQ-plot of the discrepancies model (error model) of the Allo zone (DEM05-DEM02).

5. Results
5.1. The Finite Mixture Model

As indicated in Section 3, the decision of the proposed FMM is based on the obtained
values for AIC and BIC criteria. Table 1 shows values for both criteria when the number
of mixtures, g, goes from 2 to 10. Because the estimation procedure is iterative, to show
the complexity of the process, the last column includes the number of iterations needed to
achieve convergence.

Table 1. Values of AIC and BIC for g from 2 to 10 for the estimation of the finite mixture model.

g AIC BIC Iterations

2 125,846.6 125,913.2 48
3 81,894.5 81,994.5 168
4 77,244.1 77,377.4 1059
5 74,966.8 75,133.5 1923
6 74,290.3 74,490.2 4757
7 74,173.8 74,407.1 13,332
8 74,179.8 74,446.4 115,186
9 74,166.2 74,466.2 461,837

10 74,167.9 74,501.2 400,682

In this case, and due to the sampling size being very large, the BIC criterion is
adopted [37]. According to Table 1, a mixture of seven normal distributions is proposed.
Table 2 shows the vector of estimated parameters, Θ̂, obtained, where (µ̂i, σ̂i) are the param-
eters of the i-th normal distribution component and π̂i the probability of this component in
the mixture.

Table 2. Estimated parameters for each component of the finite mixture model based on 7
normal distributions.

Component µ̂i σ̂i π̂i

1 −7.78135 10.22195 0.00025
2 −0.01837 0.26977 0.18361
3 −0.08378 0.05688 0.08837
4 0.06209 0.51793 0.16441
5 −0.02414 0.13835 0.52425
6 0.32596 0.94185 0.03558
7 1.19120 2.59239 0.00353
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It can be observed that the first component includes all extreme values on the left, and
that the seventh component covers the extreme values on the right. Both cases account for
a very low probability. The most important is component five (a half of the population,
see π̂5).

The estimated population density can be calculated according to (4) and compared
with the empirical distribution of the observed data (EDOD) (see Figure 3). A graphical
comparison appears in Figure 7, where the EDOD histogram is represented together with
the estimated density (the FMM)—the curve in orange. For visibility, the range is trimmed
in the interval [−1, 1]. The maximum distance detected between both curves is 0.00041,
which is a really small value and has a p-value greater than 0.1 in the Kolmogorov-Smirnov
goodness-of-fit test (the critical value in this case is 1.228/

√
493,034 = 0.00175).

Figure 7. Observed histogram (EDOD) and density function derived from the finite mixture model
(FMM) for the discrepancies (colored curve).

The FMM provides a whole description about the population of discrepancies and
allows the calculation of all population parameters and probabilities using Equations (8)
and (9). In this case, µFMM = 0.00062 m, variance σ2

FMM = 0.17502 m2, and standard
deviation σFMM = 0.41835 m. Comparing these values derived from the FMM model with
those corresponding to the EDOD (see Section 4), it can be observed that they are the same.

5.2. Comparison of Approaches

Because most PAAMs assume a model based on an only one normal distribution
component (a 1NDM), it is of worth to compare results derived from the proposed FMM
with the 1NDM and the EDOD. Results for these models are demonstrated in Table 3,
where the similitude can be observed between results provided by the FMM model with
those of the EDOD model, and that the 1NDM is very far from them.

With the same idea, and only as an example, Table 4 shows the calculated of probabili-
ties for intervals defined by several values, and compares results obtained using the three
models. As occurs on Table 3, it is observed that the 1NDM has a bad behavior, whereas
the estimated FMM fits adequately. In particular, the FMM adequately captures both the
high concentration of values around the mean, and the tails of the observed data.
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Table 3. Comparison of quantiles for the Finite Mixture Model (FMM), the One Normal Distribution
Model (1NDM) and the empirical distribution of observed data (EDOD).

Quantile
Value

EDOD FMM 1NDM

2.5% −0.61349 −0.61378 −0.82057
5% −0.42628 −0.42648 −0.68751
10% −0.27963 −0.27943 −0.53553
25% −0.13934 −0.13953 −0.28157
50% −0.02975 −0.02980 0.00062
75% 0.10638 0.10620 0.28279
90% 0.30169 0.30120 0.53676
95% 0.53619 0.53678 0.68875

97.5% 0.81286 0.81407 0.82057

Table 4. Example of probabilities for several discrepancy intervals using de Finite Mixture Model
(FMM), the One Normal Distribution Model (1NDM) and the empirical distribution of observed
data (EDOD).

Interval (m)
Value

EDOD FMM 1NDM

X < −0.5 0.03778 0.03767 0.11572
X < −1 0.00705 0.00706 0.00838

0.5 < X < 0.8 0.02919 0.02927 0.00883
X > 0.5 0.05502 0.05513 0.11623

X > 0.41835 0.06890 0.06908 0.15901
|X| > 0.01 0.95807 0.95781 0.98093
|X| > 0.05 0.78908 0.78964 0.90487
|X| > 0.10 0.40906 0.40939 0.18892
|X| > 0.20 0.31594 0.31600 0.63260
|X| > 0.50 0.09280 0.09280 0.23202
|X| > 1 0.02305 0.02319 0.01683

5.3. Analyzing the Sampling Distributions

The advantage of an FMM is that it allows working with a parametric model that describes
the entire discrepancies’ population. In order to utilize the model for building a hypothesis test,
and in order to accept or reject some assumptions related to the population, it is necessary to
know the sampling behavior of the estimators in a sample of size n, which is a collection of
n independent random variables, all of them distributed according to the distribution of the
discrepancy’s population. If a 1NDM is assumed, the distribution of the mean and variance
of the sample are well known. But in this case, we need to know the sampling distribution
under the FMM obtained. To know this sampling distribution, a simulation procedure was
carried out, where 5000 samples for different sampling sizes were obtained. Table 5 shows
the values for the mean and standard deviation of each set of 5000 samples. It can be noted
that the sampling mean is always a random variable with an expected value that equals to
µ and standard deviation equals to σ/

√
n. The third column of Table 5 shows the values of

σ̂ = sn
√

n, which is very close to the standard deviation of the theoretical model. Additionally,
this table shows that the square root of the mean of variances is still a more unbiased estimator
for the population standard deviation that the mean of the standard deviation.
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Table 5. Mean, standard error of the mean, estimated standard deviation of the population, mean of
variances, mean of standard deviations and square root of the mean of variances for each simulated
sample size n (based on 5000 iterations).

n
FMM

Mean sd σ̂ s̄2
n s̄n

√
s̄2

n

20 0.00186 0.09867 0.44126 0.2020 0.3431 0.4494
30 0.00236 0.07750 0.42446 0.1796 0.3497 0.4238
40 0.00654 0.06791 0.42952 0.1797 0.3559 0.4240
50 0.00518 0.05921 0.41868 0.1734 0.3593 0.4164
80 0.00558 0.04772 0.42678 0.1727 0.3675 0.4156
100 0.00626 0.04149 0.41488 0.1725 0.3700 0.4154
200 0.00586 0.02899 0.40995 0.1742 0.3825 0.4173
500 0.00555 0.01853 0.41428 0.1715 0.3912 0.4141

In a statistical hypothesis test, the test statistic is compared with the corresponding
quantile of its own sampling distribution under the null hypothesis at the desired confi-
dence level (e.g., α = 0.05). For instance, in the normal case when the standard deviation
is unknown (as occurs in the EMAS test), the sampling distribution of the test statistic
T =

√
n(x̄ − µ0)/sn−1 is a t-Student distribution with n− 1 degrees of freedom, which

is easily obtained. Something similar occurs in the case of the variance test, where the
sampling distribution is a χ2

n−1. Nevertheless, in the case of the application of a FMM,
these quantiles are not known in advance, but they can be obtained through a simulation
process. In our case, by means of the above-mentioned simulation process, we were able
to determine the quantiles through the 5000 samples generated to derive Table 5. These
quantiles appear in Table 6 for the mean, and in Table 7 for the variance. These tables may
be used for finding the critical values in the case of the statistical hypothesis test for the
mean and the variance.

Table 6. Empirical quantiles in the Finite Mixture Model distribution of means for each sample size
(n) (based on 5000 simulations).

n
Quantiles

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

20 −0.2085 −0.1410 −0.1170 −0.0885 0.1040 0.1410 0.1780 0.2240
30 −0.1673 −0.1280 −0.1017 −0.0763 0.0870 0.1170 0.1464 0.1950
40 −0.1445 −0.1035 −0.0832 −0.0650 0.0838 0.1095 0.1370 0.1760
50 −0.1348 −0.0946 −0.0752 −0.0570 0.0724 0.0962 0.1192 0.1510
80 −0.1068 −0.0789 −0.0630 −0.0450 0.0609 0.0814 0.0980 0.1174

100 −0.0988 −0.0672 −0.0521 −0.0400 0.0554 0.0692 0.0839 0.1033
200 −0.0764 −0.0501 −0.0393 −0.0279 0.0403 0.0500 0.0596 0.0729
500 −0.0449 −0.0326 −0.0249 −0.0172 0.0282 0.0348 0.0416 0.0477

5.4. Application to Postional Accuracy Assessment Methods

The analyzed PAAMs in this paper are based on the statistical hypothesis test on
proportions (NMAS), the mean and deviation (EMAS), but also on the result of estimation
processes (NSSDA). These situations are very different, but the FMM can be applied to
all of them and it is valuable to compare the result of this application with the results of
applying the 1NDM, which represents the traditional approach. In this subsection, the
philosophy of each of these three standards is applied using the FMM, and the results are
compared with those obtained, assuming the 1NDM approach.
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Table 7. Empirical quantiles in the Finite Mixture Model distribution of variances for each sample
size (n) (based on 5000 simulations).

n
Quantiles

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99

20 0.0183 0.0226 0.0274 0.0341 0.2490 0.3553 0.5785 1.2729
30 0.0234 0.0288 0.0344 0.0430 0.2424 0.3450 0.6015 1.2833
40 0.0271 0.0332 0.0393 0.0483 0.2373 0.3796 0.6489 1.2209
50 0.0332 0.0393 0.0438 0.0527 0.2351 0.3466 0.5653 1.2717
80 0.0430 0.0488 0.0558 0.0639 0.2354 0.3555 0.5391 0.9611

100 0.0470 0.0532 0.0593 0.0671 0.2302 0.3282 0.5038 1.2471
200 0.0624 0.0678 0.0736 0.0811 0.2371 0.3358 0.5814 1.5181
500 0.0783 0.0829 0.0879 0.0940 0.2250 0.3483 0.6613 1.1634

5.4.1. National Map Accuracy Standard

There are several PAAMs based on the proportion test; one of the most popular meth-
ods is NMAS (Appendix A), but others exist (e.g., [18,40]). Basically, these methods work
by setting a metric tolerance and a maximum case ratio value that cannot exceed the propor-
tion. The control sampling is carried out, the number of observations (discrepancies) that
exceed that tolerance is counted, and it is verified that the proportion of cases that exceed
the metric tolerance is less than the established proportion. If the observed proportion is
greater than the tolerance the product is rejected. The application in this case is immediate.
Let xH be the desired metric tolerance value, and πH = P[|X| > xH ] be calculated in the
FMM model using Equation (5). Several examples were presented in Table 4, and these
probabilities have been used here. The null hypothesis is

H0 : p ≤ πH

and the alternative hypothesis:
H1 : p > πH

where p is the proportion of sampling discrepancies values that are greater than xH in a
sample of size n. Table 8 shows the proportion of times the null hypothesis is rejected (for
α = 0.05) when M = 5000 samples are taken, and for several metric tolerances (0.01, 0.05,
0.10, 0.15, 0.20 and 0.5) [m] when using the discrepancies between the DEM05 and DEM02.
We observe that, in all cases, the test based on the FMM performs better than the test based
on the 1NDM. This means that, for the FMM, the rejection value when H0 is true (type I
error) is closer to the desired value (0.05). This does not occur for the lowest tolerance of
those considered and when the sample size is small, but it does for the rest of the cases. In
the case of the 1NDM, the values are usually less than 5%, which indicates that its statistical
behavior is not as expected. This generates uncertainty in its applicability, as it does not
generate the level of rejection consigned. It behaves more laxly than expected.

The results in Table 8 clearly indicate that the FMM performs statistically much
better than the 1NDM. Extreme cases are relevant. For very small discrepancy tolerances
(0.01 m), and small sample sizes, we observe that the two approaches (FMM and 1NDM)
offer high rejection levels for sample sizes usually recommended in PAAMs (size in the
order of 20 elements). However, when the sample size is large (200 or 500), the FMM
offers rejection values close to the established level of significance. For the tolerances of
very large discrepancies (1 m) it happens that the 1NDM presents a very high level of
rejection. In the cases of intermediate tolerance values, the FMM adjusts its rejection level
to the value established for significance (0.05), while the 1NDM generates practically no
rejections. Altogether, this means that the 1NDM does not work adequately as a statistical
model for this case, generating underestimation and overestimation of the producer’s risks
(type I error).
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Table 8. NMAS test: proportion of times where the null hypothesis is rejected for several metric
tolerances (α = 0.05) when using the Finite Mixture Model (FMM) and the One Normal Distribution
Model 1NDM (based on 5000 simulations).

n Tol [m] FMM 1NDM Tol [m] FMM 1NDM

20

0.01

0.4268 0.4268

0.20

0.0648 0.0000
30 0.2664 0.2664 0.0630 0.0000
40 0.1734 0.1734 0.0509 0.0000
50 0.1248 0.1248 0.0741 0.0000
80 0.1368 0.0302 0.0685 0.0000

100 0.0720 0.0098 0.0731 0.0000
200 0.0658 0.0022 0.0564 0.0000
500 0.0640 0.0000 0.0551 0.0000

20

0.05

0.0495 0.0083

0.50

0.1092 0.0003
30 0.1007 0.0074 0.0552 0.0000
40 0.0513 0.0013 0.0774 0.0000
50 0.0748 0.0003 0.0894 0.0000
80 0.0691 0.0001 0.0621 0.0000

100 0.0816 0.0000 0.0826 0.0000
200 0.0663 0.0000 0.0487 0.0000
500 0.0445 0.0000 0.0607 0.0000

20

0.10

0.0805 0.0004

1.00

0.1092 0.0003
30 0.0789 0.0002 0.1518 0.1518
40 0.0575 0.0000 0.0641 0.2356
50 0.0749 0.0000 0.1115 0.1115
80 0.0770 0.0000 0.1131 0.2840

100 0.0659 0.0000 0.0821 0.1997
200 0.0510 0.0000 0.0927 0.1740
500 0.0502 0.0000 0.0795 0.3716

5.4.2. Engineering Map Accuracy Standard

The EMAS consist on the realization of two independent statistical hypothesis tests;
the first one is for the mean and the second one for the variance (Appendix B). The global
null hypothesis is rejected if it is rejected in any of them (test statistics are greater than the
corresponding quantile). To compare the 1NDM and the FMM, M = 5000 simulations
have been carried out using the discrepancies between the DEM05 and DEM02, and both
tests (mean and variance) have been made.

In relation to the mean test, we must consider two situations in relation to the hy-
pothesis; the first one is: H0 : µ = µH and for α = 0.01, 0.05, 0.1, and the second one is:
H1 : µ < µH , whereas for α = 0.9, 0.95, 0.99, H1 : µ > µH , where µH is the model mean.
For the test based on the FMM case, the mean value is compared with the corresponding
quantile in Table 6; and for the 1NDM case, the usual t-Student test has been made. Table 9
shows the proportion of times in which the null hypothesis is rejected, both for the FMM
and the 1NDM.

As in the case of the previous simulations, the results are better the closer they are to
the significance values considered (0.01, 0.05, . . .). The results presented in this table do not
indicate a significant difference between the two methods.

In relation to the variance test, the same simulation procedure has been carried out.
The null hypothesis is H0 : σ2 = σ2

H . Now, for the FMM, the test is rejected when
the test statistics are less than (for α = 0.01, 0.05, 0.1; H1 : σ2 < σ2

H) or greater than
(α = 0.9, 0.95, 0.99; H1 : σ2 > σ2

H) the corresponding value in Table 7, whereas in the 1NDM
case, the test statistic is χ = (n− 1)S2/σ2

H and the critical value is obtained using the χ2

distribution with (n− 1) degress of freedom. The result appears on Table 10.
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Table 9. EMAS test: proportion of times where the null hypothesis is rejected (mean case) when using
the FMM and the 1NDM (based on 5000 simulations).

Model n
Selected Values of α

0.01 0.05 0.1 0.9 0.95 0.99

FMM

20 0.0074 0.0557 0.1120 0.0984 0.0505 0.0131
30 0.0093 0.0487 0.1041 0.0956 0.0487 0.0093
40 0.0108 0.0610 0.1152 0.0783 0.0397 0.0066
50 0.0103 0.0618 0.1207 0.0846 0.0423 0.0086
80 0.0109 0.0575 0.1262 0.0777 0.0347 0.0072

100 0.0111 0.0739 0.1294 0.0737 0.0395 0.0070
200 0.0113 0.0696 0.1387 0.0726 0.0356 0.0064
500 0.0152 0.0762 0.1533 0.0548 0.0236 0.0043

1NDM

20 0.0167 0.0764 0.1368 0.0745 0.0265 0.0015
30 0.0173 0.0717 0.1305 0.0778 0.0277 0.0023
40 0.0177 0.0706 0.1309 0.0807 0.0297 0.0028
50 0.0175 0.0669 0.1260 0.0794 0.0324 0.0030
80 0.0160 0.0652 0.1192 0.0862 0.0358 0.0039

100 0.0156 0.0638 0.1150 0.0874 0.0361 0.0035
200 0.0130 0.0579 0.1076 0.0960 0.0397 0.0058
500 0.0112 0.0489 0.0987 0.1022 0.0475 0.0072

The results of this simulation are clear and obvious for all cases: the results based on
the FMM mixture model are better than those based on the 1NDM, in the sense that the
proportion of rejection for H0 is quite similar to the expected probability in the case of the
FMM and very different for the 1NDM. In this case, the 1NDM rejects many cases, which
excessively increases the producer’s risk.

Table 10. EMAS test: proportion of times where the null hypothesis is rejected (variance case) when
using the FMM and the 1NDM (based on 5000 simulations).

Model n
Selected Values of α

0.01 0.05 0.1 0.9 0.95 0.99

FMM

20 0.0136 0.0553 0.1005 0.0980 0.0543 0.0113
30 0.0104 0.0484 0.1033 0.0976 0.0533 0.0091
40 0.0074 0.0445 0.0959 0.0983 0.0466 0.0087
50 0.0105 0.0437 0.0914 0.0988 0.0499 0.0065
80 0.0099 0.0527 0.1001 0.0987 0.0535 0.0095

100 0.0096 0.0477 0.0935 0.1035 0.0599 0.0070
200 0.0116 0.0524 0.1028 0.1044 0.0498 0.0075
500 0.0095 0.0450 0.0915 0.0989 0.0427 0.0095

1NDM

20 0.3942 0.3941 0.3901 0.3896 0.4603 0.6090
30 0.4423 0.4448 0.4434 0.3590 0.4275 0.5531
40 0.4772 0.4809 0.4800 0.3376 0.3956 0.5154
50 0.5076 0.5084 0.5055 0.3213 0.3741 0.4905
80 0.5639 0.5631 0.5676 0.2926 0.3404 0.4359

100 0.5875 0.5908 0.5885 0.2853 0.3219 0.4081
200 0.6445 0.6453 0.6432 0.2656 0.2968 0.3523
500 0.6747 0.6713 0.6733 0.2682 0.2871 0.3246

Finally, the EMAS requires passing the two tests (mean and variance) together (logical
AND condition), which means that the EMAS is rejected if one of the two tests is rejected.
Although the EMAS is performed according to a 1NDM as the underlying distribution, the
same philosophy can be applied in the case of the FMM. Table 11 shows the proportion of
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times than the null hypothesis (that in this case is true) is rejected. A consideration about
the EMAS is that it does not contemplate any correction, such as that of Bonferroni, for
the fact of combining two independent hypothesis tests simultaneously. Following the
suggestion by [41], we introduce this correction. For instance, when the global desired
significance is α = 0.10, Bonferroni’s correction implies, in the case of the bilateral mean
test, that the critical value to be considered is α = 0.025, and for both sides it is (α/4).
Table 11 shows the result for such corrections when applying the FMM and the 1NDM.
It may be observed that in both cases the Bonferroni’s correction provides a better result,
in the sense of the proportion of times the null hypothesis is rejected being nearer to the
desired value (α value). The results of the application of the 1NDM are worse than those
obtained from the FMM.

5.4.3. National Standard for Spatial Data Accuracy

The NSSDA follows a different philosophy than NMAS or EMAS (Appendix C). The
NSSDA does not propose a statistical hypothesis test. In this case, the estimation of the
value corresponding to the 95% quantile is performed (e.g., 5.25 m at 95% confidence). This
result is offered to the interested party (the user), who, based on the estimation, finally has
to decide whether or not the data product is suitable for his intended use (fitness for use).
Therefore, a value is generated and the user implicitly performs an accept/reject process
but not in a statistical acceptation/rejection framework.

Table 11. EMAS test: proportion of times of global rejections when using the FMM and the 1NDM
with (*) and without (**) applying the Bonferroni’s correction (based on 5000 simulations).

Model n
Selected Values of α

0.05 (*) 0.05 (**) 0.10 (*) 0.10 (**)

FMM

20 0.0829 0.0378 0.1587 0.0844
30 0.0772 0.0325 0.1547 0.0760
40 0.0727 0.0329 0.1609 0.0727
50 0.0806 0.0387 0.1653 0.0796
80 0.0781 0.0370 0.1533 0.0769

100 0.0916 0.0359 0.1786 0.0911
200 0.0791 0.0318 0.1691 0.0800
500 0.0723 0.0328 0.1596 0.0709

1NDM

20 0.1307 0.0928 0.1965 0.1305
30 0.1366 0.1013 0.2011 0.1355
40 0.1399 0.1105 0.2050 0.1406
50 0.1481 0.1143 0.2090 0.1468
80 0.1598 0.1236 0.2153 0.1572

100 0.1641 0.1303 0.2202 0.1613
200 0.1822 0.1531 0.2350 0.1832
500 0.1973 0.1699 0.2466 0.1983

From a statistical point of view, a key aspect of this standard is the behavior of the
quantile estimation in respect to the sampling size, which can vary from the theoretical
value. Afterwards, this quantile can be typified in order to compare it with the 1.96
parameter used in the NSSDA as the expansion factor for the 95% confidence interval when
a 1NDM is assumed. Applying the simulation process described above (Section 4), it is
possible to compare the results derived from the three approaches under consideration
(Table 12). In this table, the mean of the 97.5 quantiles of each sample and for each value
of n is presented (column µQ0.975). Notice that trend demonstrated by these results is in
accordance with those of [41] obtained for the 2D case.



Remote Sens. 2022, 14, 2062 17 of 23

Table 12. Mean of the distribution of 97.5% quantile and its typified value for the Finite Mixture
Model (FMM), the One Normal Distribution Model (1NDM) and the empirical distribution of
observed data EDOD (based on 5000 simulations).

n
EDOD FMM 1NDM

µQ0.975 ZQ0.975 µQ0.975 ZQ0.975 µQ0.975 ZQ0.975

20 0.6627 1.5825 0.6564 1.5676 0.6936 1.6566
30 0.6940 1.6575 0.6935 1.6564 0.7249 1.7314
40 0.6901 1.6483 0.6893 1.6461 0.7348 1.7551
50 0.7155 1.7088 0.7179 1.7146 0.7499 1.7912
80 0.7405 1.7686 0.7418 1.7717 0.7740 1.8487

100 0.7586 1.8119 0.7659 1.8294 0.7873 1.8805
200 0.7781 1.8585 0.7874 1.8807 0.8010 1.9131
500 0.8009 1.9129 0.8062 1.9257 0.8121 1.9397

In order to have a reference for comparing the results of Table 12, the asymptotic case
(n → ∞) is used. For instance, to obtain the constant that multiplies the value of MSEz
in the case of the 1NDM, the value corresponding to the 97.5% quantile is 1.96, which is
derived as follows:

K97.5(1NDM) =
Q97.5(1NDM) − µ1NDM

σ1NDM
=

0.82057− 0.00062
0.41835

= 1.960 (11)

The same computation for the FMM results:

K97.5(FMM) =
Q97.5(FMM) − µFMM

σFMM
=

0.81407− 0.00062
0.41835

= 1.944 (12)

In consequence, when n → ∞, in the proposed version of the NSSDA based on the
FMM, the 1.96 values are replaced by 1.944. This implies that the limit value for MSEz
shall be slightly less than that obtained for the 1NDM case. Note that when applying
this calculus procedure, we can propose the NSSDA standard for different quantiles, not
only the 97.5 that is used by the rule. In following with the results of the simulations, the
columns ZQ0.975 in Table 12 show the same for all sample size cases and approaches: the
typified values obtained by the simulation process are less than the corresponding value
for the population (n→ ∞). This means the presence of underestimation of this parameter,
in accordance with previous results [42]. This underestimation of the expansion factor
leads to underestimating the value corresponding to 95, that is, the sample results in a
lower level of positional error than actually exists in the population, which is a risk for the
user. The difference of these values with respect to the theoretical ones (n→ ∞,) has the
same range of magnitude for the three models (EDOD, FMM and 1NDM). However, the
1NDM presents less discrepancy for small sample sizes, and the EDOD and FMM present
less discrepancy for the larger sample sizes.

6. Discussion

In relation to the FMM, we can highlight that they are a fully developed and applied
statistical tools in other fields; however, we do not have knowledge of their application to
the case of spatial data, and even less on the subject of positional accuracy. The application
of FMM is not complex, as has been evidenced in the work; in addition, to show a simpler
case we have only worked in 1D (elevation discrepancies). However, the model is directly
applicable to 2D and 3D cases if the coordinates and their associated errors are considered
independently. Since the tools to fit the model exist, and the selection criteria are common
(e.g., AIC, BIC), the most critical aspect is the sample size to make a good fit. This size
will depend a lot on the data to be adjusted (informational structure); thus, there is no
possibility of offering quantitative recommendations. Obviously, the bigger the sampling
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size is, more accurate the estimation is, especially if the hypothesis of a mixture is true. As a
first idea, the sample size should be as big as possible, but an important limitation is given
by the obtention cost of the sample.

In any case, it is best to proceed with empirical testing; for instance, by some simulation
procedures, we found that sample sizes greater than 2000 produce acceptable results
regarding the distance between the obtained model (the fitted FMM) and the real data
(the EDOD). An interesting aspect that has not been explored in this work is that once the
MMF has been obtained, its results may have other applications. For example, through the
estimated model, a grouping can be provided, which is intrinsic to the data and that, unlike
the cluster analysis, does not need additional explanatory variables, since it is produced by
the ascription of each discrepancy case to that one mixing distribution to which it is most
likely to belong. These groups can also try to be interpreted using multivariate statistical
techniques such as discriminant analysis, logistic regression, etc. In addition, if other
variables are available (e.g., slope, aspect, type of terrain and so on), this situation can help
to better understand the nature of the mixing distributions (see, for instance, [31,32,43–45]).
The BIC criterion has led us to select a model with seven components. This model offers
a majority component (fifth component with 52% of the weight), three components with
weights between 5% and 20% and other very minor components, two of them linked to
extreme values (atypical/outlier values in the 1NDM case). We really do not know if a
model with fewer components would work pretty much the same as this seven component
model; however, this is not really a problem, because once it is decided to use an FMM
type adjustment, its dimension (number of components) is easily managed by means of
any statistical tool. For this reason, we consider that the following selection criteria based
on BIC offers the same solution, impartial and objective, to anyone who performs the same
process on the same data, which allows the method to be standardized.

In relation to the discrepancy data values used in this paper, the analysis carried out
comparing the results of the FMM with the 1NDM and the observed data (EDOD) clearly
show that the FMM offers much more consistent results with the real population than the
1NDM. Thus, the difference in values between the EDOD and the MMF is very small in
all the cases presented in Tables 3, 4 and 12. Moreover, if the 1NDM is compared with
the MMF and the EDOD, it can be observed that the difference in quantile distance has
reached 23% in the case of 90% quantile (Table 3). In the case of probabilities (Table 4), the
probability difference between 1NDM, the MMF and the EDOD in the analyzed intervals
has reached 0.3 (case X > 0.2), which means 30% of discrepancy. The above two examples
are cases of maximum difference, but on average, the difference is also quite a lot. This
clearly demonstrates that the 1NDM model is not suitable for modeling data such as those
used in this paper.

Finally, we will pay attention to the results when considering commonly used stan-
dards for positional accuracy assessment. In this case, the most important thing is the
adjustment to the level of significance, as it is the risk of the producer that is assumed in a
statistical process of control. As shown by Table 8 for the NMAS, the FMM performs statis-
tically much better than the 1NDM when considering all the tolerance values and sample
sizes used in the analysis. In the case of the 1NDM, the values are usually less than 5%,
which indicates that its statistical behavior is not “as expected”. Table 11 presents the main
results for the case of the EMAS. The first conclusion is the need of a Bonferroni correction
when applying the EMAS. For both significance levels (0.05 and 0.1), the rejection level by
the FMM is a little less than the prescribed level; the differences are in the order [2.1, 1.5]%
(always less). The contrary occurs for the 1NDM; the differences are in the order [5.6, 7.4]%
(always more). We consider that these differences with respect to the consigned value are
really high. In this case, there exists an excess of rejection that harms the producer, with the
consequent problems that this can also generate for the user. The NSSDA is not a statistical
test, although it can be understood that it considers a process of acceptance/rejection by the
user, as the latter must ask himself whether the result of the estimation seems adequate or
not for his application. If we consider that this process is based on the simple comparison
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of values (estimated by the sample versus the theoretical), Table 12 indicates the acceptance
for all sample sizes and models, and a very similar behavior of the three approaches is
under consideration.

7. Conclusions

We consider that statistical models based on finite mixtures of normal distributions
allow a better approximation to actual altimetric errors, as shown by its ability to fit the
observed data. The method and the tools for the application of this alternative are already
developed, and its application is quite direct. The main limitation of the use of FMMs is the
need for large sample sizes to fit the parameters of the mixing distributions. Furthermore,
no simple rule can be offered to establish this size. For the application phase of the FMMs
using PAAMs, larger sample sizes will be needed, but, in any case, in the order of the
previous recommendations for these standards.

The use of the FMMs as the statistical models for the application of the PAAMs
analyzed (NMAS, EMAS and NSSDA), generates improvements in the behavior of the
results for those standards based on statistical hypotheses tests (e.g., NMAS and EMAS). In
this case, the FMMs application offers results with a better approximation to the levels of
significance. If the PAAM is not based on a statistical process, as it is here analyzed for the
NSSDA, it does not have such a clear advantage.

Since FMM is a statistical model obtained from the numerical values of the errors, it
does not necessarily have to be associated, a priori, with an underlying physical model
of the soil. Therefore it can be considered as a black box system, which is common for
PAAMs of this type. However, a posteriori, the FMM could be used to analyze the spatial
distribution of the mixing distributions in order to get a more ground-based interpretation
of the error distribution and the reason of its allocation to each component of the FMM. We
believe that this could be of great interest if some relationship is achieved with variables
that have traditionally been considered to explain the altimetry error (e.g., slope, vegetation
cover). We consider this to be a future line of research that could help establish the use of
FMMs for DEM error assessment and analysis.

In this paper, the application has been developed for the case of 1D errors, and for
this reason we worked with DEMs, but the method is directly applicable to the case of
2D errors, if the X and Y components are considered independently. Let us bear in mind
that the proposed method provides a parametric statistical model, which, once estimated,
allows us to work through population values. Therefore, its use is not limited to the case
of altimetry errors, which is what has been developed here; it is also useful for obtaining
probabilistic models in any set of quantitative measurements, such as slopes or the values
of heights themselves. This would allow them to be used, for example, to compare between
different areas, or even in the same area in different periods of time. Likewise, knowledge
of the theoretical model allows its use when proposing more precise and exact contrasts
appropriate to the nature of the data.
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Appendix A. NMAS

1. Select a sample.
2. Calculate the error of each point in each component:.

exi = xpi − xi, eyi = ypi − yi, ezi = zpi − zi

where:

• xi, yi, zi are the coordinates in the reference (RDS).
• xpi , ypi , zpi are the coordinates in the product (ADS).

3. Calculate the horizontal component of the errors in x, y at each point:

eHi =
√

e2
xi
+ e2

yi

4. Establish which are the maximum tolerable errors:

• Horizontal: HTol1 = 0.085 cm (1/30 inch) in maps of a scale greater than E20K or
HTol2 = 0.05 cm (1/50 inch) in maps at a scale smaller or equal to E20K.

• Vertical: Half of the equidistance (interval) between contour lines (VTol).

5. Count how many points have a horizontal error eH greater than the tolerance that
applies to the scale case. The control is surpassed in the horizontal component if
the number of points having an error above the tolerance does not exceed 10% of
the cases.

6. Count how many points have a vertical error ez greater than the vertical tolerance.
The control is surpassed in the vertical component if the number of points that have
an error above the tolerance does not exceed 10% of the cases.

Appendix B. EMAS

1. Select a sample of n points, where n ≥ 20.
2. Calculate the error for each point in each component:

exi = xpi − xi, eyi = ypi − yi, ezi = zpi − zi

where:

• xi, yi, zi are the coordinates in the reference (RDS).
• xpi , ypi , zpi are the coordinates in the product (ADS).

3. Calculate the mean error of each component:

ēx =
1
n

n

∑
i=1

exi ; ēy =
1
n

n

∑
i=1

eyi ; ēz =
1
n

n

∑
i=1

ezi

4. Calculate the sampling standard deviation in each component:

Sx =

√
(exi − ēx)

2

n− 1
; Sy =

√(
eyi − ēy

)2

n− 1
; Sz =

√
(ezi − ēz)

2

n− 1

5. Perform, for each component, the standard compliance test to determine whether
the mean error is acceptable (which implies an absence of bias). For this, a test is

http://www.ign.es
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performed on the mean, under the assumption of unknown population variance and
establishing the following hypotheses:

H0 : µ = 0; H1 : µ 6= 0

The map will pass the test with a significance level α if the following is met:

|tx| ≤ tn−1,α/2; |ty| ≤ tn−1,α/2; |tz| ≤ tn−1,α/2

where:

• tn−1,α/2 Student’s t-distribution value, with n− 1 degrees of freedom.
• tx, ty, tz: Result of calculating the following statistics:

tx =

√
nēx

Sx
; ty =

√
nēy

Sy
; tz =

√
nēz

Sz

6. Perform, for each component, the standard compliance test to determine if the sample
standard deviation is within acceptable limits. For this purpose, a test is performed on
the variance, establishing the following hypotheses in relation to a maximum variance
value σ2

0x, σ2
0y and σ2

0z pre-established and specified on each component:

H0 : σ2 ≤ σ2
0 ; H1 : σ2 > σ2

0

The product will pass the control with a significance level α if the following is met:

χ2
x ≤ χ2

n−1,1−α; χ2
y ≤ χ2

n−1,1−α; χ2
z ≤ χ2

n−1,1−α

where:

• χ2
n−1,1−α Theoretical value of the Chi square distribution, with n− 1 degrees of

freedom.
• χ2

x, χ2
y, χ2

z : Result of calculating the following statistics:

χ2
x =

(n− 1)S2
x

σ2
0x

; χ2
y =

(n− 1)S2
y

σ2
0y

; χ2
z =

(n− 1)S2
z

σ2
0z

Appendix C. NSSDA

1. Select a sample of n points, where n ≥ 20.
2. Calculate the error for each point in each component:

exi = xpi − xi, eyi = ypi − yi, ezi = zpi − zi

where:

• xi, yi, zi are the coordinates in the reference (RDS).
• xpi , ypi , zpi are the coordinates in the product (ADS).

3. Calculate the mean error of each component:

MSEx =

√
∑ e2

xi

n
; MSEy =

√
∑ e2

yi

n
; MSEz =

√
∑ e2

zi

n

4. Obtain the horizontal NSSDAH value:

• if MSEx = MSEy,

NSSDAH =
2.4477√

2
MSEr = 2.4477MSEr



Remote Sens. 2022, 14, 2062 22 of 23

where:
MSEr =

√
MSE2

x + MSE2
y

• if MSEx 6= MSEy and 0.6 < MSEmin/MSEmax < 1.0

NSSDAH = 2.4477× 0.5× (MSEx + MSEy)

5. Obtain the vertical NSSDAz value according to the following expression:

NSSDAz = 1.9600×MSEz
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