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Abstract: Water body mapping is an effective way to monitor dynamic changes in surface water,
which is of great significance for water resource management. Super-resolution mapping is a
valid method to generate high-resolution dynamic water body maps from low-spatial-resolution
images. However, the accuracy of existing super-resolution mapping methods is not high due
to the low accuracy of fraction images and the insufficiency of spatial pattern information. To
solve this problem, this paper proposes a spectral similarity scale-based multiple-endmember
spectral mixture analysis (SSS-based MESMA) and a multiscale spatio-temporal dependence
method based on super-resolution mapping (MESMA_MST_SRM) for water bodies. SSS-based
MESMA allows different coarse pixels to have different endmember combinations, which can
effectively improve the accuracy of spectral unmixing and then improve the accuracy of fraction
images. Multiscale spatio-temporal dependence adopts both pixel-based and subpixel-based
spatial dependence. In this study, eight different types of water body mappings derived from
the Landsat 8 Operational Land Imager (OLI) and Google Earth images were employed to
test the performance of the MESMA_MST_SRM method. The results of the eight experiments
showed that compared with the other four tested methods, the overall accuracy (OA) value,
as well as the overall distribution and detailed information of the water map generated by the
MESMA_MST_SRM method, were the best, indicating the great potential and efficiency of the
proposed method in water body mapping.

Keywords: water body mapping; super-resolution mapping; data fusion

1. Introduction

Surface water is one of the major components of the terrestrial water storage. The
global terrestrial water storage is estimated to have surface water (36.08 ± 9.89%),
groundwater (37.56 ± 16.57%), soil water (26.36 ± 7.46%), and others (vegetation water,
snow, and ice) [1,2]. Therefore, the changes in surface water not only have substantial
effects on terrestrial water storage, but also have a great impact on human beings.
Unfortunately, water pollution, natural calamities, and land-use changes have caused
serious water scarcity in many countries [3–5]. Therefore, monitoring the temporal and
spatial variations in surface water is an important aspect of water resource programming
and management, and it is also a significant measure for economic development and
water conservation [6].

Water body mapping is an effective way to monitor the dynamic changes in sur-
face water [7]. Traditional water body mapping methods usually rely on artificial
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field surveys, which can generate highly accurate results. However, this method is
time-consuming and laborious [8]. In contrast, remote sensing (RS) technology can
track water information in real time at a low cost [9–12]. Many RS-based approaches
have been proposed for water body mapping, such as water indices [13,14], support
vector machines (SVMs) [15], decision trees (DTs) [16], and neural networks (NNs) [17].
Most of the existing water body mapping methods are based on a single image and
are calculated at the pixel scale. In practice, to achieve long-term and continuous wa-
ter body mapping, medium- or low-spatial-resolution remotely sensed images with
a high temporal resolution, such as Moderate Resolution Imaging Spectroradiometer
(MODIS) [18–21] and Landsat [22–24] images, are commonly used. Based on the con-
tinuous observation of these medium- or low-spatial-resolution images, time series
datasets of surface water bodies have been generated. For example, Min Feng et al.
produced a global, 30-m-resolution inland surface water dataset with an automated
algorithm using Landsat images [25]; Dai Yamazaki et al. developed a global 90 m water
body map using multi-temporal Landsat images [26]; and Haoming Xia et al. generated
a surface water dataset of the Huai River Basin Area during 1989–2017 using Land-
sat Data and the Google Earth Engine [27]. However, the spatial resolutions of these
datasets are not high enough (tens of meters) to identify micro or small surface water
bodies [28]. As a matter of fact, in medium- or low-spatial-resolution remotely sensed
images, water patches can be smaller than the spatial resolution of these images. When
these images are applied to micro or small water bodies, the phenomenon of mixed
pixels is serious. In a mixed pixel, one pixel is composed of two or more land cover
classes. If a pixel-based classification method is still used on water body extraction, it
will lead to low accuracy results [29,30]. Therefore, in order to achieve continuous and
high-precision monitoring of water bodies, especially for the micro or small ones, more
advanced methods are needed.

Super-resolution mapping (SRM) is a promising way to obtain high-spatial resolution
land cover maps from coarse remotely sensed images [31]. In SRM, a mixed pixel is
divided into a number of subpixels based on a zoom factor. Then, the subpixels are
located according to the given fraction image and spatial pattern. Finally, the resultant
high-spatial-resolution land cover map is generated after all spatial locations of subpixels
are determined [32]. Hence, the accuracy of SRM results relies primarily on the accuracy
of the fraction image obtained by spectral unmixing and the spatial pattern derived from
the spatial prior information. SRM has been widely applied to land use and cover change
(LUCC) tasks [33–35], such as urban flood mapping [36], lake and coastline mapping [37],
and forest mapping [38].

As an important branch of LUCC, SRM has also been applied to water body map-
ping. For example, Ling et al. evaluated the temporal changes in reservoirs by fusing
Landsat and MODIS images [39]; Yang et al. extracted surface water bodies by using
Sentinel-3 and Landsat images [40]; Tran et al. implemented the Variational Interpola-
tion (VI) algorithm to recover satellite-based flood maps by removing cloud pollution
from MODIS [41]; and Osorio et al. identified flood areas from MODIS images and
digital elevation models (DEMs) [42]. Although the existing methods have made some
progress in water body mapping, some problems still need to be improved. On the
one hand, the method for selecting endmembers must be improved. Most existing
endmember selection methods choose a fixed number of endmembers for each land
cover class and use the mean value of the input endmembers for each coarse pixel.
However, unfortunately, different pixels often have different endmember combinations.
The fixed endmember combination and mean endmember value cannot reflect the spec-
tral differences between the same objects and the similarities among different objects.
On the other hand, existing spatial patterns only consider spatial dependence at the
subpixel scale. However, the target subpixel is surrounded by neighborhood pixels and
subpixels. Therefore, the spatial dependence of land cover should be considered not
only at the subpixel scale but also at the pixel scale [43]. Spatial dependence calculated
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at the subpixel scale can maximize the spatial corrections of neighboring subpixels
and make the resultant fine-resolution land cover map locally and spatially smooth;
spatial dependence based on the pixel scale can maximize the spatial corrections of
neighboring coarse pixels and provide overall land cover information for the resultant
fine-resolution land cover map [44].

To solve the endmember selection problem [45–47], researchers try to apply multiple-
endmember spectral mixture analysis (MESMA) in spectral unmixing. MESMA allows
each coarse pixel to have a unique endmember combination. Therefore, all potential
endmembers must be calculated to determine the best-fit endmember for each coarse
pixel. When the spectral library is large, this algorithm is very complex and time-
consuming [48]. Hence, in this study, we introduce a spectral similarity scale (SSS) index
into MESMA processing to enhance the computational efficiency of traditional MESMA.
The SSS index used Euclidean distance and correlation to rapidly describe the similarity
between coarse pixels and the candidate endmembers to enhance the computational
efficiency of traditional MESMA.

Moreover, we combined the proposed SSS-based MESMA with a multiscale
spatiotemporal dependence model and proposed an integrated super-resolution
mapping method: MESMA_MST_SRM, for water body mapping. In the proposed
MESMA_MST_SRM approach, MESMA allows different pixels to have different
numbers and types of endmembers. The proposed endmember selection method can
fully express the spectral variability among pixels and is expected to improve the
accuracy of the fraction image in the spectral term. The multiscale spatially dependent
model adopted two-level spatial dependence to provide holistic and detailed spatial
pattern information for subpixel location processing in the spatial term. A former
fine spatial resolution is employed in MESMA_MST_SRM to provide temporal prior
information in the temporal term. Finally, the proposed MESMA_MST_SRM method
generates a high-resolution water body map from a coarse-resolution input image by
integrating the spectral, spatial, and temporal terms.

Thus, the objectives of this study are (1) to propose an integrated super-resolution
mapping method (MESMA_MST_SRM) for generating high spatial-temporal water body
mapping, (2) to apply the proposed method on different shapes and sizes of water bodies
to verify the superiority of MESMA_MST_SRM. Furthermore, this study will provide a
new perspective on solving the contradiction between temporal and spatial resolution
of single source remote sensing images in surface water body mapping and promote the
development of water resource management.

The remainder of this paper is organized as follows: A detailed description and
introduction of the MESMA_MST_SRM method are presented in Section 2. To verify the
mapping accuracy of the proposed approach on water bodies with different shapes and
sizes, we divide water bodies into two shapes, which are ribbon-like bodies of water such
as rivers (also called river-like water in this paper) and contained bodies of water such as
lakes (also called lake-like water in this paper). Each type of water body is further classi-
fied into four sizes: large, medium, small, and micro. Comparative experiments on these
eight kinds of water bodies are executed and analyzed in Sections 3 and 4. Section 5 gives
the conclusion.

2. Materials and Methods

This chapter includes three parts: the first part introduces the study area and
experiment data; the second part is the methodology part, in which the overall frame-
work of MESMA_MST_SRM and the key three aspects of MESMA_MST_SRM are
described in detail; and the third part gives the concrete realization steps and accuracy
assessment methods.
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2.1. Study Area and Data Preparation

For the proposed MESMA_MST_SRM method, three kinds of data were used as
inputs; namely, the current Landsat 8 OLI image offering spectral, temporal, and spatial
information for the processing of subpixel locations; the previous Google Earth water body
map providing additional prior information for the location process; and the current Google
Earth water body map used for model validation. Landsat-8 images were obtained from the
United States Geological Survey (USGS) Earth Explorer (https://earthexplorer.usgs.gov).
The Google Earth water body map was obtained from Google Earth images, which were
derived from 91 Weitu Assistant Enterprise Edition images.

Water bodies of different shapes and sizes have different characteristics. To verify
the adaptability and robustness of the MESMA_MST_SRM method, water bodies of
different types were utilized for testing. Because of the multitude of types, it was
not possible to test all kinds of water bodies. We sorted the relevant studies and
data and then selected 8 representative water bodies as the experimental objects of
this project to test the proposed MESMA_MST_SRM method [49–52]. Ribbon-like
bodies of water, such as rivers, and contained bodies of water, such as lakes, were
regarded as the typical types of water bodies in this study. Each type of water body
had four different sizes: micro, small, medium, and large. Finally, 8 kinds of water
bodies with different shapes and sizes were selected as typical experimental objects
to verify the accuracy of the proposed method. The average river width and lake area
were used to express the sizes of ribbon-like bodies of water and contained bodies of
water, respectively.

As shown in Figure 1, 8 study areas with different water types and sizes in China were
chosen as the experimental objects. Specifically, each experiment has three inputs: a Landsat
8 image at the current time (ai(i = 1, 2, . . . 8) in Figure 1), a water body map extracted from
the Google Earth map at the previous time (bi(i = 1, 2, . . . 8) in Figure 1), and a water body
map extracted from the Google Earth map at the current time (ci(i = 1, 2, . . . 8) in Figure 1).
Specific information about the experimental data is displayed in Table 1.

Table 1. Information about the Experimental Data.

Water Name Size Data Source Width/Areas Location

Tongshun River Micro
Landsat-8, 2019

113◦34′53.04”E
30◦10′27.90”N

Google Earth, 2014 approximately 50 m
Google Earth, 2019

Lanxi River Small
Landsat-8, 2019

112◦28′11.48”E
28◦37′21.69”N

Google Earth, 2016 approximately 140 m
Google Earth, 2019

Sheshui River Medium
Landsat-8, 2018

114◦23′41.75”E
30◦56′57.32”N

Google Earth, 2011 approximately 190 m
Google Earth, 2018

Huaihe River Large
Landsat-8, 2019

117◦37′54.57”E
32◦55′8.53”N

Google Earth, 2013 approximately 490 m
Google Earth, 2019

Xipenghe Lake Micro
Landsat-8, 2018

115◦42′31.98”E
30◦8′54.76”N

Google Earth, 2014 approximately 0.3 km2

Google Earth, 2018

South Lake Small
Landsat-8, 2021

114◦21′20.47”E
30◦29′38.36”N

Google Earth, 2013 approximately 7.6 km2

Google Earth, 2021

https://earthexplorer.usgs.gov


Remote Sens. 2022, 14, 2050 5 of 21

Table 1. Cont.

Water Name Size Data Source Width/Areas Location

Qilu Lake Medium
Landsat-8, 2020

102◦46′19.02”E
24◦9′57.29”N

Google Earth, 2014 approximately 36.73 km2

Google Earth, 2020

Koruk Lake Large
Landsat-8, 2018

124◦6′6.66”E
46◦17′7.11”N

Google Earth, 2010 approximately 57 km2

Google Earth, 2018
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the data for the small river; (3) (a3–c3) are the data for the medium river; (4) (a4–c4) are the data for
the large river; (5) (a5–c5) are the data for the micro lake; (6) (a6–c6) are the data for the small lake;
(7) (a7–c7) are the data for the medium lake; and (8) (a8–c8) are the data for the large lake.
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2.2. Methodology
2.2.1. The Framework of MESMA_MST_SRM

The target of MESMA_MST_SRM is to generate a fine-resolution water body map from
an input coarse-spatial-resolution remotely sensed image and the auxiliary information.
In this study, achieved fine-resolution water body map was employed as the auxiliary
information, and it is obtained from the fine-resolution remotely sensed image. Let Y be a
coarse-spatial-resolution remotely sensed image at time T2 containing M × N pixels with
a spatial resolution of R. Let Xpre be the achieved fine-resolution water body map at time
T1 containing M× s× N × s pixels with a spatial resolution of r. In addition, Xpre and Y
cover the same geographic area. The zoom factor s between Xpre and Y is R/r. Therefore,
the resultant land cover water body map X at time T2 contains M× s× N × s pixels with a
spatial resolution of r. Generally, the objective function of MESMA_MST_SRM includes
three parts and is often formulated as

U
(
X | Y, Xpre

)
= Uspectral(X | Y) + αUspatial(X) + βUtemporal(X | Xpre

)
(1)

where U
(
X
∣∣Y, Xpre

)
is the objective function for X, which is determined by Y and Xpre,

Uspatial(X|Y), Uspatial(X) and Utemporal are the spectral term, spatial term, and temporal
term, respectively. α and β are the weighting coefficients that control the weights of the
three energy terms. Based on the theory of Bayesian maximum a posteriori probability, the
optimal resultant water body map X̂ is generated when U

(
X
∣∣Y, Xpre

)
reaches its minimum

value. Therefore, the key issue of MESMA_MST_SRM is to define the three energy terms.
The flowchart of the MESMA_MST_SRM method is shown in Figure 2, and the three energy
terms are described in detail in the following text.
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2.2.2. Spectral Term on SSS-Based MESMA

The spectral term in MESMA_MST_SRM aims to make the results conform to the
input image Y. The fraction image, which is calculated through spectral unmixing of image
Y and then applied to initialize the resultant fine-spatial-resolution water body map, is
used to link the input image and the resultant map in this term. Therefore, the accuracy of
the fraction images is vital for achieving the best results. Endmembers, which are regarded
as the purest and smallest units in an image, play an important role in spectral unmixing
and fraction image calculation. At present, popular endmember selection methods usually
choose a fixed number of endmembers for each class and use their average spectral value
to represent the spectral value of the land cover class. This kind of method is simple and
easy to implement, but it ignores the spectral differences between the endmembers of
different pixels.

To clearly describe the spectral differences within pixels and the similarities among
pixels, a spectral similarity scale-based multiple-endmember spectral mixture analysis (SSS-
based MESMA) model is employed in this study. In the SSS-based MESMA model, each
coarse pixel in image Y has specific numbers of endmembers and endmember combinations.
Suppose that C is the number of land cover classes; the specific steps of SSS-MESMA are as
follows:

(1) Select the best-fit endmember for each coarse pixel in the land cover class ci based
on the spectral similarity scale (SSS).

SSS is an index that integrates spectral brightness and spectral shape to evaluate the
similarity of two spectral vectors, which can be calculated as [53]:

SSSijck =
√

d2
(
yij, eck

)
+ r̂2 (2)

where SSSijck represents the spectral similarity scale of the spectral vector of pixel pij in
Y and the spectral vector of the k-th candidate endmember in land cover class c; yij is the
spectral vector of pixel pij in Y; eck is the spectral vector of the k-th candidate endmember
in land cover class c; d represents the Euclidean distance between two spectral vectors; and
r̂ is the correlation between yij and eck, which can be calculated as follows:

r̂ = 1− r2

r2 =

 1
B−1

B
Σ

b=1

(
yijb−µyij

)
(eckb−µeck )

σyij σeck

2 . (3)

where µyij and σyij are the mean value and standard deviation of yij, respectively, and µeck

and σeck are the mean value and standard deviation of eck; B is the number of bands of Y.
In the SSS algorithm, a smaller SSS value means greater spectral similarity between

pixel pij and the candidate endmember. Therefore, according to the minimum SSS principle,
the best-fit endmember for each coarse pixel at different land cover classes can be decided.

(2) Determine the number of endmembers and endmember combinations for each
coarse pixel in Y. There are two classes (water and nonwater) in this study. Therefore, each
coarse pixel in Y has two possible numbers of endmembers: one endmember and two
endmembers. When the coarse pixel has one endmember, it could be water or nonwater.
Generally, the endmember with the smallest SSS value is the optimal endmember. For cases
with two endmembers, the endmember combination for a coarse pixel can only follow one
case: partial water and partial nonwater. Finally, two endmember combinations for the
coarse pixel are obtained.

(3) The endmember combinations are sequentially input into the linear mixed model
to calculate the fraction value and the root mean square error (RMSE) value. The fraction
value with the smallest RMSE is selected as the final fraction result. The linear mixture
model (LMM) can be defined as follows:
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~
f ij = argmin||y ij−Ef ij||

2 (4)

0 ≤ fij,c ≤ 1, c = 1, · · · , C (5)

C

∑
c=1

fij,c = 1 (6)

where f̃ij represents the result of the linear mixture model for pixel pij; yij is the spectral
vector of coarse pixel pij; E is the optimal endmember spectral vector of all classes in pixel
pij; fij is the fraction vector of all classes in pixel pij; C is the number of land cover classes;
and fij,c is the proportion of class c in pixel pij, which is in the range from 0 to 1.

(4) Repeat the above steps on the whole image and generate the final fraction image.
The objective function of the spectral term can be defined as follows:

Uspectral(X | Y) =
M

∑
i=1

N

∑
j=1

C

∑
c=1
‖yijc − E fijc‖2 (7)

2.2.3. Spatial Terms Based on Multiscale Spatiotemporal Dependence

The purpose of the spatial term is to provide class label information for the central
subpixel through its neighbors. In general, a subpixel has two neighboring systems: pixel-
scale and subpixel-scale neighboring systems. Suppose that the sizes of the neighborhood
window at the pixel scale and subpixel scale are 3 and 5, respectively. The central subpixel
has 8 neighboring pixels and 24 neighboring subpixels, which are used to help identify
the class label for the central subpixel according to the maximum spatial dependence.
Therefore, the spatial term includes two parts: a subpixel-based spatial dependence term
and a pixel-based spatial dependence term.

Uspatial(X | Y) = δUspatial
sp (X|Y) + (1− δ)Uspatial

cp (X|Y ) (8)

(1) Spatial Term at the Subpixel Scale: The spatial term at the subpixel scale is used
to keep the resultant map locally smoother. The maximum spatial dependence principle,
which believes that a closer distance between the pixels may result in similar class labels, is
employed in the spatial term. Under this principle, each central subpixel is affected by the
surrounding w× w− 1 neighboring subpixels, where w is the window size. The objective
function of this term can be modeled as

Uspatial
sp (X|Y ) = −

M

∑
i=1

N

∑
j=1

s2

∑
m=1

∑
lεNsp(aij,m)

φ
(
c2
(
aij,m

)
, c2(al)

)
η
(
aij,m, al

)
(9)

where s is the zoom factor. aij,m is the m-th subpixel in the coarse pixel pij in Y, and
Nsp
(
aij,m

)
is the subpixel-scale neighborhood system for aij,m. al is the l-th neighbor-

ing subpixel of aij,m. c2
(
aij,m

)
and c2(al) are the class labels of subpixels aij,m and al in

Y, respectively.
φ
(
c2
(
aij,m

)
, c2(al)

)
describes the spatial dependence between aij,m and al .

φ
(
c2
(
aij,m

)
, c2(al)

)
=

{
1 c2

(
aij,m

)
= c2(al)

0 c2
(
aij,m

)
6= c2(al)

(10)

The influence weight of neighboring subpixel al on the central subpixel aij,m varies
with their distance. The Euclidean distance between al and aij,m is used to calculate the
weight [54]:
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η
(
aij,m, al

)
=

1
Ω
· exp

(
−3d

(
aij,m, al

)
/σsp

)
(11)

where d
(
aij,m, al

)
is the Euclidean distance between aij,m and al ; σsp is a nonlinear dis-

tance attenuation parameter, and Ω is a normalization constant used to ensure that
Σl∈NL

sp(aij,m)ω
(
aij,m, al

)
= 1.

(2) Spatial Term at the Pixel Scale: The spatial term at the pixel scale is helpful for
the land cover class in terms of keeping the holistic distribution information at the pixel
scale. The objective of this term is to maximize the spatial correlations between the central
subpixel aij and its neighboring w× w− 1 coarse pixels pk, where w is the window size of
the pixel neighborhood. The objective function of this term can be expressed as:

Uspatial
cp (X|Y) = −

M

∑
i=1

N

∑
j=1

s2

∑
m=1

∑
kεNcp(aij,m)

ψc2(aij,m)(pk)v
(
aij,m, pk

)
(12)

where Ncp
(
aij,m

)
is the pixel-scale neighborhood system for aij,m. ψc2(aij,m)(pk) represents

the contribution coefficient of pk to the central subpixel in the class of c2
(
aij,m

)
. The value of

ψc2(aij,m)(pk) equals the fraction value of pk in Y. v
(
aij,m, pk

)
is the distance weight function,

which represents the influence weight of the neighboring pixel pk on the central subpixel
aij,m, and the formula is based on a Gaussian function as follows:

v
(
aij,m, pk

)
= exp

(
−

d2(aij,m, pk
)

σ2
cp

)
(13)

where σcp is a nonlinear distance attenuation parameter. d
(
aij,m, pk

)
is the Euclidean

distance between aij,m and pk.

2.2.4. Temporal Term

The temporal term is used to obtain the prior temporal information from the archived
high-spatial-resolution water body map. Suppose aij,m is the m-th subpixel in the coarse
pixel pij in Y at time T2. aij,m is affected by its temporal neighbor ak at time T1 and
the transition probability. Therefore, the objective function of the temporal term can be
expressed as follows:

Utemporal(X | Xpre
)
= −

M

∑
i=1

N

∑
j=1

s2

∑
m=1

∑
k∈Nt(aij,m)

P
(
c2
(
aij,m

)
| c1(ak)

)
(14)

where Nt
(
aij,m

)
is the temporal neighborhood of the central subpixel aij,m. P

(
c2
(
aij,m

)∣∣c1(ak)
)

is the transition probability, which expresses the transition and change probabilities among
different land cover classes from time T1 to time T2. c2

(
aij,m

)
is the class label of the central

subpixel aij,m at time T2. c1(ak) is the class label of pixel ak at time T1. The C × C transition
probabilities make up the transition probability matrix T. In this study, two classes are
contained in Y. The transition probability matrix T can be expressed as

T =

[
P(c2(·) = ωl | c1(·) = ωl) P(c2(·) = ωk | c1(·) = ωl)
P(c2(·) = ωl | c1(·) = ωk) P(c2(·) = ωk | c1(·) = ωk)

]
(15)

where c1(·) and c2(·) are the class labels of an arbitrary pixel in the previous fraction image
and the current fraction image, respectively. P is calculated as [23]
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P(c2(·) = ωι | c1(·) = ωκ) =

M×N×s2

∑
i=1

I(c1(ai) = ωκ AND c2(ai) = ωι)

M×N×s2

∑
i=1

I(c1(ai) = ωk)

(16)

where c1(ai) is the class label of ai at time T1. Assume the value of c1(ai) is ωk(k ∈ 1, 2, . . . , C),
if the transition probability from class ωk to class ωl(l ∈ 1, 2, . . . , C) is high, the class label
of the central subpixel aij,m at time T2 should be labeled as ωl . Otherwise, it should be
labeled as ωk. I(c1(ai) = ωk) is an indicator function that is equal to 1 when c1(ai) = ωk
and 0 otherwise.

2.3. Implementation of MESMA_MST_SRM and an Accuracy Evaluation

The objective function can be constructed after constructing the above three energy
terms. Then, the final resultant high-resolution water body map is generated by opti-
mizing the objective function in Formula (1). The iterative conditional model (ICM), a
fast-converging algorithm, is adopted in the iterative process to realize the global energy
minima. The implementation steps of the proposed MESMA_MST_SRM are as follows.

(1) Preprocess the input images and initialize the parameters of the zoom factor, weight
coefficients, and window size.

(2) Choose the optimal endmembers for each pixel of the input image Y based on the SSS
algorithm and decompose the input image Y. Then, obtain the fraction image for Y
according to the MESMA model. Initialize the super-resolution (SR) map according to
the fraction image.

(3) Calculate the transition probability matrix based on Section 2.2.4 for subsequent use.
(4) Update the class label of each subpixel in the SR map iteratively during the process of

objective function optimization. The iteration procedure stops when the algorithm
converges or reaches the set maximum number of iterations. The final class label is
determined in the last iteration.

The overall accuracy (OA) and the correct labeling percentage for the unchanged
pixels (PULC) are utilized for the accuracy evaluation in this study.

3. Results
3.1. Model Implementation and Comparative Experiments

Before the experiment, the model parameters needed to be initialized. The neighbor-
hood window sizes at the pixel scale and subpixel scale were both set to seven, which
meant that the center subpixel had 48 neighboring pixels and subpixels. Since the spatial
resolution of the Landsat-8 imagery was 30 m and the spatial resolution of the Google Earth
imagery was 5 m, the value of the scale factor was set to six. All of the algorithms were
tested on an AMD Ryzen 7 4800H CPU with Radeon Graphics at 2.90 GHz, 16 GB of RAM,
and MATLAB version R2018a.

Four additional methods were used for comparison; namely, hard classification (HC),
mean endmembers and multiscale spatiotemporal dependence based on super-resolution
mapping (MEAN_MST_SRM), multiple-endmember spectral mixture analysis and single-
scale spatiotemporal dependence based on super-resolution mapping (MESMA_ST_SRM),
and multiple-endmember spectral mixture analysis and multiscale spatial dependence
based on super-resolution mapping without temporal terms (MESMA_MS_SRM). In HC,
the class label value for each pixel is obtained from the fraction image, which is calculated
by spectral unmixing at the pixel scale. MEAN_MST_SRM uses the average endmember
for mixed-pixel spectral unmixing. MESMA_ST_SRM adopts a subpixel-based spatial
dependence without considering its spatial pixel neighbors. MESMA_MS_SRM is a method
based on MESMA and multiscale spatial terms, but it uses only one single remotely sensed
image regardless of the temporal term.
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3.2. The Results and Analysis
3.2.1. Ribbon-like Bodies of Water

In this section, four different ribbon-like bodies of water (such as rivers) were used
for comparison purposes to verify the performance of the MESMA_MST_SRM method. In
addition to MESMA_MST_SRM, the four other methods mentioned in Section B were also
calculated for comparison. In the contrast experiments, the weighting coefficients of the
three energy terms α and β were the optimal parameters. The other model parameters were
initialized according to Section B. The resultant water body maps of the different methods for
ribbon-like water bodies with different sizes are shown in Figure 3. The reference water body
maps for the four different sizes of water (Figure 3a) were obtained from Google Earth images.

From the visual and qualitative perspectives of the results displayed in Figure 3, a
smaller water body was more prone to being misclassified, and the noise was more serious.
However, regardless of the size of the water body, the noise of the resultant water body map
generated by the MESMA_MST_SRM method was the smallest, reflecting the superiority
of this method.
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Figure 3. Comparison of the resultant water body maps for different ribbon-like bodies of water:
(a) reference water body map; (b) water body map generated by the HC method; (c) water body map
generated by the MEAN_MST_SRM method; (d) water body map generated by the MESMA_MS_SRM
method; (e) water body map generated by the MESMA_ST_SRM method; (f) water body map
generated by the MESMA_MST_SRM method.

In Figure 3b, the resultant water body map produced by the HC-based method has
jagged water body boundaries and many fragmentary noise patterns. The main reason for
this is that HC is a pixel-scale classification method that cannot solve the spatial uncertainty
caused by mixed pixels and cannot correctly determine the spatial distribution of water
and nonwater. Finally, some nonwater pixels were incorrectly labeled as belonging to the
water class. Although the unmixing and allocation processes were based on the subpixel
scale in the MEAN_MST_SRM method, the results shown in Figure 3c still have excessive
amounts of noise because of the use of the average endmember for mixed-pixel spectral
unmixing. Actually, the average spectral values of the candidate endmembers could
not correctly indicate the spectral value of each mixed pixel, which led to low spectral
unmixing and fraction image accuracies. Therefore, the accuracy of the results was low.
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The resulting water body maps in Figure 3d have poor spatial continuity and smoothness
due to the lack of a temporal term. Generally, a temporal term can provide prior spatial
pattern information from a previous high-spatial-resolution water body map. With the
help of the prior spatial pattern information and the MESMA-based unmixing method, the
MESMA_ST_SRM method (Figure 3e) could provide better results than those of the former
methods. However, there are still some fragmented noise patterns in the MESMA_ST_SRM
results due to the lack of holistic spatial pattern constraints at the pixel scale. Compared
with the above results, the resultant water body map generated by MESMA_MST_SRM
(Figure 3f) is closer to the reference water body map overall and in terms of detail, which is
mainly due to the MESMA-based endmember selection model and the multiscale spatial
dependence model. With the help of the MESMA-based endmember selection model,
each coarse pixel has specific endmember combinations, which can improve the unmixing
accuracy of coarse pixels and improve the mapping accuracy. Moreover, by using the center
subpixel of the multiscale spatial dependence model, more prior spatial pattern information
could be obtained in the location process from the neighboring pixels and subpixels.

The accuracy statistics comparison for different ribbon-like water bodies is shown in
Table 2. For these four different sizes of water bodies, the OA and PULC values obtained by
the MESMA_MST_SRM method are the highest. Overall, the PULC value is higher than
the OA value. This is because unchanged pixels can directly inherit the spatial pattern
from the former Google Earth water body map. Hence, the correct labeling percentage for
the unchanged pixels (PULC) is higher. The “improvement rate of OA” was used here to
compare the improvement rates of the proposed MESMA_MST_SRM approach and other
methods. For example, the “improvement rate of OA” between MESMA_MST_SRM and
HC on the Tongshun River (micro water body) was calculated as (89.9099–70.5453)/70.5453.
The results showed that more obvious improvements occurred when those methods were
executed on smaller water bodies. In practice, small water bodies are more difficult to extract
than larger bodies. This is because in medium-spatial-resolution satellite images, small water
bodies often cover only a few pixels or even less than one pixel. It is difficult to extract water
bodies from only a few pixels or a single pixel because of the serious phenomenon of mixed
pixels. Fortunately, the MESMA_MST_SRM method obtained a relatively high accuracy.

Table 2. Accuracy statistics comparison for different ribbon-like water bodies.

Water Body Size Methods OA (%) PULC (%) Improvement
Rate of OA

Tongshun River Micro

HC 70.5453 70.6387 27.45%
MEAN_MST_SRM 74.6499 74.8682 20.44%
MESMA_MS_SRM 78.2406 78.4297 14.91%
MESMA_ST_SRM 80.1706 80.3777 12.15%
MESMA_MST_SRM 89.9099 90.1757

Lanxi River Small

HC 90.0702 90.0727 7.31%
MEAN_MST_SRM 90.8186 91.9738 6.43%
MESMA_MS_SRM 91.1336 93.9328 6.06%
MESMA_ST_SRM 95.3435 96.0259 1.38%
MESMA_MST_SRM 96.6562 97.5770

Sheshui River Medium

HC 93.6288 93.7871 5.35%
MEAN_MST_SRM 94.6548 94.8756 4.21%
MESMA_MS_SRM 95.6489 95.9294 3.12%
MESMA_ST_SRM 95.4644 95.6614 3.32%
MESMA_MST_SRM 98.6365 98.9025

Huaihe River Large

HC 95.0176 95.1362 4.58%
MEAN_MST_SRM 95.3458 95.5037 4.22%
MESMA_MS_SRM 96.5837 96.9838 2.89%
MESMA_ST_SRM 97.7844 97.9114 1.62%
MESMA_MST_SRM 99.3722 99.5896
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3.2.2. Contained Bodies of Water

Four contained bodies of water with different sizes were used for comparative experi-
ments to verify the validity of the proposed MESMA_MST_SRM method. The resultant
water body maps produced by different methods are displayed in Figure 4.

As shown in Figure 4b, the resultant water maps of HC have considerable noise, and
many nonwater patches are wrongly divided into water bodies. It is difficult to identify
the shapes of micro water bodies due to the lack of spatial patterns and the pixel-based
classification approach of HC. For MEAN_MST_SRM (Figure 4c), the noise is still serious,
especially for micro and small water bodies. This is because the average endmember could
not correctly express the spectral differences and similarities within pixels, resulting in a
low unmixing accuracy and inaccurate fraction images.

In Figure 4d, by using the MESMA model, noise was obviously suppressed. How-
ever, due to the lack of prior spatial pattern information, there are obvious zigzag
marks at the water boundary. By incorporating the previous Google Earth water body
map, the boundary of the water body map generated by MESMA_ST_SRM (Figure 4e)
is relatively smooth. However, for small or micro water bodies, there is still much
noise. In contrast, the results obtained by the MESMA_MST_SRM method are clos-
est to the reference map, the noise is very low, and the water boundary is smooth
(Figure 4f). It is worth mentioning that the MESMA_MST_SRM method also performed
well on the four sizes of contained bodies of water, such as lakes, even for small or
micro bodies.

Remote Sens. 2022, 14, x 14 of 22 
 

 

sistent with those obtained for the ribbon-like bodies of water, reflecting the superiority 

and universality of the proposed MESMA_MST_SRM method. 

 

Figure 4. Comparison of resultant water body maps for different contained water bodies: (a) refer-

ence water body map; (b) water body map generated by the HC method; (c) water body map gen-

erated by the MEAN_MST_SRM method; (d) water body map generated by the MES-

MA_MS_SRM method; (e) water body map generated by the MESMA_ST_SRM method; (f) water 

body map generated by the MESMA_MST_SRM method. 

Table 3. Accuracy statistics comparison for different contained bodies of water such as lakes. 

Water Body Size Methods OA(%) PULC(%) 
Improvement 

Rate of OA 

Xipenghe 

Lake 
Micro 

HC 77.1429 78.2433 25.41% 

MEAN_MST_SRM 80.5981 81.7772 20.03% 

MESMA_MS_SRM 88.2885 89.6616 9.58% 

MESMA_ST_SRM 95.2421 96.6372 1.58% 

MESMA_MST_SRM 96.7438 98.1904  

South Lake Small 

HC 84.4461 84.8558 15.24% 

MEAN_MST_SRM 91.3524 92.1102 6.53% 

MESMA_MS_SRM 93.6517 94.0979 3.91% 

MESMA_ST_SRM 96.1812 96.6301 1.18% 

MESMA_MST_SRM 97.3166 97.7965  

Qilu Lake Medium 

HC 94.8827 94.6128 4.56% 

MEAN_MST_SRM 95.4953 95.3970 3.89% 

MESMA_MS_SRM 97.6242 98.3781 1.62% 

MESMA_ST_SRM 98.9134 99.2161 0.30% 

MESMA_MST_SRM 99.2094 99.5901  

Koruk Lake Large 

HC 96.4586 96.0782 2.97% 

MEAN_MST_SRM 96.3385 95.9702 3.10% 

MESMA_MS_SRM 97.8155 98.8887 1.54% 

MESMA_ST_SRM 98.9866 99.1716 0.34% 

MESMA_MST_SRM 99.3254 99.5352  

Figure 4. Comparison of resultant water body maps for different contained water bodies: (a) reference
water body map; (b) water body map generated by the HC method; (c) water body map generated
by the MEAN_MST_SRM method; (d) water body map generated by the MESMA_MS_SRM method;
(e) water body map generated by the MESMA_ST_SRM method; (f) water body map generated by
the MESMA_MST_SRM method.
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The quantitative results of the comparison experiments are shown in Table 3. The
MESMA_MST_SRM method had the highest OA and PULC values for each water body
size. When the model was applied to micro or small water bodies, the improvement rate of
OA was significantly high. The results on the contained bodies of water were consistent
with those obtained for the ribbon-like bodies of water, reflecting the superiority and
universality of the proposed MESMA_MST_SRM method.

Table 3. Accuracy statistics comparison for different contained bodies of water such as lakes.

Water Body Size Methods OA(%) PULC(%) Improvement
Rate of OA

Xipenghe Lake Micro

HC 77.1429 78.2433 25.41%
MEAN_MST_SRM 80.5981 81.7772 20.03%
MESMA_MS_SRM 88.2885 89.6616 9.58%
MESMA_ST_SRM 95.2421 96.6372 1.58%
MESMA_MST_SRM 96.7438 98.1904

South Lake Small

HC 84.4461 84.8558 15.24%
MEAN_MST_SRM 91.3524 92.1102 6.53%
MESMA_MS_SRM 93.6517 94.0979 3.91%
MESMA_ST_SRM 96.1812 96.6301 1.18%
MESMA_MST_SRM 97.3166 97.7965

Qilu Lake Medium

HC 94.8827 94.6128 4.56%
MEAN_MST_SRM 95.4953 95.3970 3.89%
MESMA_MS_SRM 97.6242 98.3781 1.62%
MESMA_ST_SRM 98.9134 99.2161 0.30%
MESMA_MST_SRM 99.2094 99.5901

Koruk Lake Large

HC 96.4586 96.0782 2.97%
MEAN_MST_SRM 96.3385 95.9702 3.10%
MESMA_MS_SRM 97.8155 98.8887 1.54%
MESMA_ST_SRM 98.9866 99.1716 0.34%
MESMA_MST_SRM 99.3254 99.5352

4. Discussion
4.1. Effects of the Weighting Coefficients

The weighting coefficients α and β, which were used to control the weights of the three
energy terms, had an important influence on the mapping results. Proper weight coefficients
can better integrate the three energy terms and generate highly accurate results. Otherwise,
these coefficients may lead to poor objective function performance and inaccurate results.
South Lake was selected as an example to illustrate the influence of the weight coefficients
on the results, and four representative resultant water body maps in Figure 5 were chosen
to demonstrate their influence. Figure 5a shows considerable noise, and the boundary
is unsmooth. The main reason for this is that when the value of α equals 0, the spatial
energy term does not work. In contrast, when the value of α is large (for example, 10,000 in
Figure 5b but the value of β is set to 0), the boundary is obviously serrated. In this case,
the temporal energy term is missing, and the former fine-resolution water body map is
invalid, leading to a lack of spatial patterns and jiggle boundaries. In Figure 5c, the value
of α is 8000, and the value of β is only 10. In this case, although the three energy terms
can all work, the result is still not very good. When α is large and β is small, the spatial
term plays a dominant role, and the prior information of the former fine-resolution water
body map is not fully utilized. Parameter settings, such as those utilized in this case, are
also regarded as inappropriate combinations. In this study, the appropriate and optimal
values of α and β were set by trial and error; for example, 8000 and 2500 were the best
combinations here. Compared with the previous three results, the result in Figure 5d is
best, with smooth boundaries and low noise.
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Table 4 shows the accuracy statistics of South Lake achieved by MESMA_MST_SRM
with different weighting coefficients. When the value of α was small, the values of overall
accuracy (OA) changed very little regardless of the value of β because the model did not
make full use of the spatial correlations between pixels and subpixels. In contrast, when
the value of β was small, a large value of α led to a low OA because of the dominance
of the spatial term and the lack of prior spatial information. When β was 0, the smallest
value of OA was only 89%. As β increases, the previous image can provide more spatial
prior information for the locating process, and the OA reaches its best value at the optimal
combination of α and β. In general, the value of PULC is higher than that of OA. This
is because OA represents the overall accuracy, including the accuracies of both changed
and unchanged pixels, while PULC only represents the accuracy of unchanged pixels.
Unchanged pixels can directly inherit the spatial pattern from a previous high-resolution
water body map; therefore, they are easier to correctly classify.

Table 4. Accuracy statistics of South Lake with Different Weighting Coefficients Based on the
MESMA_MST_SRM Method (%).

Result
Statistic α

β
0 0.1 1 10 100 1000 2500 5000

OA

0 95.5896 95.5896 95.5921 95.5897 95.6162 95.6508 95.6601 95.6628
0.1 95.5896 95.5896 95.5896 95.5897 95.6162 95.6508 95.6601 95.6653
1 95.5896 95.5896 95.5896 95.5897 95.6163 95.6533 95.6601 95.6653
10 95.6024 95.6024 95.6024 95.6000 95.6290 95.6633 95.6626 95.6653
100 95.8253 95.8253 95.8253 95.8193 95.7825 95.6953 95.6774 95.6754
1000 93.8795 93.8867 92.5871 93.6866 94.1810 95.9334 95.7849 95.7354
8000 92.8053 93.2300 93.2627 93.3254 95.1838 96.9842 97.3166 96.1024
10,000 89.5710 89.7332 89.7345 89.8613 93.1512 96.0437 97.0149 96.2980

PULC

0 96.4538 96.4538 96.4564 96.4541 96.4849 96.5313 96.5385 96.5418
0.1 96.4538 96.4538 96.4538 96.4541 96.4849 96.5313 96.5385 96.5444
1 96.4538 96.4538 96.4538 96.4541 96.4850 96.5339 96.5385 96.5444
10 96.4674 96.4674 96.4674 96.4650 96.4958 96.5419 96.5412 96.5444
100 96.7003 96.7003 96.7003 96.6945 96.6631 96.5764 96.5573 96.5552
1000 95.7443 95.7517 94.7810 95.6305 96.0654 96.8272 96.6762 96.6237
8000 94.6713 94.5858 94.6237 95.2057 96.9237 97.1753 97.7965 97.0087
10,000 90.7241 90.6791 90.6807 90.8499 94.6768 97.7813 97.7104 97.2219
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4.2. Effect of the Water Body Type

The results of water body mappings are also affected by the type of water body. The
different shapes or sizes of water bodies may lead to different water extraction accuracies.
To explore the influence of water types on the results, the extraction results of eight different
types of water bodies under different methods were compared, and the resulting curves
are shown in Figure 6.

In Figure 6, the accuracy curves show upward trends for both ribbon-like bodies of
water and contained bodies of water under all five comparative methods. When the water
body size reaches a medium value, the curve begins to rise steadily and slowly. Moreover,
large water has an obviously higher accuracy value than micro water. For the HC method,
the OA value for large bodies of water can exceed 96%, but for micro water bodies, it is
only approximately 70%. The same phenomenon also exists in the other four methods. The
main reason for this is that for a micro river, the average river width is 50 m, which means
that it only covers less than two pixels in a Landsat image. When pixel-based methods
such as HC are applied, a pixel is classified as a water body once more than 50% of the
pixel area is covered by water. As a consequence, the OA value is very low. Generally, in
medium-resolution satellite images, micro or small water bodies account for only a few
pixels or even less than one pixel, which makes it very difficult to accurately extract these
water bodies and monitor water changes. In contrast, medium or large water bodies usually
have few changes and easily yield high extraction accuracy.
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In terms of shape, the accuracy of ribbon-like bodies of water (such as rivers) is
generally less than that of contained bodies of water (such as lakes) with the same size,
especially when the water size is micro. For example, under the MESMA_MST_SRM
method, the OA value of micro ribbon-like bodies of water was only 89.9%, while that of
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micro contained bodies of water was 96.7%. This phenomenon also exists in the other four
methods, which indicates that micro ribbon-like bodies of water are harder to extract than
micro contained bodies of water.

Overall, different mean widths of ribbon-like bodies of water and different areas of
contained bodies of water had important effects on the results. However, compared to
the other four methods, the MESMA_MST_SRM method performed best in extracting
different shapes and sizes of water. For micro ribbon-like bodies of water, the OA of
MESMA_MST_SRM improved by 27.45% over that of HC, and for micro contained bod-
ies of water, the OA of MESMA_MST_SRM improved by 25.41% over that of HC. For
large water bodies, the OA value generated by the MESMA_MST_SRM method was still
higher than that of the HC method, which indicates the superiority and robustness of the
proposed method.

4.3. Effect of the Zoom Factor

The zoom factor s reflects the spatial resolution ratio between the coarse image Y and
the resultant water body map X. For a certain coarse image Y, the larger the value of zoom
factor s is, the higher the spatial resolution of the obtained water body map X. However, if
the value of s is too large, the accuracy result may decrease. To verify the influence of the
zoom factor s on the results, water extraction experiments under different zoom factors of
s = 3, s = 6, s = 15, s = 30 and are used for comparison (see Figure 7).
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As shown in Figure 7, in the five comparative experiments, the image noise increased
with an increasing zoom factor. The noise of HC and MEAN-MST-SRM is significantly
higher than that of the other three methods, which is mainly due to the use of the mean
endmember in these two methods. In contrast, the other three MESMA-based methods
have relatively less noise. At the same zoom scale, the MESMA-MS-SRM method has the
least noise and the best boundary smoothness, which reflects the advantages of multi-
scale spatiotemporal.

However, even for the best performing MESMA-MS-SRM, the noise increases with
the increasing zoom factor, especially when the scales are 15 and 30. The quantitative
results (Table 5) also manifest this phenomenon. The zoom factor increases, and the overall
accuracy decreases because the uncertainty increases when the value of s increases. The
overall accuracy of the HC method changes little at the four different zoom scales, mainly
because the HC method is a pixel algorithm. The zoom factor increases, and the overall
accuracy of the MEAN_MST_SRM method decreases rapidly. The value of OA is lower
than 90% when the scale factor is 15, which indicates that the mean endmember has great
uncertainty on a large zoom factor. The OA and PULC values of MESMA_MST_SRM
are all higher than those of the other four methods at different zoom scales. However,
the overall accuracy also decreased as the zoom factor increased for MESMA_MST_SRM.
When the zoom factor is 30, the overall accuracy is approximately 96%. Considering the
visual and quantitative results, when s equals six, better results can be obtained, and the
computational complexity is relatively small.

Table 5. Accuracy statistics of South Lake with Different Zoom Factors.

Zoom Factor Methods OA(%) PULC(%)

3

HC 84.6631 85.2712
MEAN_MST_SRM 92.1497 92.6145
MESMA_MS_SRM 94.5014 95.1588
MESMA_ST_SRM 97.0728 97.8206
MESMA_MST_SRM 97.7431 98.4702

6

HC 84.4461 84.8558
MEAN_MST_SRM 91.3524 92.1102
MESMA_MS_SRM 93.6517 94.0979
MESMA_ST_SRM 96.1812 96.6301
MESMA_MST_SRM 97.3166 97.7965

15

HC 84.7554 85.2854
MEAN_MST_SRM 87.0484 87.6874
MESMA_MS_SRM 93.0802 93.6677
MESMA_ST_SRM 96.2258 96.9416
MESMA_MST_SRM 96.4091 97.1303

30

HC 84.8182 85.4167
MEAN_MST_SRM 86.3342 86.9416
MESMA_MS_SRM 87.9559 88.6381
MESMA_ST_SRM 96.0514 96.9457
MESMA_MST_SRM 96.1906 97.0985

5. Conclusions

In this study, a super-resolution water body mapping method based on MESMA and
multiscale spatiotemporal dependence was proposed. The MESMA_MST_SRM method
can be applied to water body mapping with high spatio-temporal resolution. It makes use
of the time advantage of medium spatial resolution to make up for the time shortage of
high spatial resolution, so as to generate a high spatio-temporal resolution water body map.
Specifically, in the proposed MESMA_MST_SRM method, each coarse pixel has a specific
endmember set according to the lowest sum of the spectral similarity scale (SSS) values,
which allows different pixels to have different types and numbers of endmember combi-
nations. We verified the potential of SSS-based MESMA in water mapping. The results
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showed that, based on the MESMA model, spectral variability among the given pixels was
fully considered, and high-accuracy fraction images could be generated. Moreover, the
MESMA _MST_SRM method was carried out under both pixel-based and subpixel-based
spatiotemporal dependence; it not only maintained the overall structure information but
also presented the detailed information of each water body. As a result, the proposed
MESMA_MST_SRM method not only reduces the spectral unmixing error and improves
the accuracy of the fraction image but also provides a better spatial pattern than that
obtained with single-level spatial dependence.

The proposed MESMA_MST_SRM approaches were tested by using eight types of
water with different types and sizes via a comparison with four other methods, either
under the mean endmember selection rule or under single-level spatial dependence. The
eight experimental results showed that the proposed MESMA_MST_SRM method had
the highest OA values for the eight types of water, and the water body maps generated
by MESMA_MST_SRM had relatively smooth boundaries and more detailed water in-
formation. By using MESMA_MST_SRM, the OA values on large river-like or lake-like
water bodies reached 99%, and for micro river-like water bodies, the OA improvement rate
reached 27% over the accuracy of the HC method. The high accuracy and comparability for
different types of water bodies indicated that MESMA_MST_SRM is a promising method
for super-resolution water body mapping.

However, as it is discussed in Section 4, the zoom factor will affect the results of water
body mapping. On the one hand, it cannot obtain a high spatial resolution water body
map at a small zoom factor. On the other hand, when the value of zoom factor is large, the
accuracy is limited and the computational complexity increases. Considering the accuracy
and complexity, when the zoom factor is equal to six, the comprehensive performance of
the method is better. Thus, a water body map at 16-daily intervals and a 5 m resolution
from Landsat and Google Earth imagery can be generated by using MESMA_MST_SRM.
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