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Abstract: In recent years, socioeconomic transformation and social modernisation in the Gulf Cooper-
ation Council (GCC) states have led to tremendous changes in lifestyle and, subsequently, expansion
of urban settlements. This accelerated growth is pronounced not only across vegetated coasts, plains,
and mountains, but also in desert cities. Nevertheless, spatial simulation and prediction of desert
urban patterns has received little attention, including in Oman. While most urban settlements in
Oman are located in desert environments, research exploring and monitoring this type of urban
growth is rare in the scientific literature. This research focuses on analysing and predicting land
use–land cover (LULC) changes across the desert city of Ibri in Oman. A methodology was em-
ployed involving integrating the multilayer perceptron (MLP) and Markov chain (MC) techniques
to forecast spatiotemporal LULC dynamics and map urban growth patterns. The inputs were three
Landsat images from 2010 and 2020, and a series of covariate layers based on transforms of elevation,
slope, population settlements, urban centres, and points of interest that proxy the driving forces of
change. The findings indicated that the observed LULC changes were predominantly rapid across
the city during 2010 to 2020, transforming desert, bare land, and vegetation into built-up areas.
The forecast showed that area of land conversion from desert to urban would be 5666 ha during
the next two decades and 7751 ha by 2050. Similarly, vacant land is expected to contribute large
areas to urban expansion (2370 ha by 2040, and 3266 ha by 2050), although desert cities confront
numerous environmental challenges, including water scarcity, shrinking vegetation cover, and being
converted into residential land. Massive urban expansion has consequences for biodiversity and nat-
ural ecosystems—particularly in green areas, which are expected to decline by approximately 107 ha
by 2040 (i.e., 10%) and 166 ha by 2050. The outcomes of this research provide fundamental guidance
for decision-makers and planners in Oman and elsewhere to effectively monitor and manage desert
urban dynamics and sustainable desert cities.

Keywords: remote sensing; multilayer perceptron (MLP); Markov chain; built-up expansion; desert
urban environment; Oman

1. Introduction

Urban growth is causing major changes on the Earth’s surface. According to various
spatial and non-spatial drivers, the rate of urban growth varies between developed and
developing countries. During the last decade, urban growth in developing countries was
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estimated at 2.3% per year, while it was 0.5% across developed nations. Likewise, urban
populations are forecasted to increase during 2020–2050 by 72% in developing countries,
compared to only 13% for developed regions [1]. This difference can be attributed to
the expected high rate of natural population growth in the developing nations. Currently,
hyper-arid (desert), arid, and semi-arid areas cover 41.3% of the Earth’s land surface. One in
three people in the world today live in dryland regions, and approximately 2.1 billion
people live in desert lands [2]. It is likely that these urban agglomerations located in
drylands will experience high rates of urbanisation due to continued population growth.

The world has witnessed significant changes in desert environments and ecosystems
due to accelerated urban growth and sprawl [3–5]. Accordingly, significant effort has been
made to monitor and forecast the dynamics of land use and land cover, particularly at the
local scale, utilising GIS and remote sensing techniques [6–10]. Among the most visible
impacts of urban sprawl is the degradation of vegetation and agricultural lands in arid and
semi-arid environments [11–14]. Such changes are commonly associated with the various
spatial drivers and human activities involving the conversion of crop land to settlements
and housing units [15–18].

Conceptually, land cover is described as the natural characteristics of the Earth’s
surface, including hydrological systems, surface water and groundwater, soils, vegetation,
and topographic structure [19,20]. Land use is the result of the interaction between human
activities and the landscape; for example, in the fields of agriculture and forestry, building
expansion and infrastructure construction both trigger loss of productive lands [21,22].
Urban sprawl is a form of land-use change that has received extensive attention in the
literature [23–29], which signifies an unplanned and uneven form of settlements to describe
as ‘negative urban growth’, with poor accessibility to services [26,30]. Such patterns of
urban growth trigger various environmental problems, including green cover loss, traffic
congestion, and air pollution [31–33]. There exist three basic forms of sprawl: leapfrog,
ribbon, and low-density continuous sprawl [34,35]. Leapfrog sprawl is a discontinuous
urban pattern that occurs as urban objects separated from one another. This type of sprawl
is often linked to constraints such as wetlands, rugged terrain, mineral lands, or lands that
are separated by water bodies. Ribbon sprawl is associated with transportation networks,
particularly along transport corridors and outward routes from urban cores. Low-density
sprawl is characterised by high consumption of land along the fringes and development
over large areas, with a low density of residential buildings.

In the literature, particularly regarding urbanisation in North America, there has been
some debate about the definition of urban sprawl as uncoordinated growth and without
community concern for planning. In particular, the nature of the sprawl and the local
spatial scale of development determine whether sprawl is a modern form of urban growth
or just an unplanned process and random type [24,36,37]. Accordingly, urban sprawl can
be considered to be the result of various demographic, socioeconomic, and environmental
pressures. In the GCC states, several factors and drivers are responsible for LULC changes
towards accelerated urbanisation. These include demographic transition and population
growth, rural–urban migration, rural lifestyle changes, modernisation, and governmental
wellbeing policies. Nevertheless, in the GCC states, due to urban expansion and sprawl,
large areas of arable and most other productive agricultural lands have been converted
into residential zones and settlements. The ramifications of urban expansion and sprawl
include landscape fragmentation, wildlife loss, and negative influences on rural livelihoods,
biodiversity, and ecosystems.

During the last three decades, arid and semi-arid areas have witnessed rapid urban
growth, which has impacted ecosystems, biodiversity, and the sustainability of natural
resources [38,39]. At present, several desert environments and dry parts of the world—
such as the American Southwest and Arabian Gulf regions—are home to big cities with
large populations [40,41]. Although urban development in these areas has always been
confronted by various environmental constraints—particularly drought, water scarcity,
high temperatures, and dust storms—advanced technologies and innovations such as



Remote Sens. 2022, 14, 2037 3 of 21

transportation systems, road networks, food supply chains, desalination, and air condition-
ing have allowed arid urban areas to grow exponentially. Nonetheless, these innovative
technologies and drivers that support urban expansion in desert areas are limited, and
have resulted in numerous challenges in terms of environmental sustainability, including
habitat destruction, climate change, drought, deforestation, water stress, urban heat, air
pollution, and public health crises [3,42,43].

The accelerated urban sprawl in arid areas in the GCC region is primarily shaped by
various forces, such as cheap land, separated land uses, car-centric design, and the connec-
tion to regional and national road networks. In the literature, a much-debated question is
whether to separate land-cover change and land-use change models, as land use is described
by human activities, while land-cover change might happen due to natural processes such
as climate change [44–46]. In spite of this debate on separating or integrating land use
and land cover when addressing land changes, the majority of studies—particularly in
the field of urban growth—forecast changes in both land types to incorporate the effects
of human actions and ecological processes (e.g., [4,47–52]). Accordingly, and over the last
two decades, spatiotemporal changes in LULC have been assessed and modelled utilising
several GIS and remote sensing techniques, including cellular automata (CA), Markov
chains, neural networks, and agent-based models (e.g., [4,47,53–56]).

Four main types of modelling techniques have been employed to simulate LULC
changes: empirical–statistical, stochastic, optimisation, and agent-based models. The first
type mostly includes regression techniques to empirically characterise the spatial causes
of LULC changes [57–59]. Modelling the changes from one land category to another at
the local scale, stochastic models—such as grid-based models—simulate LULC changes
according to transition probabilities that are observed during past periods. The most
well-known example of this model type is CA, whereby an LULC state transition is defined
based on the state of neighbouring cells, and quite often it is combined with other models—
particularly Markov chains [4,7,60,61]. Optimisation models utilise linear algorithms,
including criteria for land allocations, to measure and assess how various policies influence
land-use change. Several studies have employed optimisation techniques for modelling
urban growth, noting that this type of model is limited to human activities that cannot
be optimised in reality [62,63]. Dynamic-process-based models take into account human
decision making, along with socioeconomic and environmental processes, when LULC
changes are forecasted [46,64] Despite the wide implementation of the above models for
LULC changes, a hybrid approach utilising multiple models has been recommended to
increase the accuracy of the simulation process [20].

During the last four decades, oil revenue has directly influenced socioeconomic trans-
formation in Oman, increasing the quality of life and leading to urban expansion. Local
communities across Oman and other GCC states have integrated into the global capitalist
markets, which has led to changes in ideological and cultural perspectives. These changes
have transformed traditional societies into urban agglomeration. Despite its undeniable
positive outcomes, oil revenue, combined with cultural changes, has led to cumulative
rates of urban sprawl, and the loss of vegetation and agricultural lands. Subsequently,
pressure on natural resources such as fertile soils, underground water, and vegetation has
led to substantial degradation of ecosystem production across bare land, and this is likely
to increase further with forecasted growth in population.

Despite the wide range of existing research on LULC changes across the Middle East,
desert urban areas across the GCC region—especially Oman—have not been adequately
investigated. In Oman, urban agglomerations have their own unique characteristics and
spatial diversity, with oases, coasts, mountains, and deserts shaping the cities and towns.
Although the influence of land surface developments on ecosystems and the nature of these
environments is well known, the precise spatial dynamics of desert landscapes in Oman
have not been assessed. Therefore, and due to the continuing, rapid socio-economic and
environmental changes, efficient and reliable simulation and assessment of LULC dynamics
in desert areas is crucial—not only to investigate the nature of LULC changes, but also
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to preserve ecosystem functionality across desert environments. Utilising remote sensing
techniques and advanced GIS methods to simulate and forecast desert urban environments
not only across the GCC region, but also globally, is still quite rare. To fill this gap, the
primary aim of this research was to assess recent LULC changes across the urban desert of
Oman, and determine their major drivers, as well as forecast future patterns, using satellite
images and advanced geospatial techniques. The following specific research questions of
this work are:

• What is the nature of desert urban dynamics across cities and towns in Oman?
• What are the dominant drivers of LULC across the desert urban environments

of Oman?
• What are the magnitude and directions of LULC changes across desert urban areas?

To what extent do these urban dynamics affect green cover?

2. Materials and Methods
2.1. Study Area

The study area is located between 23.15◦ and 23.3◦ north, and 56.38◦ and 56.56◦ east.
Geographically, the city of Ibri is situated in Wilayat Ibri, which is located towards the
northeast corner of Al-Dhahra Governorate (one of the 11 Omani governorates). It is the
capital of the Al-Dhahra North region (Figure 1). The city is located about 279 km away
from Muscat—the capital of Oman—and it is bordered to the south by Haima and to the
east by Bahla, Al-Hamra and Al-Rustaq. To the north, it borders Al-Buraimi, Dhank, and
Yanqul, while to the northwest it borders the United Arab Emirates, and Saudi Arabia
to the southwest. The city of Ibri is the largest within the governorate, and it consists of
sprawling urban agglomerations, with a major highway connecting it to Buraimi in the
northwest and Nizwa in the southeast. Due to its location, the climate of Ibri is considered
to be desert, with an average annual temperature of 26.2◦C. The amount of rain falling on
the city is almost 78 mm annually, and it is higher in the winter than in the summer.

In 2020, the total population of the city reached almost 60,000 inhabitants, and it is
expected that this number will reach 130,000 inhabitants by 2040. Spatially, Al-Dhahra
Governorate (in which the city of Ibri is located) has prepared a regional urban strategy
that includes various resilience criteria and socioeconomic drivers, specifically to aid
in restructuring and planning to accommodate urban sprawl and expansion [65]. The
city of Ibri is characterised by its archaeological sites and monuments, including forts,
castles, and towers, such as Bait al-Sarooj. Throughout history, the city of Ibri has been
a major crossing point for trade caravans heading to various locations in the Arabian
Peninsula. The city serves as a rest destination on the way to or from the UAE, where
most travellers visit the UNESCO-protected cemeteries in Al Ain and Wadi Hajar. In
Ibri, there are many conventional crafts and industries, the most prominent of which are
grazing, weaving, and agriculture with a variety of crops, including dates of different
types, wheat, oranges, grapes, citrus, vegetables, and animal fodder. In addition, many
traditional crafting industries are found in the city, such as camel-decorating tools, leather,
pottery, palm fronds, and Omani sweets. There also exist several valleys that are home to
traditional farming villages. At present, the Empty Quarter’s border with Saudi Arabia has
been opened to the west of Ibri for pilgrims to Mecca. Despite the fact that the study area
is a desert region with distinctive geography, during the last decade, Ibri has witnessed
comprehensive socioeconomic development and pronounced urban growth. For example,
currently there are 57 schools, 2 hospitals, a health centre, and a nursing institute, in
addition to the College of Applied Sciences’ sports complex and vocational training centre
and a satellite station.
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Figure 1. Location of the study area: The upper-left map illustrates the location of the city of Ibri
within Al-Dhahra Governorate (A), while the location of Oman is presented in (B). The bottom map
shows the spatial distribution of vegetation and urban area in 2020 (C).

2.2. Data Acquisition and Processing

Methodologically, several spatial datasets including satellite images and geographic
information as spatial layers were incorporated into the LULC change simulation process.
Figure 2 represents the methodological framework of employing MLP and MC models
within a GIS platform to forecast the dynamics of LULC across the city of Ibri.
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study area.

2.2.1. Satellite Imagery

To measure and forecast potential future changes in LULC, Landsat satellite sensor im-
ages with a spatial resolution of 30 m for the periods 2000, 2010, and 2020 were downloaded
from the United States Geological Survey (USGS). To avoid seasonal variation between the
images, all images were acquired in the same month (January). The cloud cover threshold
was set to <10%, and all acquired images had zero or close to zero cloud cover over the
study area. Attributes of these images are given in Table 1. The 2010 Landsat 7 ETM+ image
was characterised by the scan line corrector (SLC) and, consequently, strip lines (almost
22% of the pixels per scene) were corrected utilising the Landsat toolbox’s ‘fix Landsat 7’
scan line error [66,67].

Table 1. Details of Landsat satellite images.

Satellite/
Sensor

Spatial
Resolution Path/Raw Date Acquired Product

Type
Cloud
Cover

Landsat 7 ETM+ 30 m 159/044 21 January 2000 L1TP 0.00%
Landsat 7 ETM+ 30 m 159/044 17 February 2000 L1TP 0.00%

Landsat 8 OLI-TIRS 30 m 159/44 5 December 2000 L1TP 0.00%

2.2.2. LULC Classification and Accuracy

The LULC classification was initially undertaken using the maximum likelihood clas-
sifier (MLC) to produce four classes (i.e., vegetation, urban, bare land, and desert), defined
as follows: The vegetation category includes all plant types over a large surface, including
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date palm trees, cultivated lands, grass, agriculture, and croplands. The urban class en-
compasses residential and commercial settlements, industrial areas, urban agglomerations,
roads, bridges, transportation networks, infrastructure, and urban amenities. The bare
land category represents land that is not being used, with no buildings or settlements—
often bare soil. For urban areas that are under development, bare land is required by
urban residents to build houses or establish urban activities, and it is the key competitive
asset for the urbanisation processes. Finally, desert is barren land that is non-vegetated,
with little precipitation, often consisting of large areas of rocks and sand covering the
entire landscape.

Implementing an accuracy assessment is a crucial step required to assess the reliability
of the classified images [68,69]. Using a reference dataset, the accuracy of the classified
images was determined. This was conducted through creating ground reference data and
comparing them to classified images. The user accuracy (UA), reflecting the probability
that a pixel that is classified on the map represents the correct land class in reality, was
calculated as follows:

UA =
CP
TP

(1)

where CP denotes correctly classified pixels in each LULC category, and TP indicates the
total number of classified pixels in each LULC category. The producer’s accuracy (PA),
representing the probability of a reference data pixel being correctly classified, is defined
as follows:

PA =
CP
RP

(2)

where CP signifies correctly classified pixels in each LULC class, and RP specifies the total
number of reference pixels in each LULC category.

Kappa statistics aim to adjust the actual agreement between points on the map and on
the ground for the agreement expected by chance [70]. From a confusion or error matrix,
the Kappa coefficient was calculated as follows:

K =
N ∑r

i=1 xii − ∑r
i=1(xi+ × xi+)

N2 − (xi+ × x+i)
(3)

where N indicates total number of points, r is the number of rows in the error matrix, xii
refers to the number of points in row i and column i, xi+ specifies the marginal total for row
i, and x+i represents the marginal total for column i.

2.2.3. Multilayer Perceptron (MLP)

A multilayer perceptron (MLP) model—a machine learning technique—was utilised
in this research to compute the potential transition of LULC categories based on previous
LULC maps. The calculated transition probabilities capture the influence of environmental
and socioeconomic driving forces on LULC changes [71]. An MLP consists of several
inputs (variables or drivers), one or more hidden layers, and an output layer. Each hidden
layer receives the values from the initial input layer, and then a weight is computed
before passing the information to the output layer to produce results [72]. Throughout the
weighting process, the MLP structure allows inputs to transfer through the layers, where
each neuron receives data from the previous layer and calculates a weighted sum of all of
its net inputs, as follows:

LULCi = f
n

∑
j=1

wijxj + bi (4)

where LULCi indicates the output at node i, f is an activation function, x represents the
inputs or drivers (x1, xi, . . . xn), w represents the weights (w1j, . . . wij, . . . wnj), wij is the
weight connection from the ith node in the preceding layer to node j, and bi is a constant
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that modifies the output along with synaptic weights to optimise the model fit. In the MLP,
the value of a neuron N can be specified as follows:

uN =
k

∑
j=1

wkjxj (5)

where the value uN is a linear combination, and wk1, wk2, . . . wkn represent the synaptic
weights of neuron N. The output of the neuron N can also be expressed as follows:

yN = ∅(uN − θN) (6)

where ∅ is the action function (linear or nonlinear), and θk is the threshold.

2.2.4. Markov Chain (MC)

A Markov chain is a stochastic model characterising a sequence of temporal events
in which the forecasted event depends entirely on the current status of the dynamic
phenomenon being simulated [73]. In modelling urban growth, the algorithm starts by
determining a specific temporal basis to generate the possible transformation between
various LULC categories through a transition probability matrix. In this research, an MC
model was employed to estimate LULC changes for three decades in the future:

S(t + 1) = Mij×s(t) (7)

where S(t) and S(t + 1) are the LULC types at time t and t + 1, respectively, and Mij is the
transition probability matrix in a state, which is calculated as follows:

M = Mij =

 M11 M12 . . . M1n
M21 M22 . . . M2n
Mn1 Mn2 . . . Mnn


(0 ≤ pij < 1 and ∑N

j=1 Mij = 1, (i, j = 1, 2, . . . ..n)

(8)

where M is the Markov transition matrix, i and j are the LULC type at the first and second
time, respectively, Mij signifies the probability of LULC type i changing to type j, and N
denotes the number of LULC classes in the study area.

2.2.5. Spatial Trends

To measure the rate of LULC change across the study area, trend surface analysis was
applied, defined mathematically as follows [74]:

S = ∑k
i=0 ∑i

j=0 bijxi−jyj (9)

where S refers to the interpolated surface, k denotes the maximum order to be generated,
and b represents a coefficient of the polynomial. Both i and j are iteration parameters
associated with k, in which i = 0, . . . k and j = 0, . . . i.

3. Results
3.1. Model Validation

Validation is a crucial step in any predictive modelling process. To assess model
accuracy, a Kappa test was performed comparing the simulated 2020 LULC map with
a reference map from the same year. Figure 3 illustrates several indices and parameters
of the test through which quantity, agreement, disagreement, and pixel allocation can be
assessed. A Kappa value of 0% shows that the agreement level between the two maps is due
to chance, while 100% indicates perfect agreement. In this model, 58.8% of simulated LULC
changes were correctly allocated, and the proportion of agreement quantity was 12.3% of
the changes. The quality disagreement and location disagreement together represented less
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than 9%. The parameters Kno, Kstandard, and Klocation measure the overall accuracy of the
model. The Kno value was 88.9, indicating very high agreement between the actual and
predicted 2020 maps. Likewise, the value of Klocation was 86.9, indicating a higher level of
the model’s outcome accuracy. The output of the validation process also shows that the
model was robust and accurate in simulating the future LULC dynamic scenarios across
the study area.
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3.2. Driving Forces of Urban Dynamics

Urban growth and land-use changes in the study area are influenced by human
activities and environmental factors—particularly with respect to the availability of arable
land and water resources. The driving forces or causes of urbanisation in the city of Ibri
can be classified into six major socioeconomic and topographical factors: elevation, slope,
distance to roads, distance to urban centres, distance to points of interest (POIs), and
distance to underground water wells (Figure 4). The topographical variables (elevation and
slope) are important constraints on urban growth, especially in areas with poor natural
resources and environmental conditions. As the city consists of fairly flat land, except
for hilly areas that are located in the northwest, the middle, and the southeast, urban
expansion has been shaped by linear features constrained by these hills (Figure 4A,D). The
distance to roads fundamentally influences the growth direction in two ways: First, as
the road network determines access, expansion over barren lands can accelerate rapidly
near major roads, where access to urban facilities and amenities is available. Second, major
roads cause a ‘leapfrog’ urban pattern and sprawl, particularly across the marginal parts of
the city. Hence, most of the marginal agglomerations rely heavily on highways to access
the city centre and other neighbouring cities (Figure 4C). The dynamic process of urban
growth is governed by accessibility to amenities and day-to-day facilities—particularly
health and educational services. Most urban amenities are concentrated in the central
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and northwestern parts of the city; thus, new urban agglomerations are expanding and
clustered close to these amenities (Figure 4B).
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3.3. LULC Probability Transitions

Proximity to urban centres has been identified as an important driver of urban dy-
namics. These centres act jointly with other forces, and operate spatiotemporally to drive
urban changes across the city. The urban centres are located along linear patterns, and
stretch from northeast to southwest (Figure 4E). The vacant lands within and close to these
centres usually attract large numbers of migrants and locals to establish businesses and
construct new houses. Consequently, the most recent urban growth has occurred rapidly
surrounding these centres. In desert regions, water resources are vital and, thus, crucial for
urban development.

Although a large reduction in domestic and commercial use of groundwater has been
targeted by the government, relying instead on wastewater treatment and desalination,
underground water infrastructure—particularly from the drilling of wells—is still a major
supply of urban water. The spatial distribution of wells across the study area is linked
with barren land, soils, dams, rocky basins, and the flow of dry valleys, and they are less
concentrated in marginal areas (Figure 4F).

3.4. MLP Simulation of Transition Potential Changes

In this study, since the key concern was to model desert urban areas, the transition
probabilities were limited to only land transformation into urban land (e.g., transformation
from bare land into built-up areas). The MLP was employed to create the transition layers,
and each driver (variable) was selected only if it was significantly influential on overall
accuracy and skill measure. Accordingly, drivers with no positive impact were eliminated
from the model. Methodologically, the MLP is a robust technique based on its capability to
develop multiple transitions (up to nine) at once. The test of the MLP model indicated high
accuracy (93.8%) (Table 2), which was higher than the acceptance cutoff (80%). The skill
measure statistic can vary between values of −1 (no skill) and 1 (perfect forecasting).
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Table 2. Parameters and performance of the MLP model.

Parameter Outcome

Input layer neurons 5
Hidden layer neurons 5
Output layer neurons 2

Requested samples per class 6418
Final learning rate 0.0005
Momentum factor 0.5
Sigmoid constant 1
Acceptable RMS 0.01

Iterations 10,000
Training RMS 0.2575
Testing RMS 0.254

Accuracy rate 93.67%
Skill measure 0.873

In this study, the skill measure of the model was 0.87 (87%), denoting an accurate
simulation of LULC dynamics, and confirming an appropriate selection of driving factors
related to urban growth. Table 3 illustrates the results of testing the transition from bare
land to urban land and forcing a single independent variable to be constant. The output
indicates that the most influential driver on transition from bare land to built-up areas was
elevation, while the least influential was distance to urban centres.

Table 3. The outcome of forcing a single independent variable to be constant when testing the
transition from bare land to urban land.

Model Accuracy (%) Skill Measure Influence Order

With all variables 93.67 0.8733 N/A
Var. 1 constant 93.48 0.8696 4
Var. 2 constant 79.47 0.5893 2
Var. 3 constant 93.42 0.8683 3
Var. 4 constant 93.65 0.8730 5 (least influential)
Var. 5 constant 72.3 0.4460 1 (most influential)
Var. 6 constant 81.4 0.8321 6

As the skill of the MLP increases by eliminating a chosen driver each time, the back-
ward stepwise method was implemented, and the results (Table 4) demonstrate that the
selected six driving factors were the best combination; thus, these variables can be utilised
to forecast LULC changes. Consequently, no factors were eliminated from the MLP model.

Table 4. The outcome of MLP model with backwards stepwise constant forcing.

Model Variables Included Accuracy (%) Skill Measure

With all variables All variables 93.67 0.8733
Step 1: var. [4] constant [1–3,5,6] 93.65 0.8731

Step 2: var. [1,4] constant [2,3,5,6] 93.51 0.8702
Step 3: var. [1,3,4] constant [2,5,6] 93.31 0.8661
Step 4: var. [1–4] constant [5,6] 79.95 0.599
Step 5: var. [1–5] constant [6] 86.33 0.644

By completing the MLP model training, transition maps showing potential areas for
urban transformation were produced (Figure 5). Forecasting LULC changes in 2030, the
probability of vegetation being transformed into urban land was high in the east and
southeast, while it was low in other parts of the city. Regarding the forecasting of the
transformation of bare land into built-up areas, a high probability was observed across
the northern, central, and southern parts of the city. Indeed, these places include most of
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the vacant land around existing settlements and residential districts. The probability of
desert land transforming into urban land was significantly higher in the central, western,
northeastern, and southwestern areas. This type of land includes sandy areas and open
spaces, particularly along the outer and marginal parts of the city. The transition potential
and likelihood of LULC change in 2040 shows that small, isolated areas of vegetation
located in the western part of the city have a high probability of changing into urban land.
The potential for the conversion of bare land to urban land in 2040 was also high in the
central and northern parts. Regarding the probability of desert land transforming into
urban land, it was high in small, scattered patches throughout the southern parts of the city.
In 2050, the potential probability of transformation of different LULC types into urban land
was similar to that for 2040.
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3.5. LULC Change Analysis

As local demand for the construction of houses continues to rise with population
growth and the increasing affluence of the city of Ibri, further urban expansion and loss of
bare land and vegetation is inevitable. Figure 6 shows LULC changes between 2010 and
2020. Overall, the study area experienced land transformation during this period, increasing
the urban spatial extent and affecting growth patterns. The distribution of LULC classes
in 2020 indicates that urban expansion occurred spatially along major linear trends from
northeast to southwest, with a recognised concentration in the central part of the city and,
initially, around the old settlements. In contrast, there was a decline in vegetation cover
by almost 50 ha, and in bare land by 3429.5 ha (41%) (Table 5). Although desert land
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was the dominant LULC class, it also exhibited a significant decline, which substantially
contributed to an increase of 669 ha in urban area.
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Table 5. Observed LULC between 2010 and 2020.

LULC Type Area in 2010 (ha) Area in 2020 (ha) Change (2010–2020)

Vegetation 1118.52 1068.48 −50.04
Urban 6040.62 10,188.85 4148.23

Bare land 12,954.51 9525.06 −3429.45
Desert 36,221.35 35,552.61 −668.74

3.6. Prediction of LULC Dynamics

Using the transition matrix of 2010 to 2020, and utilising the MLP-MC model, future
changes in LULC were forecasted. According to the spatial distribution of LULC in the
city of Ibri during this period (2010 to 2020), urban dynamics were forecasted for the years
2030, 2040, and 2050 (Figures 7 and 8). The changes in each LULC type are presented in
Table 6, along with their percentage of change. The forecasted map for 2030 shows that
vegetation and green areas will decrease by approximately 0.80% (66 ha), and the city will
also experience a pronounced decrease in barren land by 11% (924 ha). Similarly, desert
land is expected to decrease by 38% (3142.6%) (Table 6). The city is expected to continue
to urbanise and, hence, bare land, vegetation, and desert areas totalling 4132.6 ha will
transform into built-up areas, which are expected to occupy 50% of the total area of the city
(Figure 7A). In the second period (2030–2040), transformation from desert land into urban
land is expected to be larger (2523 ha) than from both bare land and vegetation combined
(990.65 ha). Overall, during this period, the rate of urbanisation is expected to be more
comprehensive than for the previous period, constituting 66% of the total LULC change
across the study area (Figure 7B). The simulated map for 2040–2050 reveals a substantial
increase in urban areas, which are expected to be the dominant LULC (21,396 ha), while
a large area of vegetation, bare soils, and desert lands will primarily be converted into
residential areas, infrastructure, and housing units (3041 ha) (Figure 7C).
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Figure 8. Gain and loss of LULC categories during observed times (2010–2020) and predicted years
(2030–2050).

The major LULC dynamics are shown to be largely concentrated in the central part of
the city, in rings that expand to outside of the boundaries. Overall, three major clusters of
built-up areas and urban centres can be recognised, stretching from the northeast towards
the southwest. Throughout this linear feature, the previous and forecasted urban growth
occurs, while bare soils, vegetation, and desert lands decline. Nonetheless, the magnitude
of change is expected to be larger in the southwest, contrasted by a considerable decrease in
desert and bare land areas, and divergent underlying construction of a new road network.
Moreover, while the urban development towards the central and western directions occurs
rapidly, it is less pronounced in the northeast direction.
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Table 6. Changes in LULC between 2020 and 2030.

LULC Type Area in 2020 (ha) Area in 2030 (ha) Change (2020–2030)

Vegetation 1068.48 1002.33 −66.15
Urban 10,188.85 14,322.12 4133.27

Bare land 9525.06 8600.56 −924.5
Desert 35,552.61 32409.99 −3142.62

Changes in LULC between 2030 and 2040

LULC type Area in 2030 (ha) Area in 2040 (ha) Change (2030–2040)

Vegetation 1002.33 938.25 −64.08
Urban 10,322.12 18,355.13 8033.01

Bare land 8600.56 7155.5 −1445.06
Desert 32,409.99 29,886.12 −2523.87

Changes in LULC between 2040 and2050

LULC type Area in 2040 (ha) Area in 2050 (ha) Change (2020–2050)

Vegetation 938.25 878.19 −60.06
Urban 18,355.13 21,396.12 3040.99

Bare land 7155.5 6259 −896.5
Desert 29,886.12 27,801.69 −2084.43

3.7. Spatial Trends of LULC Changes

The intensity and trends of the forecasted 2030 LULC spatial changes are represented
in Figure 9. Transformation of vegetation and green cover into built-up areas is expected to
be concentrated largely in the central areas of the city, with high concentrations occurring
around the centres of old settlements (Figure 9A). In contrast, the transformation of green
areas is expected to be less in the northeast and in marginal places. The transition from
barren lands into urban areas is likely to range from moderate to high intensity across the
southwestern and western areas. Nevertheless, the lowest intensity of this transition occurs
toward the northeast and northwest directions (Figure 9B). The conversion of intense
arable land into built-up areas is expected to occur in the far southwest, where urban
development and population concentration are dominant. The intensity of bare land loss
and conversion will continue close to major roads and old urban centres, where high
accessibility to the city centre and basic facilities will accelerate urban expansion rates.
Desert loss can be seen around the existing urban areas, expected to be transformed into
built-up areas—particularly towards the southwest, south, and northwest. The greatest
and most intense transformation of all LULC categories into urban areas is expected to
occur along the essential linear axis, which extends from the northeast to the southwest
(Figure 9D). However, the contribution of desert land to urban expansion will be relatively
more intense around urban centres, located mainly in the central and southern parts of the
city. Notably, these places are expected to witness the highest rates of urban expansion and
sprawl during the next three decades.
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4. Discussion

Although demographic metrics such as population size are widely used to classify
cities and differentiate urban areas from rural settlements, Omani cities can be characterised
by their spatial features and, hence, can be classified into coastal, mountainous, or desert
cities. Indeed, Omani cities, which are developing rapidly, have been shaped by several
attributes according to their spatial characteristics, area, and locations.

LULC changes across the study area resulted from various complex processes and
entangled local driving forces. Several spatially explicit modelling techniques—particularly
NNs and MCs—have been commonly implemented to analyse, quantify, and forecast key
LULC dynamics (e.g., [4,53–56]).

During the last decade (2010 to 2020), desert urban settlements have grown precip-
itously, and the pace of urbanisation is expected to continue into the future. According
to the predictions of this work, built-up areas and urban settlements will expand rapidly
from 2020 to 2030, 2040, and 2050. By 2030 and 2040, urban areas are expected to expand
significantly by about 4133 and 8033 ha, respectively, while vegetation will decrease by
66 and 64 ha, respectively. Although the majority of the contribution to urban expansion
could be from bare land (925 ha) and desert (3142 ha), a decline in green areas would
negatively impact the city–ecology balance. This finding indicates that during the upcom-
ing three decades up to 2050 the city of Ibri is expected to witness an accelerated stage
of urbanisation.
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Focusing on the spatial patterns in the simulated future scenarios, at present—and
probably during the next decade—urban growth within the city may be characterised by
linear patterns; therefore, the urban spillover is limited to around major roads. However,
this polarisation around the road network may not continue for long, for many reasons:
Firstly, the vacant land patches within residential areas and near major roads are expected
to be converted into houses; thus, urban areas might expand away from the residential
centres—outward, and over open desert spaces. Secondly, placing new business and in-
dustrial areas within the city will require large areas; thus, they could be located mainly in
the marginal open desert spaces. Thirdly, other driving forces—particularly underground
water supply—could increase the pace of desert urbanisation and expansive land develop-
ment towards open marginal spaces. Finally, Omani households rely fundamentally on
private car transportation; thus, this pattern of dependency on automobiles could lead to
the rate of urban sprawl and fragmentation of the urban fabric.

The growth of desert urban areas is essentially the outcome of multiple entangled
and evolving local factors. It is expected that population movement and migration from
rural to urban areas are drivers of urban expansion and development over desert spaces. In
particular, the population of the city is expected to reach 130,000 inhabitants by 2040 [65].
Accordingly, and considering the spatial hierarchy of the city of Ibri as a central destination
among its surrounding urban centres, urban expansion will occur much faster, influenced
not only by the natural increase in urban population, but also by population mobility and
rural-to-urban migration, specifically from surrounding villages.

In essence, the expected urban expansion during the next three decades will not only
increase population energy consumption and the burden of constructing new infrastruc-
ture and facilities, but will also create more environmental challenges and problems—
particularly air, soil, and water pollution. Such urban transformation processes and their
consequences will influence sustainable desert urban living and, therefore, diminish natural
resource flows [3–5].

As stated previously, urban expansion across desert cities not only diminishes available
natural resources, but also impacts natural and biological ecosystems. Similar studies
conducted elsewhere showed that urban growth across desert areas has led to numerous
environmental challenges [3,42]. Within the study area, water scarcity, along with a range
of environmental degradations, will affect the availability of groundwater and the aquifers
on which populations in desert urban areas depend. Some underground water wells
have been depleted, and are likely to expire within a generation. Despite the fact that
the Omani government’s urban strategy has adopted several protective policies—such
as strengthening the system of water collection and storage—climate change is expected
to reduce the volume of groundwater recharge [65]. Accordingly, and as water scarcity
and stress directly affect vegetation and decrease crop yield, new urban settlements will
depend critically on limited freshwater availability, as well as the shrinking of green covers.
Planning for providing new settlements and growth with fresh water supplies is a challenge
across desert urban areas. Nonetheless, the need for securing water for these growing
agglomerations is a serious concern to ensure a sustainable future.

Our findings indicate that during the next three decades, green spaces in the city of
Ibri will decrease, and large areas will be converted into residential places. The decline in
vegetation cover and green area due to the direct conversion of agricultural and farm land
into housing units is likely to arise from unplanned urban expansion, and to negatively
impact the natural ecosystem. Furthermore, green areas might be influenced not only by
spontaneous urban expansion, but also by the pressure on underground water and increasing
demand for fresh water for irrigation. Several negative consequences of urban green conver-
sion have been reported elsewhere [12–14,16,17], such as ecological imbalance—particularly in
arid and semi-arid urban environments. Hence, governmental planners and policymakers
should consider plantation strategies—specifically, to grow plants in open spaces, such
as date palm trees, which are more adapted to the desert environment. Similarly, the
government should support the desert ecosystem and enhance biodiversity by establishing
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new national and subnational parks, and maintain landscape connectivity by connecting
open spaces with green infrastructure.

Satellite images and remote sensing techniques have been intrinsically employed to
model and simulate the dynamics of desert urban areas in Oman. The outcomes of such
image processing and spatial simulation analysis could greatly improve the monitoring
of urban growth, and forecast its socioeconomic and environmental ramifications not
only in the GCC region, but also across all desert urban areas. Future forecasts of LULC
dynamics and urbanisation across desert cities are necessary to quantify and investigate the
intense spatial ramifications on natural resources and environmental biodiversity. The rapid
pace of development over desert areas raises a concern about the process of urbanisation,
which often irreversibly alters the structure of natural settings. In Oman and other GCC
states, urban development has been associated largely with numerous socioeconomic and
environmental changes. Given the pronounced impacts of urban expansion that have
already been observed, careful local policy actions should be taken, and are necessary to
ensure that desert urban growth is sustainable. Ultimately, future forecasts of desert urban
areas should explore pathways towards sustainable urban structure, to ensure that the
same level of quality of life will sustain desert urban populations compared with plains and
coastal cities, and under various scenarios of economic development and environmental
degradation. Several negative consequences of desert urban sprawl are expected to occur,
including inequality in accessibility to services, water-table decline and contamination, air
pollution, high surface temperatures, disruption of wildlife, flood risk, drought hazard, and
low quality of life. Accordingly, effective policies should be adopted to control this type
of urban sprawl and preserve the natural ecosystem of the desert environment. Likewise,
municipal policies should involve forecasting methods that can employ advanced remote
sensing and image processing techniques to monitor future urban expansion.

5. Conclusions

The overall aim of this study was to assess the spatiotemporal dynamics of desert
urban areas in Oman over the last two decades, as well as to forecast urban expansion across
the city of Ibri over the next three decades. We employed a methodology that integrated
remote sensing and GIS methods with an MLP neural network and Markov chain model to
characterise recent growth and forecast future expansion of the desert urban LULC type
across the city of Ibri in Oman. The integration of machine learning, CA–Markov, and
remotely sensed data was quite instructive in simulating the spatiotemporal dynamics of
desert urban areas. The model accuracy of predicting desert urban changes was evaluated
utilising satellite imagery data only, and by comparing the projected 2020 image to the
actual 2020 classified image. The agreement between the actual and projected 2020 maps
was 89%, indicating a high model performance and efficiency.

The findings clearly indicate that the city has undergone substantial changes in the
last few years, and is anticipated to undergo drastic LULC changes by 2050. The most
noticeable changes were due to numerous local drivers—particularly infrastructure, road
development, and the reclamation of desert lands. Prominent transitions involved shifting
from agricultural, arable, and desert lands to residential areas. Nevertheless, the simulated
results revealed that desert land conversion across the city is expected to be the most
dominant, contributing significantly to urban and residential areas. Similarly, the loss of
arable land and fertile soils was also another dominant force driving urban growth. The
city of Ibri is likely to expand greatly and reach a mature stage of urbanisation over the next
three decades. However, creating liveable, green, open spaces will be a major challenge,
considering the fact that the loss of green areas is presumably to be simultaneously associ-
ated with the increasing rate of expansion of built-up areas. Agricultural land—specifically
date farms—is projected to experience severe decline (i.e., 10%) by 2040, and total of 166 ha
is likely to be converted into built-up areas by 2050. This type of intensified and dramatic
decrease in green areas will negatively influence ecosystem services across the city.
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A key limitation of this study is the lack of detailed ancillary spatial layers—in partic-
ular, demographic and population data at the district or subdistrict administrative levels.
Inclusion of such variables could strengthen the influence of driving forces in forecasting
the future of LULC changes. However, to the best of our knowledge, research on the simula-
tion of desert urban growth in Oman and other surrounding GCC states is absent. Overall,
the findings of this study could be used as spatial guidelines and to rethink approaches to
controlling urban sprawl and directing urban planning of desert cities—not only in Oman
or the GCC states, but also in other developing countries. Therefore, this study bridges
knowledge in desert LULC forecasting, contributing to a more detailed understanding of
desert city dynamics, and connecting directly with a globally relevant and interdisciplinary
research agenda. Hence, it provides insights into understanding the LULC dynamics of
desert cities across Oman and the surrounding regions.
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