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Abstract: The rapid transformation from UTM (Universal Transverse Mecator) projection to Lam-
bert projection helps to realize timely merging, inversion, and analysis of high-frequency par-
titioned remote sensing images. In this study, the transformation error and the efficiency of
the linear rule approximation method, the improved linear rule approximation method, the hy-
perbolic transformation method, and the conformal transformation method were compared in
transforming the coordinates of sample points on WGS84 (The World Geodetic System 1984)-UTM
zonal projections to WGS84-Lambert projection coordinates. The effect of the grid aspect ratio on
the coordinate transformation error of the conformal transformation method was examined. In
addition, the conformal transformation method-based error spatial pattern of the sample points
was analyzed. The results show that the conformal transformation method can better balance error
and efficiency than other numerical methods. The error of the conformal transformation method is
less affected by grid size. The maximum x-error is less than 0.36 m and the maximum y-error is less
than 1.22 m when the grid size reaches 300 km × 300 km. The x- and y-error values decrease when
square grids are used; namely, setting the grid aspect ratio close to 1 helps to weaken the effect of
increasing grid area on the error. The dispersion of the error distribution and the maximum error
of sample points both decrease relative to their minimum distance to the grid edge and stabilize
at a minimum distance equal to 70 km. This study can support the rapid integration of massive
remote sensing data over large areas.

Keywords: projection transformation; numerical method; conformal transformation method;
hyperbolic transformation method; GIS; grid

1. Introduction

In recent years, the rapid growth in the volume of remote sensing data has raised high
demands for the performance of spatial data coordinate transformations [1–6]. Multisource
remote sensing images are generally organized on the WGS1984 (The World Geodetic
System 1984)-UTM (Universal Transverse Mecator) projection coordinate system with
nonuniform segmentation rules and diverse spatial and temporal resolutions. The rapid
transformation of spatial data from the UTM zonal projection coordinate system (applied
to the local area) to a conical or cylindrical projection coordinate system (e.g., Lambert
projection coordinate system) is important for realizing timely merging, retrieval, and
analysis of high-frequency segmented remote sensing images.

Coordinate transformations can be performed by either analytical or numerical meth-
ods. Analytical methods have a rigorous foundation of mathematics and require known
reference ellipsoid parameters and analytical equations; they are generally more accurate
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than numerical methods but also more complex and of lower efficiency [7]. Numerical
methods use polynomials as approximate functions to transform coordinates; multiple con-
trol points are brought into the equations to solve for the coefficients of the polynomial [8].
In general, numerical methods do not require the parameters of the reference ellipsoid
and are widely used in scenarios where a high efficiency of coordinate transformation
is required [9].

Extensive research on numerical methods for map projection transformation has
been carried out. On the one hand, polynomial methods (e.g., binary n-th polynomials;
multiplicative polynomials) can be widely used for coordinate transformation between
projection coordinate systems with different deformation characteristics [10]. Binary
n-th order polynomials are often used for geographic alignment. For example, the field
programmable gate array-based optimized second-order polynomial equation developed
by Liu et al. [11] was applied to align datasets based on the UTM projection and the State
Plane (NAD 27) projection. The results showed that the alignment was eight times faster
than PC-based alignment, with an accuracy comparable to that using ENVI [11]. Accord-
ing to the comparative analysis by Bildirici [12] and Ye [13], the multiquadric transform
method, hyperbolic transform method, and linear rule approximation method are three
polynomial methods with high representativeness and stability. The multiquadric trans-
form model was proposed by Hardy [14] for the representation of terrain and irregular
surfaces and has higher efficiency than the traditional summation and power series.
Over the following 20 years, the multiquadric method has been used in a wide range
of fields, such as geophysics, mapping science and technology, geography, hydrology,
and signal processing [15]. The hyperbolic transformation, also known as the bilinear
transformation, is a multiplicative polynomial. Zhao et al. [16] applied the hyperbolic
transformation method to transform raster maps from Lambert projection to Mercator
projection, achieving a good balance between accuracy and efficiency. Bildirici [12]
compared the applicability of the multiquadric transformation model with the hyper-
bolic transformation model for the inverse transformation of equivalent projection and
conformal projection coordinate systems. The results suggested that the hyperbolic
transformation method has the advantages of higher accuracy and simpler computation
than the multiquadric method and that the hyperbolic transformation method has a
more uniform error distribution in the conformal projection inverse transformation
than the equivalent projection inverse transformation. In the linear rule approximation
method [13], linear polynomials are constructed to express the transformation rules
between the geographic and projection coordinate systems in the local area and are
applied to the forward and inverse transformation between the WGS1984 geographic
coordinate system and the WGS1984-UTM projection coordinate system. Experimen-
tal results suggested that the accuracy and stability of the linear rule approximation
method were higher than those of the hyperbolic transformation method in scenarios
where the study area was divided into 0.5′ or 1 km square grids. The linear rule ap-
proximation method takes only 0.046 times as long as the truncated series method to
perform the transformation of 32,400,000 sample points. The linear rule approximation
method was applied by Mu et al. [17] to the scheduling of a large truck fleet based on
multilayer matching to meet the computational efficiency requirements of near real-time
coordinate transformation.

On the other hand, when the simple polynomial method is used for coordinate transfor-
mation, the stability of the error is greatly affected by the distribution of control points [18].
To alleviate this problem, a coordinate transformation scheme between conformal projec-
tions based on the theory of complex functions was proposed by Yang [19], Li [20], and
Liu [21]. The related typical methods are the conformal polynomial method, difference
method, finite element method, and interpolation method [10]. The conformal polynomial
algorithm (CT) was proposed by Yang [18] and applied to the transformation of projection
coordinates between Gaussian projection zones, which was demonstrated to be more effi-
cient than the traditional transformation formula. Subsequently, the conformal polynomial
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algorithm was promoted for transformations between different conformal projections and
for forward and inverse transformation of conformal projection coordinates, showing low
parameter requirements, low error, and high stability [9]. In addition, the implementation
of the conformal polynomial method is more flexible and easier than the finite element
method and the difference quotient method [20,21].

In addition to the type of polynomial and its method of solving the parameters, the
trade-off between coordinate transformation error and efficiency is comprehensively in-
fluenced by the local transformation area and the number and distribution of control
points [13]. The transformation error generally increases as the area of the transformation
region increases. In practice, the study area is split into several subregions by regular
rectangular or triangular grids to mitigate error propagation. For each subregion, inde-
pendent numerical polynomial parameters are fitted by using the grid vertices as control
points. The transformation error can be reduced to some extent by decreasing the area of
the subregion. When the number of subregions increases to a certain level, the efficiency of
the coordinate transformation decreases as the time spent on parameter retrieval increases,
and the error stabilizes.

Research on numerical methods and implementation pathways has provided impor-
tant theoretical and empirical support for this study. However, the applicability of different
numerical methods varies with the coordinate transformation scenario, the area, and the
shape of the subregion. Which numerical method is more suitable for transforming raster
data from UTM zonal projection to Lambert projection? What is the appropriate grid layout
scheme? Fewer studies have addressed these questions.

In this study, the linear rule approximation method, the improved linear rule approxi-
mation method, the hyperbolic transformation method, and the conformal transformation
method were applied to transform the coordinates of the points in the three WGS84-UTM
projection zones (i.e., UTM Zone 48N; UTM Zone 50N; UTM Zone 52N) into WGS84-
Lambert projection coordinates. For each study area, we mimicked the raster data organiza-
tion by deploying 33 million uniformly distributed sample points at 200 m intervals. Fifteen
square grid segmentation schemes (i.e., 1 × 1; 5 × 5; 10 × 10; 25 × 25; 50 × 50; 75 × 75;
100 × 100; 125× 125; 150× 150; 175× 175; 200× 200; 225× 225; 275 × 275; and 300 × 300;
unit: km2) were applied to the study area, and then the coordinate transformation errors
and efficiency of each numerical method were tested when applying each scheme. The
effect of the grid aspect ratio on the error of the conformal transformation method was
examined by calculating the coordinate transformation error by setting the grid length
in the x-direction to 100, 200, 300, and 400 km and y-direction to 300, 350, 400, 450, 500,
550, and 600 km. In addition, the error distribution pattern of sample points based on
the conformal transformation method was analyzed. This study can support the rapid
integration of massive remote sensing data in large areas.

The rest of the paper is organized as follows: Section 2 describes in detail the four nu-
merical methods and experimental scenarios involved in this study. Section 3 presents the
experimental results of transforming WGS1984 UTM plane coordinates to WGS1984 Lam-
bert plane coordinates using the four numerical methods. Finally, the comparison and ap-
plication scenarios of the four methods are discussed and summarized in Sections 4 and 5.

2. Materials and Methods
2.1. Numerical Methods

As shown in Figure 1, the four corner points of the rectangular grid are set as A,
B, C, and D, and point G is an arbitrary point within the grid. Their coordinates in the
WGS84-based UTM projection coordinate system are (xA, yA), (xB, yB), (xC, yC), (xD, yD),
(xB′ , yB′), (xD′ , yD′),

(
xG, yG

)
, where xA = xD = xD′ , xB = xC = xB′ , yA = yB = yB′ ,

yC = yD = yD′ . Their corresponding coordinates in the Lambert projection coordinate
system are (XA, YA), (XB, YB), (XC, YC), (XD, YD), (XB′ , YB′), (XD′ , YD′), (XG, YG). On this
basis, the application of the linear rule approximation method, the improved linear rule
approximation method, the hyperbolic transformation method, and the conformal trans-
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formation method are illustrated by calculating the coordinates of point G (i.e., (XG, YG)).
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Figure 1. (a,b) show the distribution of control points based on the UTM projection coordinate
system and Lambert projection coordinate system. The corner points A, B, C, and D of the grid and
corner points B′ and D′ of the adjacent grids are the control points, and G is the sample point whose
coordinate is transformed within the grid.

2.1.1. Linear Rule Approximation (LRA) Method

The linear rule approximation method equations are listed in Equations (1) and (2).

XG = XA + m(xG − xA) + n(yG − yA) (1)

YG = YA + p(xG − xA) + q(yG − yA) (2)

where the parameters m, n, p, q are calculated by Equations (3)–(6), ∆x = xB − xA, and
∆y = xC − yA.

m =
XB − XA

∆x
(3)

n =
XD − XA

∆y
(4)

p =
YB −YA

∆x
(5)

q =
YD −YA

∆y
(6)

2.1.2. Improved Linear Rule Approximation (ILRA) Method

The ILRA method adds a correction for deformation in the x- and y-directions based
on the LRA method. Its formula is shown in Equations (7) and (8).

XG = XA + m(xG − xA) + n(yG − yA) + u(xG − xA)
2 + v(yG − yA)

2 (7)

YG = YA + p(xG − xA) + q(yG − yA) + r(xG − xA)
2 + s(yG − yA)

2 (8)
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2.1.3. Hyperbolic Transformation (HT) Method

The equation for the HT method is shown in Equations (9) and (10).

XG = a1xG + a2yG + a3xGyG + a4 (9)

YG = b1xG + b2yG + b3xGyG + b4 (10)

The eight parameters a1–a4 and b1–b4 can be solved by bringing points A, B, C, and D
as control points into the two systems of linear equations, as shown in Equations (11) and
(12). 

xA yA xAyA 1
xB yB xByB 1
xC yC xCyC 1
xD yD xDyD 1




a1
a2
a3
a4

 =


XA
XB
XC
XD

 (11)


xA yA xAyA 1
xB yB xByB 1
xC yC xCyC 1
xD yD xDyD 1




b1
b2
b3
b4

 =


YA
YB
YC
YD

 (12)

2.1.4. Conformal Transformation (CT) Method

The 3-order conformal polynomial is shown in Equations (13) and (14).

XG = XA +
3

∑
i=1

(aiPi − biQi) (13)

YG = YA +
3

∑
i=1

(aiQi + biPi) (14)

where Qi and Pi are calculated as shown in Equations (15)–(18).

P1 = dx = xG − xA (15)

Q1 = dy = yG − yA (16)

Pi+1 = dxPi − dyQi , i = 1, 2 (17)

Qi+1 = dyPi + dxQi , i = 1, 2 (18)

The six parameters a1–a3 and b1–b3 can be solved directly by bringing the values of
the coordinates of points A, B, C, and D into the system of linear equations in Equation (9)
as follows, where the subscript j denotes the number of the three control points and takes
values 1, 2, and 3. The three control points are selected as points B, C, and D, in turn. Pi1 and
Qi1, Pi2 and Qi2, and Pi3 and Qi3 can be calculated in Equations (19) and (20) by replacing
xG and yG with xB and yB, xC and yC, and xD and yD, respectively.

3

∑
i=1

(aiPij − biQij) = Xj − XA , j = 1, 2, 3 (19)

3

∑
i=1

(aiQij + biPij) = Yj −YA , j = 1, 2, 3 (20)
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2.2. Test Scenarios

In this study, the reference datum for both the UTM projection coordinate system
and the Lambert projection coordinate system is the WGS-84 ellipsoid. The projection
parameters (Table 1) applicable to China are applied to the Lambert projection coordinate
system, whose central meridian longitude is the same as that of UTM Zone 48N. Since the
Lambert projection deformation is symmetrical on both sides of the central meridian and
is influenced by the distance from the central meridian, the experiments were performed
in three projection zones: UTM Zone 48N (90◦N–96◦N), UTM Zone 50N (102◦N–108◦N),
and UTM Zone 52N (114◦N–120◦N). For each projection zone, the spatial extent of the
study area was designed to be 300–700 km (X-coordinate) and 2450–5750 km (Y-coordinate),
as shown in Figure 2. For each study area, 33 million uniformly distributed sample
points were deployed at 200 m intervals, mimicking the raster data organization. Fifteen
groups of square grids based on row-column ordering (i.e., 1 × 1, 5 × 5, 10 × 10, 25 × 25,
50 × 50, 75 × 75, 100 × 100, 125 × 125, 150 × 150, 175 × 175, 200 × 200, 225 × 225,
275 × 275, and 300 × 300, unit: km2) were applied to divide the entire study area into
numerous subareas. On this basis, the linear rule approximation method, improved
linear rule approximation method, hyperbolic transformation method, and conformal
transformation method were applied to transform the coordinates of the sample points
from the UTM projection coordinate system into the Lambert coordinate system. In addition,
the coordinate transformation of sample points was implemented as follows:

1. In the first step, for a particular numerical method, the four vertices of each subzone
are used as control points to calculate their corresponding polynomial parameters.
The polynomial parameters are stored in a memory array.

2. In the second step, all sample points are grouped according to the spatial extent of the
subzone. Sample points within the same subzone are assigned to the same group.

3. In the third step, for each group, the polynomial parameters are called from the
memory array, and the coordinate transformation is performed in bulk for the sample
points belonging to that group.

Table 1. Parameters of the Lambert projection system.

Parameter Name Parameter Value

False easting 0.00◦

False northing 0.00◦

Central meridian 105.00◦E
Standard parallel 1 25.00◦N
Standard parallel 2 47.00◦N

Scale factor 1.00
Latitude of origin 0.00◦

Another experiment was carried out to test the effect of the grid aspect ratio on the
error of the conformal transformation method. A total of 4 × 7 rectangular grid divisions
of the study area were designed with lengths of 100, 200, 300, and 400 km in the x-direction
and 300, 350, 400, 450, 500, 550, and 600 km in the y-direction.
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Figure 2. (a) shows the overall distribution of conversion areas. The projection coordinate systems
of conversion areas CA1, CA2, and CA3 are UTM Zone 48N, UTM Zone 50N, and UTM Zone 52N,
respectively. (b,c) show a series of grid systems for dividing the conversion area. The sizes of the
grids are 1 × 1; 5 × 5; 10 × 10; 25 × 25; 50 × 50; 75 × 75; 100 × 100; 125 × 125; 150 × 150; 175 × 175;
200 × 200; 225 × 225; 275 × 275; and 300 × 300 (unit: km2). The yellow and blue areas are some of
the areas covered by grids of different sizes.

2.3. Hardware and Software Environment

The hardware and software environment for this study is shown in Table 2. The results
of the projection coordinate transformation based on the map projection library PROJ are
considered ‘true values’ and used to calculate the polynomial parameters and coordinate
transformation errors for each numerical method.
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Table 2. Experimental software and hardware environment.

Parameter Name Parameter Value

CPU AMD Ryzen 7 4700U @ 2.00 GHz (8 cores 8 threads)
Internal storage 16 GB (Micron 8 GB DDR4 3200 MHz × 2)

Operating system Windows 10 pro 64 bit
Development platform Microsoft Visual Studio 2019
Programming language C#

3. Results
3.1. Error Statistics of Multiple Numerical Methods

The maximum, minimum, mean, and median errors of the linear rule approximation
(LRA) method, improved linear rule approximation (ILRA) method, hyperbolic transforma-
tion (HT) method, and conformal transformation (CT) method for multiple grid sizes and
multiple conversion areas were calculated and expressed as box plots, as shown in Figure 3.
First, the x-error and y-error of the CT method are significantly lower than those of the
other three methods for the same grid size. However, this does not mean that the other
methods are not applicable because the errors can be controlled within the threshold value
by controlling the grid size when they are used. Second, the x-error and y-error increase as
the grid size increases, and the magnitude of the error increase gradually increases. The
CT method has the smallest error increase, the maximum x-error is less than 0.36 m and
the maximum y-error is less than 1.22 m when the grid size reaches 300 km × 300 km.
The variation characteristics of the x-error of the LRA method and the ILRA method are
almost the same, but the y-error of the LRA method is significantly higher than that of
the ILRA method. The error is significantly smaller and more stable than that of the ILRA
method. For the LRA and ILRA methods, the x-error is larger than the y-error; for the HT
and CT methods, the x-error is smaller than the y-error. Third, as the distance between the
conversion area and the central meridian of the Lambert projection increases, the maximum
value and the dispersion of x- and y-errors of the four methods increase or decrease to
different degrees. Among them, the effect of the conversion area change on the HT and
CT methods is mainly focused on the x-error, while for the LRA and ILRA methods, the
y-error is more affected.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 18 
 

 

Table 2. Experimental software and hardware environment. 

Parameter Name Parameter Value 
CPU AMD Ryzen 7 4700U @ 2.00 GHz (8 cores 8 threads) 

Internal storage 16 GB (Micron 8 GB DDR4 3200 MHz × 2) 
Operating system Windows 10 pro 64 bit 

Development platform Microsoft Visual Studio 2019 
Programming language C# 

3. Results 
3.1. Error Statistics of Multiple Numerical Methods 

The maximum, minimum, mean, and median errors of the linear rule approximation 
(LRA) method, improved linear rule approximation (ILRA) method, hyperbolic transfor-
mation (HT) method, and conformal transformation (CT) method for multiple grid sizes 
and multiple conversion areas were calculated and expressed as box plots, as shown in 
Figure 3. First, the x-error and y-error of the CT method are significantly lower than those 
of the other three methods for the same grid size. However, this does not mean that the 
other methods are not applicable because the errors can be controlled within the threshold 
value by controlling the grid size when they are used. Second, the x-error and y-error 
increase as the grid size increases, and the magnitude of the error increase gradually in-
creases. The CT method has the smallest error increase, the maximum x-error is less than 
0.36 m and the maximum y-error is less than 1.22 m when the grid size reaches 300 km × 
300 km. The variation characteristics of the x-error of the LRA method and the ILRA 
method are almost the same, but the y-error of the LRA method is significantly higher 
than that of the ILRA method. The error is significantly smaller and more stable than that 
of the ILRA method. For the LRA and ILRA methods, the x-error is larger than the y-error; 
for the HT and CT methods, the x-error is smaller than the y-error. Third, as the distance 
between the conversion area and the central meridian of the Lambert projection increases, 
the maximum value and the dispersion of x- and y-errors of the four methods increase or 
decrease to different degrees. Among them, the effect of the conversion area change on 
the HT and CT methods is mainly focused on the x-error, while for the LRA and ILRA 
methods, the y-error is more affected. 

 
Figure 3. Cont.



Remote Sens. 2022, 14, 2056 9 of 17Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

 

 

 

Figure 3. Box plots (a–d) show the x- and y-errors of the linear rule approximation (LRA) method, 
improved linear rule approximation (ILRA) method, hyperbolic transformation (HT) method, and 
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by the above numerical method. 

Figure 3. Box plots (a–d) show the x- and y-errors of the linear rule approximation (LRA) method,
improved linear rule approximation (ILRA) method, hyperbolic transformation (HT) method, and
conformal transformation (CT) method in CA1, CA2, and CA3 with multiple grid sizes. The green
dotted line represents the average error, and the orange solid line represents the median error. Where
the x error = |x0 − x|, y error = |y0 − y|. x0, y0 are calculated by PROJ, and x, y are calculated by
the above numerical method.

To constrain the maximum error of coordinate transformation to be less than 5 m,
we set the grid size of the LRA method, ILRA method, HT method, and CT method to
10 km × 10 km, 10 km × 10 km, 25 km × 25 km, and 275 km × 275 km, respectively. The
cumulative error frequency of 33,000,000 sample points in CA2 was calculated, as shown
in Figure 4. In terms of x-errors, the CT method has the fastest convergence rate, and the
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x-error of all sample points is less than or equal to 0.5 m. The percentages of sample points
with x-errors less than 0.5 m for the HT method, LRA method, and ILRA method are 98.93%,
63.69%, and 63.42%, respectively. In terms of y-errors, the CT method and the LRA method
converged to 1.25 m almost simultaneously. A total of 96.59% and 87.32% of the sample
points are less than 1.25 m for the ILRA method and the HT method, respectively. The CT
method has the highest comprehensive stability, even though its grid area is 121 times larger
than that of the HT method and 756.25 times larger than that of the LRA and ILRA methods.
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3.2. Comparison of the Transformation Efficiency of Multiple Numerical Methods

The time elapsed of coordinate transformation for the four numerical methods at
grid sizes of 10 km × 10 km, 10 km × 10 km, 25 km × 25 km, and 275 km × 275 km was
calculated, as shown in Figure 5. The number of sample points is 1.32 × 106, 5.28 × 107,
1.056 × 108, 1.65 × 108, 2.112 × 108, 2.64 × 108, and 3.3 × 108. The coordinate transforma-
tion was implemented by a single thread, and the time elapsed was taken as the average of
the calculated results for different conversion areas (i.e., CA1; CA2; CA3). The computa-
tional time elapsed of the four methods increases linearly with the increase of the number
of sample points and is steadily expressed as HT < LRA < ILRA < CT. The time elapsed of
the CT method is longer than that of the other methods but with a small difference. The
number of grid points of a Sentinel 2 multispectral remote sensing image (spatial resolution:
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10 m) is nearly 100 million, and the difference in computation time elapsed is less than 1.5 s
when the four numerical methods are executed on a single thread.
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Figure 5. Time elapsed for coordinate transformation by the linear rule approximation (LRA) method,
improved linear rule approximation (ILRA) method, hyperbolic transformation (HT) method, and
conformal transformation (CT) method.

3.3. Effect of Grid Shape Change on the Maximum Coordinate Transformation Error of the
CT Method

We used CA1 to calculate the x maximum error and y maximum error of the CT method
under different grid shapes and areas. The grid shape and area were adjusted by setting
its length in the x-direction to 100 km, 200 km, 300 km, and 400 km, and its length in the
y-direction to 300 km, 350 km, 400 km, 450 km, 500 km, and 600 km, as shown in Figure 6a,b.
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Figure 6. (a,b) show the variation of max error of CT method when fixing the length in the x-direction
(100, 200, 300, and 400 km) and the length in the y-direction of the grid; (c,d) show the variation of
max error of CT method for different RYX with constant grid area (10,000 km2). For a specific grid
system, RYX represents the ratio of the grid length in the y-direction to that in the x-direction.
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First, the maximum x-error and maximum y-error both increase with increasing length
in the x-direction of the grid, and the increase becomes more drastic when the length in
the y-direction of the grid is greater than 450 km. Second, the x maximum error and y
maximum error increase with increasing length in the x-direction of the grid when the
length in the y-direction of the grid is the same. This phenomenon is mainly caused by the
change in the grid area. Third, for the CT method, the grid area is not the only dominant
factor affecting the error; another is the grid shape. Setting the grid aspect ratio close to
1 helps to weaken the effect of increasing grid area on the error. For example, in Figure 6a,b,
the maximum x-error and maximum y-error of the 300 × 300 (unit: km2) grid are smaller
than those of the 200 × 400 (unit: km2) grid and the 100 × w (w = 450, 500, 550, 600)
(unit: km2) grid, although the former has a larger grid area than the latter. Similarly, the
maximum x-error and maximum y-error of the 400 × 400 (unit: km2) grid are almost the
same as those of the 100 × 600 (unit: km2) grid, although the area of the former grid is
nearly 2.7 times larger than that of the latter. Fourth, setting the grid size to 300 × 300 (unit:
km2) is more suitable for applying the CT method to perform the transformation of the
sample point set from the UTM planar coordinate system to the Lambert planar coordinate
system because it considers both the grid size and the errors.

In another experiment, the coordinate transformation error of the CT method was
calculated by setting the ratio of the length in the y-direction to the length in the x-direction
of the grid (RYX) to 16, 6.25, 4, 1.5625, 1, 0.64, 0.25, 0.16, and 0.0625, while keeping the grid
area equal to 10,000 km2, as shown in Figure 6c,d. The maximum x-error and maximum
y-error are minimized when RYX is 1. The error increases as the ratio deviates from 1. In
addition, keeping the grid area constant and stretching the grid along the x-direction and
the y-direction in equal proportions, the variation of errors is not consistent. The grid with
a ratio equal to 1/16 can be regarded as the grid with a ratio equal to 16 placed horizontally,
and their stretching ratios are equal, but the maximum x-error of the former is smaller than
that of the latter, and the maximum y-error of the former is larger than that of the latter.

3.4. Spatial Distribution of Coordinate Transformation Error of the CT Method

The spatial distribution of the x-error and y-error of the sample point set was
expressed by the raster data model. For each conversion area (i.e., CA1, CA2, and CA3),
33,000,000 sample points were arranged in a matrix of 2000 × 16,500 with a 200 m interval.
The applied numerical method was the CT method, and the grid size was 300 × 300
(unit: km2). Considering that the x-error and y-error of the sample point follow the heavy-
tailed distribution feature, the head/tail breaks model [22] was applied to the classification
rendering of the sample point error.

As shown in Figure 7, first, the x-error and y-error of the sample points all exhibit
an overall increasing trend with increasing y-coordinates. For the three transformation
regions, the sample points with the largest errors are all distributed in the region with
y-coordinates > 5450 km. Second, the x-errors of the sample point exhibit an overall in-
creasing trend as the distance from the sample point to the central meridian of the Lambert
projection increases. However, the effect of the distance from the sample point to the central
meridian of the Lambert projection on the y-error of the sample point is reversed and
concentrated at high latitudes. In the region with y-coordinates > 5450 km, the y-error of
some sample points decreases with their deviation from the central meridian. Third, the
coordinate transformation error of sample points is also influenced by their positions inside
the grid. For each grid, the sample points with the largest and smallest x-error levels are
both distributed in a “bow” shape at the edges of the grid. The sample points with the
smallest y-error level are concentrated near the four vertices of the grid, and the sample
points with the largest y-error level are concentrated in a “bow” shape in the middle of
the four edges of the grid. In addition, the distribution of errors within the grid shows
symmetric characteristics, with the x-error of the sample point being centrosymmetric and
the y-error being axisymmetric.
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CA2, and CA3, with a grid size of 300 km × 300 km. For each conversion area, sample points were
organized as 400 km × 3300 km raster data with 200 m as the spatial resolution.

To further investigate the error distribution within the grid, the two groups of 90,000 sam-
ple points were arranged in a 300× 300 matrix within the specific grid of 300 km × 300 km
in CA1. The sample spacing is 1 km, and the coordinates of the vertices of the first grid are
(300, 5450), (600, 5450), (600, 5750), and (300, 5750) (unit: km); the coordinates of the vertices
of the second grid are (300, 2450), (600, 2450), (600, 2750), and (300, 2750) (unit: km). The
x-coordinate intervals of these two grids are the same, but they are 3300 km apart in the y-axis
direction. For each sample point in the first grid, the relationship between the coordinate
transformation error and its minimum distance to the grid edge (MinDGE, which can be
interpreted as the minimum value of the distance from the sample point to the four edges of
the grid) is expressed in Figure 8a,b. The dispersion of the error distribution and the maximum
error both decrease with increasing MinDGE and stabilize at MinDGE equal to 70 km. The
maximum x-error is 25% of the global x-error, and the maximum y-error is 80% of the global
maximum y-error for the sample point with MinDGE equal to 70 km. As MinDGE increases,
the minimum x- and y-errors of sample points increase, the mean x-error decreases, and the
mean y-error increases. As shown in Figure 8c,d, the coordinate transformation error of the
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sample point near the grid center converges stably and does not change with the y-coordinate
of the conversion area. In the two grids, the transformation errors of the sample point stabilize
at MinDGE equal to 70 km.
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Figure 8. (a–d) show the relationship between x-errors or y-errors, and the MinDGE of sample points.
The MinDGE represents the minimum distance between the sample point and the grid edge. The
number of sample points is 90,000. The coordinate transformation of all sample points was executed
by the CT method. The red lines show the average error. The coordinates of the southwest corner
point and northeast corner point in (a,b) are (300, 5450) and (600, 5750) and in (c,d) are (300, 2450)
and (600, 5750) (unit: km), respectively.

4. Discussion
4.1. Comparison of Multiple Numerical Methods

In this study, the error and efficiency of four numerical methods (i.e., the linear rule
approximation method, improved linear rule approximation method, hyperbolic transfor-
mation method, and conformal transformation method) were compared in transforming
sample point coordinates from the UTM coordinate system to the Lambert coordinate
system. The CT method and HT method have their own advantages in applications. The
CT method is more suitable for applications with discrete sample point distributions and
higher requirements for coordinate transformation accuracy. The HT method can meet the
requirements for applications with a relatively concentrated sample point distribution and
high requirements for coordinate transformation efficiency. The LRA method and ILRA
method have shown poor suitability in our experiments because they are worse than the
HT method in terms of coordinate transformation speed and worse than the CT method
in terms of transformation accuracy and error convergence speed. The ILRA method is
designed to weaken the transformation error of LRA by increasing the number of items in
the Taylor series. In this study, however, the error and time elapsed of the ILRA method
are higher than those of the LRA method.

The coordinate transformation error of the CT method is influenced by both the x-
and y-coordinates of the sample points. The effect of the y-coordinate can be weakened by
reducing the grid size as the y-coordinate increases. Another important factor affecting the
coordinate transformation error of the CT method is the distance from the sample points



Remote Sens. 2022, 14, 2056 15 of 17

to the center of the grid because the sample points with the largest errors are close to the
edges of the grid. This error can be reduced by constructing an overlapping grid system.
In this strategy, sample points close to the grid edges (i.e., overlapping areas) are inside
multiple grids and assigned to suitable grids on their distances to different grid edges.

Table 3 lists the application comparison of the CT method, HT method, and LRA
method. All applications met their needs. Yang et al. [9] applied the CT method to the
projection transformation of topographic maps, and the transformation in a larger range
still maintained low error. Its application value is underestimated, and it can be applied
to remote sensing data processing. The HT method and LRA method have been applied
to map projections in map digitization and map projections or inverse projections of large
amounts of data [12,13].

Table 3. Comparison of coordinate transformation errors between the linear rule approximation
(LRA) method, hyperbolic transformation (HT) method, and conformal transformation (CT) method.

Method Origin
Coordinate System

Target
Coordinate System Test Scenario x/Lon

Error
y/Lat
Error Application Reference

Quartic CT Mercator projection Lambert
projection

Conversion
area: 15 × 15◦ ≤10.00 m ≤10.00 m

Coordinate
transformation for
topographic map

[9]

Cubic CT Mercator projection Lambert
projection

The control
points are all
on the central

meridian,
conversion area:

10◦ × 10◦

≤30.00 m ≤30.00 m
Coordinate

transformation for
topographic map

[9]

HT Lambert
projection WGS84

Conversion area:
22◦ × 8◦ , grid
size: 2◦ × 2◦

≤25.25′ ′ ≤19.01′ ′ Digitization for
paper maps [12]

HT Lambert
projection WGS84

Conversion area:
22◦ × 8◦ ,
grid size:

0.5◦ × 0.5◦
≤1.49′ ′ ≤1.25′ ′ Digitization for

paper maps [12]

LRA WGS84 UTM
projection

Conversion area:
3◦ × 3◦ , grid
size: 1′ × 1′

≤0.59 m ≤0.27 m
Large amount of data,

high efficiency
requirements

[13]

LRA WGS84 UTM
projection

Conversion area:
3◦ × 3◦ , grid
size: 5′ × 5′

≤6.25 m ≤1.07 m
Large amount of data,

high efficiency
requirements

[13]

4.2. Analysis of Potential Application Scenario

The Gauss–Krueger 3 degree/6 degree zonal projection coordinate system is widely
used in the organization of regional thematic remote sensing data products in China. The
merger and analysis of large-scale thematic raster data require transforming sample point
coordinates from the Gauss–Krueger projection coordinate system into the Lambert projec-
tion coordinate system. This application requirement can benefit from our results because
the Gauss–Krueger projection differs from the UTM projection only in the scale factor.

The Raster Dataset Clean and Reconstitution Multigrid (RDCRMG) was designed
for efficient remote sensing data processing and management and has provided support
for multiple large data volume studies (i.e., monitoring of vegetation dryness; crop type
identification; and arable land quality analysis) [2,23–30]. According to the architecture
of RDCRMG, different types of raster images were subdivided into several independent
blocks and distributed for storage in different data nodes by using the multigrid as a
consistent partition unit. The World Geodetic System 1984 (WGS 84)-based Universal
Transverse Mercator (UTM) 6-degree strip division projection coordinate system has been
designated as an RDCRMG spatial reference. Partitioned calculation result data should be
transformed into the Lambert projection coordinate system for seamless data integration.
On that basis, the CT method was most suitable for integration into RDCRMG. In addition,
the CT method can be used to improve the coordinate transformation efficiency between
the projection coordinate system and global discrete grid system.
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5. Conclusions

In this study, four numerical methods (i.e., the LRA method, ILRA method, HT
method, and CT method) have been used to convert the raster simulated data from the
UTM projection coordinate system into the Lambert projection coordinate system. The
transformation error and efficiency of these methods were compared. The relationship
between multiple grid layout schemes and the error was explored. The x-error and y-error
of the CT method are significantly lower than those of the other three methods at the same
grid size. The maximum x-error is less than 0.36 m and the maximum y-error is less than
1.22 m when the grid size reaches 300 km × 300 km. Constraining the maximum error of
coordinate transformation to less than 5 m, the CT method has the highest comprehensive
stability, even though its grid size is the largest. The computational time elapsed of the
four methods increases linearly as the number of sample points increases and can be
expressed as HT < LRA < ILRA < CT. The time consumption for coordinate transformations
of approximately 100 million points by the four methods are all less than 10 s, showing
high efficiency. The difference in time consumption among these methods is less than 1.5 s.
Considering efficiency and error, the CT method is more suitable than other methods for
the rapid transformation of spatial data from UTM projection into Lambert projection. For
the CT method, in addition to the grid area, the grid shape also significantly affects the error.
Setting the grid aspect ratio close to 1 helps to weaken the effect of increasing grid area on
the error. The x-error and y-error of the sample points both exhibit an overall increasing
trend as their y-coordinates increase. The x-error of the sample points shows an overall
increasing trend as the distance from the sample point to the central meridian of the Lambert
projection increases, while the y-error is the opposite. The coordinate transformation error
of the sample points near the grid center converges stably. The dispersion of the error
distribution and the maximum error of the sample points both decrease as their minimum
distance to the grid edge decreases. Within the 300 km × 300 km grid at different latitude
zones, the transformation errors of the sample points stabilize when the minimum distance
equals to 70 km. This research can provide a reference for realizing the timely merging,
inversion, and analysis of high-frequency remote sensing images.
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