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Abstract: The large area estimation of forest canopy closure (FCC) using remotely sensed data
is of high interest in monitoring forest changes and forest health, as well as in assessing forest
ecological services. The accurate estimation of FCC over the regional or global scale is challenging
due to the difficulty of sample acquisition and the slow processing efficiency of large amounts of
remote sensing data. To address this issue, we developed a novel bounding envelope methodology
based on vegetation indices (BEVIs) for determining vegetation and bare soil endmembers using
the normalized differences vegetation index (NDVI), modified bare soil index (MBSI), and bare soil
index (BSI) derived from Landsat 8 OLI and Sentinel-2 image within the Google Earth Engine (GEE)
platform, then combined the NDVI with the dimidiate pixel model (DPM), one of the most commonly
used spectral-based unmixing methods, to map the FCC distribution over an area of more than
90,000 km2. The key processing was the determination of the threshold parameter in BEVIs that
characterizes the spectral boundary of vegetation and soil endmembers. The results demonstrated
that when the threshold equals 0.1, the extraction accuracy of vegetation and bare soil endmembers
is the highest with the threshold range given as (0, 0.3), and the estimated spatial distribution of
FCC using both Landsat 8 and Sentinel-2 images were consistent, that is, the area with high canopy
density was mainly distributed in the western mountainous region of Chifeng city. The verification
was carried out using independent field plots. The proposed approach yielded reliable results when
the Landsat 8 data were used (R2 = 0.6, RMSE = 0.13, and 1-rRMSE = 80%), and the accuracy was
further improved using Sentinel-2 images with higher spatial resolution (R2 = 0.81, RMSE = 0.09,
and 1-rRMSE = 86%). The findings demonstrate that the proposed method is portable among sensors
with similar spectral wavebands, and can assist in mapping FCC at a regional scale while using
multispectral satellite imagery.

Keywords: forest canopy closure; endmembers determination; dimidiate pixel model; spectral
vegetation indices; regional scale

1. Introduction

Forests play indispensable ecological functions and act as a carbon sink, and forest
canopy closure (FCC) is one of the most important indices for biophysical parameters esti-
mation, climate response monitoring, and forest changes evaluation at the large scale [1–3].
Thus, accurate and timely information on forest canopy density can greatly support the
decision-making process of forestry management departments. As such, it is necessary
to clearly quantify the spatial distribution of FCC for forest inventories and carbon cycle
estimation [4,5]. Although time consuming and costly, forest resource monitoring has a
long history of being carried out at intervals of several years through conventional forestry
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inventory [6,7]. Remote sensing technology is cost-effective and has therefore been broadly
used in assessing and monitoring forest resources because it enables the periodic monitor-
ing of forest resources using various sensors at both global and regional scales compared
to traditional field work [8,9]. Earlier studies involve the use of multisource remotely
sensed data for FCC prediction, including hyperspectral, unmanned aerial vehicle (UAV)
light detection and ranging (LiDAR), synthetic aperture radar (SAR), and multispectral
data [10–15].

Hyperspectral data can provide narrow and contiguous spectral curves capable of
capturing subtle spectral differences among different targets, which are crucial for distin-
guishing forests from their surrounding backgrounds [16]. To estimate FCC, Salvador et al.
used the normalized difference vegetation index (NDVI) to estimate canopy closure at
10 m intervals via hyperspectral imagery, and compared the data with those estimated by
ground-based methods. The results showed that the estimates of FCC using hyperspectral
images compare well to those using ground-based methods [10]. The estimated accuracy
of FCC using hyperspectral data was about 80% in related studies [2,10]. However, the
hyperspectral imagery access is restrictive due to the high cost and low number of sensors
in operation. In addition, it is time consuming to process the hyperspectral data due to the
large volume, and thus requires high expertise to filter out the most effective information
from a large number of highly correlated spectral bands [17,18]. Therefore, hyperspectral
remotely sensed data are mainly used for the prediction of canopy density in small areas.
Similarly, UAV LiDAR and airborne LiDAR data are also used in conjunction with other
remote sensing imagery for the inversion of small- and medium-scale forest canopy closure,
in which LiDAR data mainly provide single-point high-precision (better than 80% overall
accuracy) FCC estimation to improve the overall estimation accuracy of the whole study
area [2,19,20]. SAR is not affected by atmosphere and can work all day and in all kinds of
weather. There are studies using the correlation analysis between the radar backscattering
coefficient or its derived indices and ground samples to predict canopy density [21,22].
In addition, polarimetric classification has also been combined with SAR data for canopy
closure inversion [23,24]. The high speckle noise and limited information of vegetation
separability of SAR data results in an accuracy of FCC estimation of between 60% and 70%,
which limits its operational application.

Compared to those data mentioned above for FCC prediction, the cost-free and easy-to-
use multispectral imagery approach appears to be the best solution to FCC mapping, espe-
cially in both regional and global areas [25]. For example, mixed pixels will reduce the mon-
itoring accuracy of remote sensing for forests, especially in heterogeneous forests [26,27].
The GF and ZY series multispectral satellite imagery with high spatial resolution has been
adopted for FCC estimation because it can better capture the geometric details of the forest
and reduce the influence of mixed pixels in the results [28–31]. High-resolution imagery
covers a small area, so multispectral imagery at moderate spatial resolution is the primary
data source for forest monitoring at large regional scales [32,33]. Landsat data at a spatial
resolution of 30 m have been used in many typical studies relevant to vegetation due to
its abundance of high-quality historical data [34,35]. In the cloudy and rainy areas, the
Landsat time-series data can assist in capturing the forest coverage [32,36,37]. The green
band of Landsat data was found to be the most effective band for the estimation of canopy
characteristics in hardwood forests [38]. The spectral vegetation indices derived from
the visible and near-infrared bands of multispectral images are the feature most often
used to characterize the FCC distribution [39]. As another access-friendly satellite data
source, Sentinel-2 multispectral data at the finest spatial resolution of 10 m have brought
new opportunities for the fine monitoring of vegetation owing to its unique red-edge
band and excellent spatial and temporal resolution since its launch in 2015 [40]. The
great advantages of red-edge Sentinel-2 data for vegetation studies was first discovered
in 2016 [41]. Since then, a large number of studies have used this data to estimate forest
canopy closure [42–44]. The comparison of Landsat 8 and Sentinel-2 in the estimation of
FCC has also been carried out [45].



Remote Sens. 2022, 14, 2051 3 of 15

Overall, the methodology used for FCC prediction at the regional scale is composed of a
geometric-optical model, classification, regression statistics, and spectral unmixing [29,30,46,47].
However, the dimidiate pixel model (DPM), one of the semi-expert methods, is one of the most
commonly used based on spectral vegetation indices over a large area as it reduces the effect of
bias, including atmospheric disturbances and vegetative influences [48,49]. For example, the
DPM was often combined with MODIS NDVI [50–53] and Landsat NDVI [54–56] data at the
provincial and watershed scale.

In this study, we built on previous studies that used Landsat 8 and Sentinel-2 data to
describe the spatial distribution of FCC within the Google Earth Engine (GEE) platform.
The objective of this study was to develop a new approach based on DPM to recognize
vegetation and bare soil endmembers using the multispectral images. The novelty is that
the proposed method can realize regional FCC estimation that can be easily scaled for
application over larger areas using GEE, and the ground-truth data are not required in the
endmember extraction process.

2. Materials and Methods
2.1. Study Area

Chifeng city, centered at 119◦22′58.38”E, 60◦35′7.2”N, is located in the southeast of
Inner Mongolia, China. Measuring approximately 90,000 km2, this region consists of four
northern districts (Bahrain left, Bahrain right, Linxi, and Arhorchin), four southern districts
(municipal district, Aohan, Karqin, and Ningcheng), the western Hexingten, and the
central Ongniud (Figure 1). Our study area belongs to the temperate semi-arid continental
monsoon climate and has a variety of landforms, with mountains and hills in the north
and south, and plains in the east and west. Affected by the monsoon and topography, the
average annual temperature gradually rises from northwest to southeast, and the average
annual temperature in most areas remains between 0 and 7 ◦C. Additionally, the average
annual precipitation is between 350 and 450 mm, of which 60–70% is concentrated in
summer, showing a decreasing trend from southwest to northeast. The dominant tree
species in this area are Pinus tabulaeformis, Quercus Mongolia, Betula spp., Populus spp.,
Larix spp., and Armeniaca sibirica. The phenological state of the forest corresponding to the
satellite data acquisition time in this area is depicted in Figure 2.

2.2. Field Survey Plots

A field survey was carried out for the main tree species in the southern four regions of
Chifeng city in September 2019 to collect the forest canopy closure (FCC) data for accuracy
assessment. First, considering the large scope of the study area, we set up sample plots
as far as possible according to the different degrees of FCC. Then, the FCC value of each
plot was measured using the line transects method. The sample points were arranged at a
certain horizontal spacing, and at each sample point, the tree canopy crown was observed
vertically. The FCC of the plot was obtained by dividing all of the points shaded by the
canopy by the total number of sample points. Finally, the FCC data of 71 rectangular plots
(30 m × 30 m) were obtained, in which the value range of the recorded FCC was (0.22, 0.97).
Their spatial distribution based on the WGS84 Geographic Coordinate System is depicted
in Figure 1.

2.3. Canopy Closure Estimation Overview

Our goal was to produce a high-resolution canopy closure distribution map using the
powerful computing ability of the GEE platform. We proposed and implemented the novel
methodology to extract the vegetation and bare soil endmembers based on the traditional
DPM within the GEE cloud-computing platform, which was split into four processes,
including addressing satellite images, model construction and calibration, endmembers
extraction, and estimation and validation. Figure 3 provides an overview of our workflow,
which is described in detail in subsequent sections.
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Figure 3. Workflow of forest canopy closure estimation (NDVI refers to normalized difference
vegetation index, MBSI refers to modified bare soil index, BSI refers to bar soil index, and BEVIs
refers to bounding envelope method based on vegetation indices).

2.4. Processing of Satellite Imagery in Google Earth Engine

The Google Earth Engine (GEE) is a platform with a petabyte analysis-ready imagery
and powerful computing [57–59]. Three kinds of satellite imagery, composed of Landsat 8,
Sentinel-2, and SRTM DEM, were used in this study. The details of their parameters are
provided in Table 1. Landsat 8 and Sentinel-2 images were used for regional forest canopy
closure estimation, and SRTM DEM images were used for the preprocessing.

Table 1. Details of datasets used in the estimation of forest canopy closure.

Data Type Year Month Spatial Resolution Bands

Landsat 8
surface reflectance 2019 7, 8, 9 30 m Band 4, band 5, band 6,

and band 7
Sentinel-2

surface reflectance 2019 7, 8, 9 10 m Band 2, band 4, band 8,
and band 12

SRTM DEM 2000 - 30 m -
Field survey plots 2019 9 - -

Note: SRTM DEM represents the 30 m digital elevation model produced by the Shuttle Radar Topography Mission.

The open-access Landsat 8 Surface Reflectance Tier 1 (L8SR) products obtained from
Landsat 8 OLI sensors were generated from specialized software for atmospheric correction
using the Land Surface Reflectance Code (LaSRC) Version 3.0. The Sentinel-2 L2 surface
reflectance (S2SR) data were computed by sensor2cor. In this study, the images with visible,
near-infrared, and short-wave infrared bands spanning July to September in the GEE
platform were used for further processing because during this period, none of the forest
types (coniferous forests, broad-leaved forests) in the study area had fallen leaves. In remote
sensing images, the presence of clouds will block the target objects on the ground, reducing
the monitoring precision, so the pixels with cloud should be removed first. Both L8SR and
S2SR data have a band identifying clouds, named “pixel_qa” and “QA60”, respectively,
in which the cloud pixels were marked. Therefore, we separately used the two bands to
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detect and remove the pixels with cloud coverage from L8SR and S2SR, leaving only the
cloudless pixels per scene to form good quality images covering the whole region.

To correct the topographic effect caused by mountainous terrain in the satellite im-
ages, the digital elevation model of 30 m produced by the Shuttle Radar Topography
Mission (SRTM DEM) [60] integrated within the GEE platform was used. Additionally,
the sun–canopy–sensor (SCS) with C-Correction (SCS + C), proposed by Scott et al. (2007),
was implemented and applied in conjunction with SRTM DEM data to every single image
scene [61]. The SCS + C correction was developed on the basis of SCS correction and
overcame the overcorrection problem of SCS by introducing the C-Correction, which has
been shown to be more appropriate, especially in forested areas [61].

Finally, we produced the mosaic image composite covering the whole study area by
reducing the topographic-corrected cloudless L8SR image collection from July to September
using the median reducer to pick median values in each band, in each pixel, over time. This
is beneficial to remove pixels with high (clouds) and low (shadows) value, and to fill in the
missing data after outlier removal.

2.5. Construction of Endmembers Extraction Model

According to the previous studies in which the spectral vegetation index [62,63] and
surface reflectance [64] were both used for vegetation coverage estimation based on DPM,
NDVI is the most commonly used vegetation index in DPM, and then the FCC calculation
formula is depicted as in Equation (1):

fc =
NDVI −NDVIsoil

NDVIveg −NDVIsoil
(1)

where NDVI is derived from the remote sensing imagery, NDVIveg and NDVIsoil NDVIscil
are respectively the NDVI value of pure pixel of green vegetation and bare soil, and fc
represents FCC [62].

As Equation (1) shows, NDVIveg and NDVIsoil jointly determine the value of FCC.
Therefore, the accurate extraction of vegetation and bare soil endmember information is
critical to the FCC estimation.

In order to find the vegetation and bare soil pixels of spectral purity, we proposed a
bounding envelope method based on vegetation indices (named BEVIs hereafter) based on
Landsat 8 multispectral images to extract green vegetation and bare soil endmembers on
the regional scale, relying on the powerful computing of the GEE platform. The BEVIs were
built on the basis that the higher the vegetation index value, the higher the proportion of
vegetation in the pixel, and the higher the bare soil index value, the higher the proportion
of soil in the pixel.

In this study, we used the NDVI and MBSI [65] (short for the modified bare soil index
proposed in the latest study in 2021) to identify forest and soil information. First, the
two indices were derived from the median composite generated from L8SR according to
Equations (2) and (3), and then all water pixels were masked by NDVI > 0 since the NDVI
value of water bodies was generally negative to eliminate the effect of water on the statistics
for pixel values as much as possible.

NDVI =
NIR− RED
NIR + RED

(2)

MBSI =
SWIR1− SWIR2−NIR
SWIR1 + SWIR2 + NIR

+ f (3)

where RED, NIR (i.e., near-infrared), SWIR1, and SWIR2 are band 4, band 5, band 6, and
band 7 of Landsat 8 OLI, respectively, and f = 0.5 for Landsat 8 OLI [65].

Additionally, we performed statistical analysis on the NDVI and MBSI images across
the entire region, and acquired their respective maximum values and standard deviations,
which were denoted as NDVImax, NDVIstd, MBSImax, and MBSIstd. Accordingly, the regions
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of green vegetation and bare soil were delineated by a bounding envelope instead of a
single value. The NDVImax and MBSImax were regarded as the upper boundary (named
UBveg and UBsoil), and the NDVIstd and MSBIstd together with an additional parameter k
were used to determine the lower boundary (named LBveg and LBsoil).

The lower boundary of vegetation regions (LBveg) and the vegetation endmembers
(named EMveg) were depicted as:

LBveg = NDVImax − k×NDVIstd (4)

EMveg =
[
LBveg, UBveg

]
(5)

The lower boundary of soil regions (LBsoil) and the bare soil endmembers (named
EMsoil) were determined as:

LBsoil = MBSImax − k×MBSIstd (6)

EMsoil = [LBsoil, UBsoil] (7)

The key k value of the BEVIs was used to identity the information boundary between
vegetation and bare soil, and the larger the k, the more raster pixels were recognized as
endmembers. Therefore, parameter k is critical to the endmember determination in this
study. We determine the optimal k by comparing the changes in the model accuracy when
k is set to seven different values in the range (0, 0.3).

2.6. Estimation of Forest Canopy Closure and Validation

To accurately estimate the FCC, we introduced the BEVIs to delineate the vegetation
and soil endmembers using Equations (5) and (7). The spectral information used to rep-
resent the two compositions in the mixed pixel was characterized by the mean value of
NDVI in their respective endmembers, which can be expressed in mathematical form as
Equations (8) and (9). As a result, FCC can be calculated according to Equation (1) using
the extracted NDVIveg and NDVIsoil.

NDVIveg = Mean(NDVIEMveg) (8)

NDVIsoil = Mean(NDVIEMsoil) (9)

where NDVIEMveg and NDVIEMveg respectively represent the NDVI value of all vegetation
and soil endmembers.

To quantitatively clarify the model performance of the FCC prediction, three metrics
consisted of RMSE, rRMSE, and R2 that were widely used to assess the results of regression
operations and the 71 field survey plots that recorded the ground-truth FCC values were
used for accuracy assessment.

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n
(10)

rRMSE =
RMSE

y
(11)

R2 = 1−
∑
i
(yi − ŷi)

2

∑
i
(ŷi − y)2 (12)

where ŷi, yi, and y were respectively the ith measured FCC, the ith predicted FCC, and
the average of all of the measured FCC. The parameter n recorded the total number of the
field plots.
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In addition, cross validation was used to further analyze the portability of the model
by applying the calibrated BEVIs using Landsat 8 to Sentinel-2 images for FCC estimation.
Because the parameter f in the calculation formula of MBSI (Equation (3)) cannot be
determined in Sentinel-2 images, MBSI was replaced by BSI, which was described as
Equation (13). The accuracy was validated using the same metrics and field plots as
Landsat 8.

BSI =
(SWIR2 + RED)− (SWIR2 + BLUE)
(SWIR2 + RED) + (SWIR2 + BLUE)

(13)

where BLUE, RED, NIR (i.e., near-infrared), and SWIR2 are the band 2, band 4, band 8, and
band 12 of the Sentinel-2 images.

3. Results

The model parameter k of NDVI and MBSI were first determined using Landsat 8 images,
and then the k value was simultaneously applied to estimate the FCC based on both L8SR
and S2SR images.

3.1. Optimal Parameter Value Determination for Vegetation Indices

The determination of the k value is the premise of the model calculation. A detailed
analysis was performed based on Landsat 8 images to stabilize the model parameters.
Equations (4) and (6) show the influence of the parameter k value on BEVIs, as depicted in
Figure 4. The model precision gradually increases when k increases from 0 to 0.1, and the
model precision gradually decreases when k is greater than 0.1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 4. Curve of model accuracy variation with k value. 

Corresponding to different k values, the other six parameters of the BEVIs were also 
calculated, among which LBveg and LBsoil changed with the k values, while UBveg and UBsoil 
were fixed. When k was between 0–1, the NDVI of vegetation and soil were both stable, 
about 0.99 and 0.04, respectively. When k was between 0.1–0.3, the NDVI of vegetation 
decreased to 0.96–0.98, and the NDVI of soil increased to 0.18–0.19 (Table 2). Therefore, 
when k falls into the range (0, 0.1), the model parameters are most stable. Combined with 
the results in Figure 4, 0.1 was selected as the optimal parameter k value in this study. 

Table 2. Details of parameter values corresponding to different k values. 

k Value UBveg LBveg UBsoil LBsoil NDVIveg NDVIsoil 
0.00 

0.999 

0.999 

0.460 

0.460 0.999 0.040 
0.05 0.990 0.459 0.994 0.040 
0.10 0.982 0.456 0.987 0.040 
0.15 0.973 0.453 0.985 0.198 
0.20 0.965 0.449 0.979 0.198 
0.25 0.956 0.446 0.974 0.174 
0.30 0.948 0.443 0.964 0.181 

3.2. Forest Canopy Closure Estimation and Validation 
We carried out canopy closure inversion at a regional scale with k = 0.1 using Landsat 

8 and Sentinel-2 images based on the GEE platform, and the results are respectively shown 
in Figures 5 and 6. The spatial distribution of the canopy closure estimated by the two 
satellite images was extremely similar. High-value areas are mainly distributed in south-
ern, western, and northwestern mountainous areas. The maximum value of the canopy 
closure derived from Landsat 8 in Chifeng city was about 0.91, and the value derived from 
Sentinel-2 was approximately 0.98. Because the same spectral indices and model were 
used, the difference in the results was probably caused by the inconsistency in image res-
olution and spectral range. 

The scatter plots (Figures 7 and 8) show the accuracy validation results using the 
same 71 field plots data, which proved the methods proposed in this study have great 
potential for application at the regional scale. When the Landsat 8 images were adopted, 
a reliable result was produced (R2 = 0.6, RMSE = 0.13, 1-rRMSE = 80%), and the result was 
further improved when the higher spatial resolution Sentinel-2 was used (R2 = 0.81, RMSE 
= 0.09, 1-rRMSE = 86%). 

Figure 4. Curve of model accuracy variation with k value.

Corresponding to different k values, the other six parameters of the BEVIs were
also calculated, among which LBveg and LBsoil changed with the k values, while UBveg
and UBsoil were fixed. When k was between 0–1, the NDVI of vegetation and soil were
both stable, about 0.99 and 0.04, respectively. When k was between 0.1–0.3, the NDVI of
vegetation decreased to 0.96–0.98, and the NDVI of soil increased to 0.18–0.19 (Table 2).
Therefore, when k falls into the range (0, 0.1), the model parameters are most stable.
Combined with the results in Figure 4, 0.1 was selected as the optimal parameter k value in
this study.
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Table 2. Details of parameter values corresponding to different k values.

k Value UBveg LBveg UBsoil LBsoil NDVIveg NDVIsoil

0.00

0.999

0.999

0.460

0.460 0.999 0.040
0.05 0.990 0.459 0.994 0.040
0.10 0.982 0.456 0.987 0.040
0.15 0.973 0.453 0.985 0.198
0.20 0.965 0.449 0.979 0.198
0.25 0.956 0.446 0.974 0.174
0.30 0.948 0.443 0.964 0.181

3.2. Forest Canopy Closure Estimation and Validation

We carried out canopy closure inversion at a regional scale with k = 0.1 using Landsat
8 and Sentinel-2 images based on the GEE platform, and the results are respectively shown
in Figures 5 and 6. The spatial distribution of the canopy closure estimated by the two
satellite images was extremely similar. High-value areas are mainly distributed in southern,
western, and northwestern mountainous areas. The maximum value of the canopy closure
derived from Landsat 8 in Chifeng city was about 0.91, and the value derived from Sentinel-
2 was approximately 0.98. Because the same spectral indices and model were used, the
difference in the results was probably caused by the inconsistency in image resolution and
spectral range.
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The scatter plots (Figures 7 and 8) show the accuracy validation results using the same
71 field plots data, which proved the methods proposed in this study have great potential
for application at the regional scale. When the Landsat 8 images were adopted, a reliable
result was produced (R2 = 0.6, RMSE = 0.13, 1-rRMSE = 80%), and the result was further
improved when the higher spatial resolution Sentinel-2 was used (R2 = 0.81, RMSE = 0.09,
1-rRMSE = 86%).
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4. Discussion

The proposed method was able to directly determine bare soil and vegetation end-
members through statistical analysis without relying on sample points at the regional scale,
which can especially alleviate the difficulty of surveying large-scale forest ground truth
samples. We combined the BEVIs and the dimidiate pixel model to achieve the regional-
scale forest closure estimation using Landsat 8 and Sentinel-2 satellite images. There were
two key points: one was the determination of the key parameters of the model, and the
other was the model robustness and accuracy verification.

4.1. Model Key Parameters Calibration

The accuracy of the vegetation and bare soil samples is critical for estimating canopy
closure with the dimidiate pixel model [66,67], but samples are generally acquired by
field sample plots or visual interpretation, which often results in significant time and
economic costs and is susceptible to human factors. Instead, we considered using the
computing power of GEE to determine endmember information through the BEVIs and
satellite-acquired indices. As Figure 4 shows, a large threshold introduced more errors
in endmember selection and led to a decline in model accuracy, which indicates that the
estimation accuracy was not linearly positively correlated to the number of endmembers.
Note that the endmember determination proposed in this study varies with satellite data
sources and study areas, because the statistical results on the spectral indices generally
change with specific items [67]. The NDVI and MBSI derived from the primary surface
reflectance of the visible, near-infrared, and short-wave infrared bands of L8SR in Chifeng
city were used to calibrate the k value and identify vegetation and bare soil, because they
were proven to be the most effective indices in multispectral images that can depict the
spectral information of vegetation and bare soil [68]. In the follow-up study, we will further
optimize the key parameters of the model by combining more satellite spectral information
such as red-edge bands.

4.2. Model Robustness and Accuracy Verification

We verified the model accuracy using independent field samples and assessed the
model robustness through comparisons with different spatial resolution. The evalu-
ation results using field plots indicate that the FCC estimation accuracy using 30 m
Landsat 8 images (R2 = 0.6, RMSE = 0.13, accuracy = 80%) is comparable to previous rele-
vant studies (R2 varied between 0.4 and 0.8) [42,69,70]. In the same study area, Hua et al.
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used three models, including multiple stepwise regression (MSR), back propagation neu-
ral network (BPNN), and a Li–Strahler geometric-optical (Li–Strahler GO) model with
Sentinel-2 data for FCC estimation in the southern regions of Chifeng city. The results
showed that the relative error values of the three models were 16.97%, 20.76%, and 24.83%,
respectively [47]. In this study, the canopy density accuracy is further improved (R2 = 0.81,
RMSE = 0.09, accuracy = 86%) when 20 m Sentinel-2 images were used (Figures 7 and 8).
This shows that the proposed method has a reliable accuracy in the estimation of canopy
density at the regional scale, and it has good robustness evidenced by comparing the appli-
cation of the proposed method with two kinds of sensor images. The better performance of
model accuracy in high spatial resolution images may be due to the fact that high spatial
resolution images can provide more detailed information about vegetation and bare land.

4.3. Strengths and Limitations

The approach used in this study has the advantages that the modeling process does
not require ground sample plots, and possesses high operating efficiency and portability
utilizing the computing power of GEE. In this study, the inversion accuracy of FCC was
affected by the endmember extraction precision that was determined by the k value of the
BEVIs algorithm. Additionally, the estimation accuracy also depends on the acquisition
time of the selected satellite image. The images in the growing season should be selected
to ensure that all forest types in the study area are not defoliated and the spectral charac-
teristics of the images are prominent. The limitation of the proposed method is that the
calibration of the model parameters requires manual determination of the value range. We
will further realize the adaptive calibration of model parameters in a wider range of values,
continue to explore the influence of more spatial resolution images on the model accuracy,
and carry out further comparative experiments in different study areas.

5. Conclusions

In the present study, we proposed a promising approach to select vegetation and
soil endmembers using satellite images, and estimated the forest canopy closure at the
regional scale based on DPM combined with Landsat 8 and Sentinel-2 Satellite images
within the GEE platform. We found that the area with the highest canopy density in
Chifeng city was mainly distributed in the western mountainous region, and the modeling
method provided reliable performance, as evidenced by the accuracy based on Landsat 8
(R2 = 0.6, RMSE = 0.13, and 1-rRMSE = 80%) and Sentinel-2 (R2 = 0.81, RMSE = 0.09, and
1-rRMSE = 86%) images. Meanwhile, the optimal threshold value was found to be 0.1 in the
range from 0 to 0.3 in intervals of 0.05. Overall, this work can help forestry authorities better
understand the detailed spatial distribution of forest resources and realize the estimation of
forest canopy density at the regional scale without ground plots, which indicates that it can
fully utilize satellite technology to reduce the time and labor costs associated with national
forest resource survey and monitoring programs.
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