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Abstract: In this paper, we present a challenging stereo-inertial dataset collected onboard a sports
utility vehicle (SUV) for the tasks of visual-inertial odometry (VIO), simultaneous localization and
mapping (SLAM), autonomous driving, object detection, and other computer vision techniques. We
recorded a large set of time-synchronized stereo image sequences (2 × 1280 × 720 @ 30 fps RGB) and
corresponding inertial measurement unit (IMU) readings (400 Hz) from a Stereolabs ZED2 camera,
along with centimeter-level-accurate six-degree-of-freedom ground truth (100 Hz) from a u-blox
GNSS-IMU navigation device with real-time kinematic correction signals. The dataset comprises
34 sequences recorded during November 2020 in Wuhan, the largest city of Central China. Further,
the dataset contains abundant unique urban scenes and features of a complex modern metropolis,
which have rarely appeared in previously released benchmarks. Results from milestone VIO/SLAM
algorithms reveal that methods exhibiting excellent performance on established datasets such as
KITTI and EuRoC perform unsatisfactorily when moved outside the laboratory to the real world. We
expect our dataset to reduce this limitation by providing more challenging and diverse scenarios to
the research community. The full dataset with raw and calibrated data is publicly available along
with a lightweight MATLAB/Python toolbox for preprocessing and evaluation. The dataset can be
downloaded in its entirety from the uniform resource locator (URL) we provide in the main text.

Keywords: dataset; WHUVID; SLAM; VIO; autonomous driving; urban scenarios

1. Introduction

Datasets related to visual-inertial odometry (VIO), simultaneous localization and
mapping (SLAM), and autonomous driving released by various research institutions and
colleges in the past decade have greatly promoted the development of these technolo-
gies, e.g., UTIAS Multi-Robot [1], San Francisco Landmark [2], SeqSLAM [3], CCSAD [4],
Cityscapes [5], NCLT [6], MPO-Japan [7], etc. Several notable works have emerged among
these datasets. The FORD dataset [8] published two sequences of images and three-
dimensional (3D) laser data recorded at a research campus and downtown Dearborn in
Michigan, United States with corresponding inertial measurement unit (IMU) data and
six-degree-of-freedom (6-DOF) ground truth, claiming to be the first to add visual infor-
mation to the structure of the environment by fusing image and laser. KITTI [9,10] is the
most well-known and widely used large dataset to date that provides benchmarks for
various computer vision tasks, including (but not limited to) stereo matching, optical flow,
visual odometry, SLAM, depth estimation, and 3D object detection. TUM [11] extends the
ability of SLAM algorithms from optical-only to RGB and depth (RGB-D) by collecting
accurately calibrated and aligned optical and depth images as well as providing several
reasonable evaluation metrics. In addition, datasets collected from other platforms beyond
four-wheeled vehicles, such as motorcycles [12], mobile robots [13,14], unmanned aerial
vehicles (UAV) [15,16], autonomous underwater vehicles (AUV) [17–19], and handheld
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devices [20,21] have been released continuously, which has collectively resulted in new
breakthroughs in VIO/SLAM and autonomous driving.

However, the aforementioned datasets have two key issues that cannot be ignored.
First, they have shortcomings such as insufficient number of images, low resolution and
sampling frequency, and lack of scene dynamics. For example, the FORD dataset [8]
contains only around 7000 groups of images with a narrow horizontal perspective smaller
than 80◦, and its 8 fps image acquisition rate is much less than the real-time sampling rate of
30 Hz. These defects make the dataset unstable at turnings and unable to evaluate the long-
term robustness of algorithms. Further, KITTI [9,10] is a large-scale benchmark but does
not record IMU information. Moreover, the part prepared for visual odometry (VO) lacks
scene complexity and the number of samplings is also limited. Furthermore, numerous
datasets are artificially split up into multiple segments, where each segment represents a
continuous and smooth driving process at almost constant speed. Such a method facilitates
the evaluation of algorithms to a certain extent; however, it does not reflect real-world
driving conditions. The second issue is that most of the existing datasets have a consistent
style because of being recorded in European and North American cities, where fields of
traffic, roads, buildings, and residential areas share similar designs and planning. In other
words, these datasets are unable to comprehensively cover all characteristics of modern
cities [22,23]. For example, urban landscapes common in China, such as contiguous
skyscrapers, wide and crowded roads, complex overpasses, large sections of long tunnels,
and huge bridges, are rarely included, introducing obvious flaws in the evaluation of
VIO/SLAM and autonomous driving algorithms.

In the present study, compared with previous works as summarized in Table 1, we
release an exemplary dataset collected in Chinese urban scenarios—Wuhan Urban Visual-
inertial Dataset (WHUVID)—aiming to increase the completeness and richness of urban
scenes for evaluation. To the best of our knowledge, this dataset is currently the largest
and latest visual-inertial benchmark for VIO [24–26], SLAM [27–29], and autonomous
driving recorded in a highly modern Chinese city. WHUVID was recorded using an off-
the-shelf Stereolabs ZED2 camera in November 2020, covering three main urban areas
of Wuhan, namely, Wuchang, Hankou, and Hanyang, as shown in Figure 1. It contains
general traffic situations with many static/dynamic objects in multiple scenes such as
campus, municipal roads, viaducts, tunnels, parking lots, and huge bridges. In addition,
we label all the data with five time slots (morning, midday, afternoon, sunset, and night)
according to the recording time to distinguish different lighting conditions. WHUVID
contains 34 publicly downloadable sequences, including more than 336,000 pairs of high-
resolution and full-frame-rate binocular RGB images and up to 4.5 million 6-axis (triaxle
acceleration and angular velocity) IMU readings, with a cumulative duration of 11,285 s
and a travel distance of 82.01 km. We also provide timestamped 100 Hz 6-DOF ground truth
collected and calculated by a u-blox C100-F9K GNSS-IMU navigation device in a uniform
format (x-y-z for translation and quaternion for rotation). To expand the application scope
of the dataset, we manually annotated 1860 images for the object-detection task, obtaining
7485 bounding boxes in four categories (car, person, bike, and label). We further used
them as a training set and obtained up to 682,000 annotations by applying YOLOv4 [30]
on the entire dataset, in which dynamic targets account for more than 90%. Finally, we
employed two milestone algorithms, namely, ORB-SLAM2 [31,32] and VINS-Mono [33,34],
to evaluate the performance of WHUVID with five other well-known datasets in three
cases: monocular, stereo, and visual-inertial. Results show that algorithms that perform
well on other formerly released datasets make more mistakes and cause larger errors on
WHUVID, indicating that our dataset poses more challenges and requirements.
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Table 1. Comparison of established publicly available benchmarks and datasets recorded onboard
vehicles and in outdoor environments (except where specified) with vision and IMU data over the last
decade. In the table header, “#Seq” denotes the number of sequences of the corresponding datasets
and “Dur”, “Len”, “Avg”, “Spd”, and “GT” denote duration, length, average, speed, and ground
truth, respectively.

Dataset
Release

Year
Position #Seq #Frame Dur/s Len/km

Avg
Spd/(m/s)

Camera
Parameter

#Category #Label
GT

Quality

FORD [8] 2011
Dearborn,

USA
2 7 k 938 5.4 5.8

omni × 6 RGB
1600 × 600 @ 8 fps

None None 6-DOF

KITTI [9,10] 2013
Karlsruhe,
Germany

22 41 k 4517 39.2 8.7
stereo RGB

1241 × 376 @ 10 fps
5 — 6-DOF

Malaga [35] 2014
Malaga,
Spain

15 113 k 5655 36.8 6.5
stereo RGB

1024 × 768 @ 20 fps
None None 3-DOF

Oxford 1 [36] 2016
Oxford,

UK
1 35 k 2455 9.3 3.8

stereo RGB
1280 × 960 @ 16 fps

None None 6-DOF

EuRoC 2 [15] 2016
Zurich,

Switzerland
11 27 k 1373 0.89 0.65

mono GRAY
752 × 480 @ 20 fps

None None 6-DOF

MVSEC [12] 2018
West Philly,

USA
5 37 k 1813 9.6 5.3

stereo GRAY
752 × 480 @ 20 fps

None None 6-DOF

WHUVID 2021
Wuhan,
China

34 336 k 11,285 82.0 7.2
stereo RGB

1280 × 720 @ 30 fps
4 681 k 6-DOF

1 The Oxford dataset was collected repeatedly along the same route more than 100 times over the period of a year.
Here, we employed data from 28 November 2014. 2 The EuRoC dataset was collected indoors on board a UAV,
and it was only involved in the evaluation of the visual-inertial case latter in Section 5.

We expect WHUVID to contribute to further improving the robustness and reliability
of VIO/SLAM and autonomous driving algorithms; therefore, we have made it open
access under the CC-BY 4.0 license (available at https://github.com/chentianyangWHU/
WHUVID accessed on 15 March 2022). For personal and social privacy, relative position
data in the metric of the east-north-up (ENU) coordinate system are published instead of
raw longitude and latitude readings, and sensitive information that is clearly visible in
images, such as license plates, faces, and special signs, is blurred with mosaic. Excluding
the above mentioned information, the website contains full information with raw and
calibrated data, calibration manuals, demo programs, videos for visual inspection, and a
toolbox for evaluation and preprocessing supporting both MATLAB and Python.

The main contributions of this paper can be summarized as follows:

1. We propose WHUVID, the latest and largest calibrated and synchronized visual-
inertial dataset collected from Chinese urban scenarios with abundant scenes not
previously included, along with high-quality recordings and accurate ground truth.

2. We present a brief review of numerous previously published datasets and conduct a
detailed evaluation and comparative experiments between some of them and WHU-
VID, proposing some original evaluation metrics.

The remainder of this paper is structured as follows. Section 2 describes the sensors
used as well as their setup. Section 3 gives a detailed introduction of the composition of
the dataset and how it is collected and annotated. Content related to data preprocessing,
such as calibration and synchronization, is given in Section 4. Evaluation experiments and
discussion from multiple aspects are described in Section 5. Finally, a brief conclusion of
our work and suggestions about future research are given in Section 6.

https://github.com/chentianyangWHU/WHUVID
https://github.com/chentianyangWHU/WHUVID
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quality with the Position Dilution of Precision (PDOP, a positioning accuracy evaluation indicator; 
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PDOP between 3 and 7; and red represents BAD quality with PDOP between 7 and 100. 

2. Sensor Setup 
The sensor setup is illustrated in Figure 2: 

1. A Stereolabs ZED2 integrated VI sensor with stereo lenses (1/3” 4MP CMOS, 2688 × 1520 
pixels with each pixel of size 2 × 2 microns, electronic synchronized rolling shutter, base-
line: 120 mm, focal length: 2.12 mm, field of view (FOV): 110° horiz. 70 °vert.) and a con-
sumer-grade built-in IMU (motion measurement with 6-DOF @ 400 Hz ± 0.4% error, 
magnetometer with 3-DOF @ 50 Hz ± 1300 µT); 

2. A u-blox GNSS-IMU navigation device (184-channel u-blox F9 engine; supporting GPS, 
GLONASS, BeiDou, Galileo, SBAS, and QZSS; position accuracy < 0.2 m + 1 ppm CEP with 
real-time kinematic (RTK); and data-update rate up to 30 Hz, with a built-in IMU for a 

Figure 1. Recording zone. This figure shows the complete trajectory of our dataset (up) in the
city center of Wuhan, China, together with two enlarged areas marked with white boxes, namely,
a parking lot (bottom left) and the campus of Wuhan University (bottom right). Colors encode
the signal quality of the Global Navigation Satellite System (GNSS): green represents EXCELLENT
quality with the Position Dilution of Precision (PDOP, a positioning accuracy evaluation indicator;
refer to Section 3.1.2 for detailed information) less than 3; blue represents GOOD quality with PDOP
between 3 and 7; and red represents BAD quality with PDOP between 7 and 100.

2. Sensor Setup

The sensor setup is illustrated in Figure 2:

1. A Stereolabs ZED2 integrated VI sensor with stereo lenses (1/3′′ 4MP CMOS,
2688 × 1520 pixels with each pixel of size 2 × 2 microns, electronic synchronized
rolling shutter, baseline: 120 mm, focal length: 2.12 mm, field of view (FOV): 110◦

horiz. 70◦ vert.) and a consumer-grade built-in IMU (motion measurement with
6-DOF @ 400 Hz ± 0.4% error, magnetometer with 3-DOF @ 50 Hz ± 1300 µT);
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2. A u-blox GNSS-IMU navigation device (184-channel u-blox F9 engine; supporting
GPS, GLONASS, BeiDou, Galileo, SBAS, and QZSS; position accuracy < 0.2 m + 1 ppm
CEP with real-time kinematic (RTK); and data-update rate up to 30 Hz, with a built-in
IMU for a GNSS-denied environment) with a GNSS receiver and a C100-F9K inte-
grated module (IMU inside).
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ured with centimeter-level accuracy. The Euler angles of the ZED2 camera can be ad-
justed through screws, but its position and pose as well as those of the other two devices 
are maintained throughout the recording process. Our sports utility vehicle (SUV) houses 
a Dell PC with an i7-8750H processor and a 1-TB Western Digital MyPassport SSD, con-
nected to the host computer via a type-C interface. Our computer runs Ubuntu Linux (64 
bit) 16.04 and multi-process programs to store stereo images and IMU data from ZED2 
and position readings from the u-blox device in real time. 

 
Figure 3. Recording platform. We recorded a large dataset for evaluating VIO/SLAM and auton-
omous driving using a Stereolabs ZED2 (top left) onboard an SUV. The ground truth was collected 
by a u-blox navigation device, including a GNSS receiver (bottom left) and a C100-F9K integrated 
module (bottom right). All these devices were connected to and timestamped by the host computer 
(top right). 

3. Dataset 
The ZED2 is a USB Video Class video camera with low-level access comprising dual 

image sensors and motion/environment sensors inside. The u-blox device is an 
IMU-assisted GNSS navigation instrument designed for vehicles in the case of a 
GNSS-denied environment. The host computer connects with and collects information 
from ZED2 and the u-blox device through type-C and USB, respectively, to obtain visu-
al-inertial data and ground truth simultaneously. The dataset contains various scenes 

Figure 2. Sensor setup. This figure shows the mounting positions of the sensors (marked in red) with
respect to the vehicle body. Heights above ground are marked in green and measured with respect to
the road surface. The axes of the lenses of Stereolabs ZED2 and IMU (inside the C100-F9K integrated
module) are marked in blue.

As shown in Figure 3, the Stereolabs ZED2 camera is fixed to the front cover of the
vehicle using a sports-level suction cup bracket, the GNSS receiver is firmly attached to
the top of the vehicle with a magnet, and the C100-F9K integrated module is adhered
to the storage table—calibrated using a leveling instrument—in the middle of the two
front seats by glue. Distances between the three abovementioned devices are manually
measured with centimeter-level accuracy. The Euler angles of the ZED2 camera can be
adjusted through screws, but its position and pose as well as those of the other two devices
are maintained throughout the recording process. Our sports utility vehicle (SUV) houses a
Dell PC with an i7-8750H processor and a 1-TB Western Digital MyPassport SSD, connected
to the host computer via a type-C interface. Our computer runs Ubuntu Linux (64 bit) 16.04
and multi-process programs to store stereo images and IMU data from ZED2 and position
readings from the u-blox device in real time.
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Figure 3. Recording platform. We recorded a large dataset for evaluating VIO/SLAM and au-
tonomous driving using a Stereolabs ZED2 (top left) onboard an SUV. The ground truth was collected
by a u-blox navigation device, including a GNSS receiver (bottom left) and a C100-F9K integrated
module (bottom right). All these devices were connected to and timestamped by the host computer
(top right).
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3. Dataset

The ZED2 is a USB Video Class video camera with low-level access comprising dual
image sensors and motion/environment sensors inside. The u-blox device is an IMU-
assisted GNSS navigation instrument designed for vehicles in the case of a GNSS-denied
environment. The host computer connects with and collects information from ZED2
and the u-blox device through type-C and USB, respectively, to obtain visual-inertial
data and ground truth simultaneously. The dataset contains various scenes including
(but not limited to) huge bridge, skyscraper, campus, car park, night, tunnel, and under
viaduct. Example frames are illustrated in Figure 4. We picked up 34 sequences that
were publicly downloadable and with different challenges in terms of factors such as
illumination, travel length, and traffic congestion; their statistical summary is given in
Table 2. For each sequence, we provided binocular images, IMU readings, ground truth,
and object annotations in the form of two-dimensional (2D) bounding boxes, as illustrated
in Figure 5. The recordings were conducted on 13 and 14 November 2020 for the entire day.
The total size of the provided data was 570 GB.

Table 2. Statistics of 34 sequences of WHUVID. This table lists several key attributes of each se-
quence, including scene, time period, duration, frame amount, vehicle speed, object annotation
amount, average dynamic amount, and area ratio of each frame. GNSS quality is evaluated using the
median PDOP.

Id Scene 1 Period
Duration/s
Length/m #Frames

Speed/(m/s)
#Labels

Dynamic 2

IMU 3 GNSS
GNSS
QualityMax Mid Mean Min Num Ratio/%

01 campus p.m. 301, 1511 9006 12.1 4.9 5.0 0 33,461 3.7 5.0 Y Y 4.2
02 campus p.m. 288, 1610 8631 9.9 5.4 5.6 1.4 25,635 2.8 8.0 Y Y 2.7
03 campus p.m. 283, 1531 8486 10.4 5.5 5.4 0.4 18,021 2.0 3.2 Y Y 2.7
04 campus p.m. 172, 1100 5104 11.5 8.0 6.4 1.5 — — — N PD 1.4
05 campus sunset 1188, 4775 35,576 10.0 3.7 4.0 0 — — — N PD 2.4
06 campus night 822, 4775 24,618 12.9 5.8 5.8 0.1 — — — Y Y 1.9
07 campus night 166, 790 4914 9.3 4.5 4.8 0 — — — Y Y 1.8
08 campus night 403, 2474 11,825 11.3 6.4 6.1 1.1 — — — N Y 2.2
09 campus night 490, 3221 14,655 10.9 6.9 6.6 1.2 — — — Y Y 2.8
10 campus night 131, 887 3866 9.4 7.1 6.8 0.8 — — — Y Y 2.8
11 campus night 58, 352 1727 8.4 6.3 6.1 1.4 — — — Y Y 2.9
12 campus night 495, 3028 14,784 10.4 6.3 6.1 1.1 — — — Y Y 2.3
13 campus a.m. 569, 3891 16,985 11.4 6.9 6.8 2.1 41,410 2.3 4.1 Y Y 2.0
14 campus a.m. 797, 4531 23,811 11.3 5.7 5.7 0 52,373 2.0 4.0 Y Y 2.7
15 campus a.m. 248, 980 7354 8.8 5.1 5.4 0 11,785 1.5 2.7 Y Y 2.0
16 urban-RD midday 608, 4165 18,070 17.1 5.8 6.9 0 79,265 4.1 8.8 Y Y 1.9
17 urban-BG midday 621, 8028 18,420 18.9 13.5 12.9 0 83,138 4.1 8.6 Y Y 1.7
18 urban-RD midday 267, 2925 8000 17.3 10.6 11.0 2.8 36,472 4.1 7.9 Y Y 1.9
19 urban-TN midday 35, 361 1042 13.8 10.3 10.3 7.1 3251 3.1 6.6 Y Y 100
20 urban-RD midday 143, 2112 4003 17.9 14.5 14.8 9.9 17,549 3.9 5.4 Y Y 1.6
21 urban-RD midday 164, 2902 4903 23.1 17.4 17.7 10.6 8300 1.6 2.3 Y Y 1.4
22 urban-RD midday 137, 1137 4107 13.6 9.9 8.3 0 14,414 3.1 7.6 Y Y 1.6
23 urban-CP p.m. 80, 206 2381 5.4 2.8 2.6 0 9853 4.1 15.6 Y Y 1.7
24 urban-CP p.m. 217, 486 6493 5.7 2.1 2.2 0 28,330 4.2 12.1 Y Y 1.7
25 urban-RD p.m. 258, 1696 7713 16.9 5.0 6.6 0 23,055 2.6 8.0 Y Y 1.6
26 urban-RD p.m. 219, 585 6478 9.7 1.2 2.7 0 19,727 2.9 9.5 Y Y 2.1
27 urban-RD p.m. 239, 1661 7154 16.0 6.7 6.9 0 22,279 2.4 3.7 Y Y 2.0
28 urban-RD p.m. 321, 1737 9565 14.5 5.5 5.4 0 14,305 1.4 4.1 Y Y 100
29 urban-RD sunset 302, 4437 9045 23.2 14.8 14.7 5.5 19,372 2.0 2.5 Y Y 1.6
30 urban-RD sunset 405, 5936 12,027 21.6 14.7 14.7 5.9 34,555 2.7 4.2 Y Y 2.8
31 urban-BG sunset 219, 3942 6480 20.2 15.6 18.0 12.7 23,206 3.5 4.3 Y Y 1.6
32 urban-RD sunset 72, 108 1864 2.6 1.5 1.5 0.5 11,719 6.3 24.8 Y Y 1.7
33 urban-RD sunset 265, 2187 7945 17.3 11.0 8.3 0 27,207 3.0 6.4 Y Y 2.4
34 campus sunset 302, 1944 9043 10.3 6.7 6.4 0.9 23,027 2.4 6.0 Y Y 2.4

1 In this column, “RD”, “BG”, “TN”, and “CP” are abbreviations of “road”, “bridge”, “tunnel”, and “car park”.
2 In this column, we list the average amount of dynamic objects and their area ratio of each frame. 3 In this and
the latter column, “Y”, “N”, and “PD” denote that data are intact, missing, and partially damaged, respectively.
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of the Stereolabs ZED2 camera, indicating the diversity and uniqueness of our dataset. Scenes such as
huge bridge, skyscraper, tunnel, and under viaduct are rarely seen in previously established datasets.
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Figure 5. File structure of each provided sequence. Folders cam0 and cam1 store images from the
left and right lenses of ZED2, respectively, and the images are named after the Unix timestamp in
nanoseconds when they were caught by the host computer. Names of images were listed in the
image.txt file for retrieval. Raw and aligned IMU readings were separately saved in the files imu0.csv
and imu0_aligned.csv, respectively. BoundingBox.json stores 2D bounding boxes of four types of
annotated objects of each image in the current sequence. TUM-style ground truths before and after
interpolation were stored in the files groundtruthTUM.txt (10 Hz) and groundtruthTUM_100hz.txt,
respectively. The trajectory file groundtruth.png and video preview.mp4 of each sequence are
provided for the convenience of checking and usage. More detailed information on each file will be
provided later in Sections 4 and 5.

3.1. Data Description
3.1.1. Image and IMU

The output of the image sensor has four modes: Standard Definition (672 × 376 @
15/30/60/100 fps), High Definition (1280 × 720 @ 15/30/60 fps), Full High Definition
(1920× 1080 @ 15/30 fps), and 2 K (2208× 1242 @ 15 fps). Considering computing resource
limitation and the balance between resolution and update rate, we chose High Definition
with 30 fps. We acquired hardware time-synchronized binocular image pairs and 400 Hz
6-DOF IMU readings simultaneously and in real time using a multithread program based
on an officially released toolkit zed-open-capture [37] by Stereolabs. To ensure real-time
performance, images were first written into text files in binary format and then stored
with lossless compression using 24-bit PNG files after post-processing. IMU readings were
stored in comma-separated value files with seven values: {timestamp, triaxle acceleration
(x-y-z), and triaxle angular velocity (x-y-z)}.

Although images and IMU readings were collected by a single program on the same
host computer simultaneously, because ZED2 itself does not have a hardware trigger for
visual-inertial synchronization, the timestamps of each pair of images and corresponding
IMU reading were not strictly aligned, with a time slot up to half of the IMU update period,
i.e., 1.25 milliseconds. Unaligned timestamps may cause crashes in some VIO algorithms;
to solve this problem, a solution using linear interpolation is proposed in Section 4.2.2.

3.1.2. Ground Truth

In total, 6-DOF ground truths were collected and calculated by the u-blox GNSS-IMU
navigation device with RTK correction signals from Qianxun, a high-precision positioning
and timing service provider. We first obtained raw positioning data with 13 different fields
from the device at 10 Hz: timestamp in seconds; longitude, latitude, and altitude in meters;
orientation (i.e., yaw), velocity, and number of satellites used; PDOP (a positioning accuracy
evaluation indicator ranging between 0.5 and 100; the smaller the value, the higher the
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accuracy); HDOP (horizontal component of PDOP); VDOP (vertical component of PDOP);
DGPS (differential GPS, a Boolean variable to indicate RTK correction); and fix type (an
enumeration variable to indicate the positioning mode; 3D means only GNSS works, DR,
i.e., Dead Reckoning, means only built-in IMU works, and 3D+DR means IMU-assisted
GNSS works). The last six indicators mentioned above have different meanings, though
they all describe the concept of positioning accuracy from different aspects and are strongly
correlated. For example, GNSS and RTK signals were strong during most of our journey
with the number of satellites used being more than 12 and PDOP smaller than 3, and HDOP
and VDOP were also less than 3. Meanwhile, DGPS would be “YES” and fix type would be
“3D+DR”. However, when a vehicle is obscured by obstacles such as a dense treetop or just
driving underground, the number of satellites used would be less than 6, and PDOP along
with HDOP and VDOP would be greater than 7, with a value up to 100. In summary, PDOP
was selected for a quantitative description of positioning accuracy after consideration, as
shown in Figure 1; the GNSS signal quality of the total trajectory is analyzed in Figure 6.
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Figure 6. GNSS signal quality analysis of the complete trajectory of WHUVID. The PDOPs of all
recorded points in the entire trip are sorted in this figure. As can be seen, 79.0%, 15.5%, and 5.5% of
them receive EXCELLENT, GOOD, and BAD GNSS signals. Colors used here (green, blue, and red)
have the same meanings as explained in Figure 1.

Among the Euler angles, i.e., roll, pitch, and yaw, only yaw could be acquired directly;
therefore, the pitch had to be estimated from the change in altitude and the roll was simply
set to zero since the vehicle traveled on straight city roads all the way. During this process,
filtering the original positioning data was necessary for suppressing sudden changes in
altitude and avoiding incorrect pitch calculation results. Subsequently, quaternion could be
calculated. The metric ground truth under the ENU coordinate system was transformed
from latitude and longitude using the Mercator projection [38], with the earth radius being
6371 km. Finally, for the convenience of evaluation, we extended the original ground truth
from 10 to 100 Hz through linear interpolation and thereby obtained a text file of ground
truth in the TUM [11] format: {timestamp, ENU_x, ENU_y, ENU_z, q_x, q_y, q_z, q_w}.

3.1.3. Sequences

Several key statistics including scene, time period, and duration are provided for most
of the sequences in Table 2, except for individual ones that lack partial attributes because
of severe occlusion, program bug, or other reasons. Sequences 04 and 05 have no IMU
readings and partial positioning data because of program error at a certain moment, and the
same problem also appears in sequence 08. Median PDOPs of sequences 19 and 28 are 100
because the vehicles were driving in tunnels and under viaducts, respectively, and neither
could receive GNSS signals. In this condition, the u-blox navigation device still works
by relying on its built-in IMU with the fix mode being “DR”. For a more comprehensive
assessment of the vehicle driving condition, we provide four types of speed data for each
sequence: maximum, minimum, mean, and median. To make the ground truth as reliable
as possible, our vehicle ran along digit “8” for 15 min each time before the u-blox device



Remote Sens. 2022, 14, 2033 10 of 21

was restarted to guarantee full self-calibration of GNSS and RTK signals. For each sequence,
a folder is provided with its file structure, as shown in Figure 5.

To make working with this dataset more convenient, the trajectories of 32 sequences
with intact positioning data are illustrated in Figure 7, and a brief description of their
contents is given below:
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Figure 7. Summary of 32 sequences. Each trajectory is shown together with aerial urban imagery (the
base map was provided by Google Earth for free) for reference except sequences 04 and 05, owing
to partially damaged GNSS signals. Trace colors used here (green, blue, and red) have the same
meanings as explained in Figure 1.

(01) Through avenue, some traffic. (02) With several right-angle turns, some traffic.
(03) Uphill through trail, little traffic. (04) Through avenue, no GNSS signals on more
than 3/4 of the journey. (05) Dense traffic with several loop closures, some GNSS signals
lost. (06) A huge loop closure and a smaller one, some traffic. (07) A medium loop closure
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with poor illumination. (08) Two loop closures of different sizes. (09) Wide variance in
traffic and lighting conditions. (10) Polyline turn and straight path. (11) Mountain road,
little traffic. (12) A large loop closure of uphill and downhill. (13) Loop closure with fine
illumination. (14) Loop closures connected by a lane, some traffic. (15) Stay still for a long
time. (16) At downtown, dense traffic and pedestrians. (17) Cross the Yangtze River, busy
traffic. (18) Three-quarters of a turn at an overpass. (19) Straight path in a long tunnel,
some traffic. (20) On the viaduct, surrounded by skyscrapers. (21) Long straight path on
the viaduct. (22) Branch of a busy expressway. (23) Direct sun conditions in a parking lot.
(24) Direct sun conditions in a parking lot with loop closure. (25) Along the light rail transit,
busy traffic. (26) Turn left after a prolonged standstill. (27) Half along the light rail transit,
half under viaduct. (28) Loop closure under the viaduct. (29) Cross the Hanjiang River,
direct sun conditions. (30) A long trajectory with diverse city view. (31) Cross the Yangtze
River from west to east. (32) Traffic congestion with very slow speed. (33) Cross a short
tunnel, on and down from viaduct. (34) Direct sun conditions on campus, little traffic.

3.2. Annotations

For dynamic and static objects of interest within the camera’s FOV, we provided
annotations in the form of 2D bounding boxes. We defined the classes “car”, “person”,
“bike” (a bicycle or electric-aided bike being ridden), and “label” (traffic signs). We ac-
quired updated data at 30 fps with similar content between adjacent frames. Meanwhile,
consecutive images collected from a moving vehicle are semantically continuous to a cer-
tain extent. Therefore, manually annotating all images is not necessary after the rapid
development of artificial intelligence and object-detection algorithms. After weighing the
accuracy requirements and time cost of this work, we decided to manually annotate one
frame every 3–5 s and use them to train an object-detection neural network and apply it to
the remaining images. YOLOv4 [30] was chosen as the detection algorithm. We divided
1860 manually annotated images into training and validation sets in the ratio of 4:1; the
corresponding results are given in Table 3. The number of tags annotated manually and
by neural networks and their distributions in 34 sequences are presented in Table 4 and
Figure 8, respectively.

Table 3. Detection results of YOLOv4 on the validation set of manually annotated images.

Class Car Person Bike Label In Total

AP or
mAP/% 97.47 91.35 94.77 96.41 95.00

Table 4. Number of manually annotated tags and all tags (tags automatically annotated by YOLOv4
are included) of four selected categories and their proportion.

Category
Manually All

Number Percent/% Number Percent/%

car 5396 72.09 528,048 77.46
person 761 10.17 67,885 9.96

bike 474 6.33 39,505 5.79
label 854 11.41 46,271 6.79

In total 7485 100 681,709 100

A single type of object would have obviously different features under different lighting
conditions, such as poor or uneven illumination, thus leading to misrecognition or other
difficulties in object detection. Therefore, we did not annotate targets on images obtained
at night to avoid confusion and thus maintained the recognition accuracy of YOLOv4. To
acquire a brief knowledge of the traffic situations of each sequence, we simply defined the
classes “car”, “person”, and “bike” as dynamic objects and calculated the frame-average
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number and area ratio (calculated in pixels) of dynamic objects (Table 2). Notably, although
the approach described above is not rigorous enough because of a few static objects of these
three classes such as stationary cars in a parking lot, it is trustworthy as an auxiliary means
in most traffic scenarios.
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(2) adverse effects of different lighting conditions on the accuracy of object detection (driving at night
of sequence 06–12).

4. Calibration and Synchronization

All the components of our system, i.e., the stereo camera, built-in IMU, and GNSS-IMU
navigation device, required intrinsic and extrinsic calibration. In addition, the timestamp
of the sensor messages needed to be synchronized and augmented for the convenience
of evaluation. All collected data, calibration results, and intermediate files during this
progress are publicly available for download.

4.1. Stereolabs ZED2 Calibration

The Stereolabs ZED2 camera contains two optical lenses and a built-in IMU, which
need to be calibrated in sequence. We used the officially released open-source toolbox zed-
ros-wrapper to obtain low-level access to the device. Some other frequently used systems and
tools were also employed for further calibration. A part of the key results is summarized in
Table 5 for quick reference.

Table 5. Calibration results of Stereolabs ZED2 for IMU, stereo lenses, and visual-IMU.

IMU

accelerometer_noise_density 2.499898 × 10−2

accelerometer_random_walk 3.833771 × 10−4

gyroscope_noise_density 2.143949 × 10−3

gyroscope_random_walk 1.716940 × 10−5
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Table 5. Cont.

Stereo

cam0
intrinsic 1 526.83, 529.30, 638.38, 362.98

distortion 2 −0.0615, 0.0148, −0.0000423, −0.00470

cam1
intrinsic 524.90, 529.95, 656.21, 343.63

distortion −0.0385, −0.00112, 0.000166, −0.00572

baseline
rotation 3 −0.00355, 0.00117, 0.000204, 1.0

translation −0.120, −0.000202, 0.00207

Visual-IMU

T_ic (cam0 to imu)
rotation matrix

[0.00815, 1.0, 0.00726;
1.0, −0.00797, −0.0248;
−0.0247, 0.00746, −1.0]

translation 0.00184, −0.0226, −0.0225
1 The following data are arranged in the order of fx, fy, cx, and cy. 2 The following data are arranged in the order
of k1, k2, p1, and p2. 3 Here, “rotation” is represented by quaternions with the order of qx, qy, qz, and qw.

4.1.1. IMU

The calibration of IMU mainly refers to estimating the gyroscope and accelerometer
noise model parameters related to a standard inertial sensor noise model. These parame-
ters are usually written as σ_a, σ_ba, σ_g, and σ_bg, denoting accelerometer noise density,
accelerometer random walk, gyroscope noise density, and gyroscope random walk, respec-
tively. However, these parameters reflect only the stochastic errors in the inertial data; thus,
they should be obtained from an IMU at rest. In this work, the ZED2 camera, together with
its built-in IMU, was placed on a horizontal desktop for 2 h, and a data package of around
1.7 GB was recorded by the robot operating system. Subsequently, the four aforementioned
parameters could be calculated conveniently using the open-source toolbox imu_utils [39].

4.1.2. Stereo

The goal of stereo camera calibration is to obtain intrinsic and extrinsic parameters
as well as distortion coefficients. The intrinsic parameters include focal length (fx, fy) and
optical center (cx, cy), and the extrinsic parameters include rotation and translation from
one lens to the other. The distortion coefficients include radial (k1, k2) and tangential (p1,
p2) distortion. By repeatedly moving the camera on multiple axes at the front of a chess-
board [40], these parameters can be calculated by the open-source toolbox kalibr [41–45].

4.1.3. Visual-IMU

The goal of visual-IMU calibration is to determine the spatial relationship between the
camera and IMU. We defined the coordinate of the built-in IMU as the body coordinate of
ZED2 and calculated the transformations from the left and right lenses to it. This task was
also completed using kalibr.

4.2. GNSS Interpolation and IMU Timestamp Alignment
4.2.1. GNSS Interpolation

The output frequency of RTK-GNSS data itself is 1 Hz, and by fusing data of the
built-in IMU, the C100-F9K integrated module outputs spatial positioning data for 10 Hz,
which are the original data that can be obtained directly. In general, a sudden change in
position and posture would not occur during normal driving; therefore, 10 Hz is enough
to describe vehicles in motion. However, some currently popular evaluation tools have
higher requirements on the data-update rate of ground truth. Therefore, we expanded the
original data to 100 Hz through linear interpolation. At the same time, to avoid abrupt
turning points caused by interpolation, we performed mean filtering on the interpolated
data. The selected filtering radius was not large; consequently, the difference before and
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after filtering was normally as low as centimeter level, which did not affect its application.
Trajectories before and after modification were stored in the files groundtruthTUM.txt and
groundtruthTUM_100hz.txt, respectively, as shown in Figure 5.

4.2.2. IMU Timestamp Alignment

As described in Section 3.1, the ZED2 camera itself does not have a trigger for visual-
inertial synchronization at the hardware level; consequently, the timestamps of each pair
of images and corresponding IMU reading are not strictly aligned. To compensate for
this defect, we performed linear interpolation for original IMU readings and changed
the update rate from 400 to 300 Hz, exactly 10 times the image frequency. The detailed
operations and results are shown in Figure 9.
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Figure 9. Visual-inertial timestamp alignment and data adjustment. The frequencies of recorded
images and IMU readings are 30 fps and 400 Hz, respectively. We obtained strictly synchronized
visual-inertial timestamps by linearly interpolating IMU data, thus making the frequency 300 Hz.
In this figure, the solid black and blue dots represent the timestamps of images and raw IMU
readings, respectively, and the solid red triangles represent aligned IMU timestamps. The hollow
blue circles represent raw IMU data, while the hollow red triangles represent the adjusted IMU data
after linear interpolation.

5. Evaluation and Discussion

In this work, we employed two milestone algorithms of VIO and SLAM, namely,
ORB-SLAM2 and VINS-Mono, to evaluate the performance of our dataset in comparison
with five other well-known datasets in three cases: monocular, stereo, and visual-inertial.
Because partial data of some sequences of our dataset were missing, we selected 28 intact
sequences for a complete comparison of the three aforementioned cases. The evo [46]
toolbox was employed to implement the evaluation with two widely used metrics: absolute
pose error (APE) and relative pose error (RPE). All results and corresponding files are
available for download for further checking and analysis.

5.1. Evaluation Metric

APE and RPE give quantitative errors between a section of calculated trajectory and
the corresponding ground truth. However, they cannot comprehensively describe the
performance of relevant algorithms. We found in experiments that it is common for
VIO and SLAM algorithms to be interrupted when tracking a long section of data due to
problems such as lack of texture, camera shake, and sudden turnings. When an interruption
occurs, algorithms will terminate immediately and restart from the next frame. In this case,
one long section would thus be divided into some shorter subsegments, and the smaller
the number of subsegments, the stronger the robustness of the algorithms. Therefore, to
describe the positioning accuracy of a long section of data comprehensively, we took the
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weighted average of APE and RPE of the subsegments as indicators of the long section to
which they belonged. In summary, five novel metrics are proposed in this chapter: number
of subsegments (NS), average tracked frames of subsegments (ATF), weighted average of
the APE of subsegments (WAPE), weighted average of the RPE of subsegments (WRPE),
and tracking rate of the entire section (TR). The higher the metrics ATF and TR, the better it
is. Moreover, the lower the metrics NS, WAPE, and WRPE, the better it is.

5.2. Results and Discussion

To evaluate the feasibility and complexity of WHUVID accurately, we selected VIO and
SLAM algorithms from classic works instead of the latest ones in light of the compatibility
with previously published benchmarks [47–60]. Considering the innovation and their
popularity in the community, we finally selected ORB-SLAM2 and VINS-Mono. ORB-
SLAM2 is the second and latest version (at the time of conducting our experiment) of its
series and the most classic and representative implementation of visual SLAM. The third
version released later was updated, though it is only slightly modified with some added
functions [61]. VINS-Mono is a milestone in the field of VIO and SLAM, and we employed
its visual-inertial fusion function. Both algorithms were proposed in 2017 and have enjoyed
great popularity among researchers and engineers to date. Despite our best efforts to
compare WHUVID with formerly released datasets as comprehensively as possible, such
work is obviously not sufficient compared with dozens of benchmarks and algorithms.
Therefore, another purpose of choosing classic algorithms familiar to the community is to
encourage more readers to participate in and expand our work, so as to further promote
the development of this technology and its actualization together.

In the following paragraphs, we evaluate monocular and stereo with ORB-SLAM2
and visual-inertial with VINS-Mono. The experimental results are given in Table 6. All
algorithms are comparable as none of them use loop-closure information.

Table 6. Evaluation of experimental results of WHUVID and five other previously published datasets
with ORB-SLAM2 and VINS-Mono in three cases: monocular, stereo, and visual-inertial. Considering
that some sequences (04, 05, 08, and 26–28) of WHUVID suffer from missing partial data or weak
positioning signals, we selected the left 28 ones for a complete comparison.

Dataset Monocular Stereo Visual-Inertial

Name Seq Id NS ATF WAPE WRPE TR/% NS ATF WAPE WRPE TR/% NS ATF WAPE WRPE TR/%

FORD
1 9 276 4.78 4.30 81.3 - - - - - - - - - -
2 6 481 61.47 7.04 61.1 - - - - - - - - - -

Oxford 9 3657 19.62 2.27 93.1 15 2312 39.77 0.50 98.1 - - - - -

MVSEC
day 1 2 2220 6.12 2.03 84.8 3 1684 6.05 0.60 96.5 3 1701 23.78 0.42 97.4

day 2 1 12,069 6.33 2.98 92.4 1 13,063 25.01 1.51 100 7 1638 61.59 0.47 87.7

EuRoC

MH01 - - - - - - - - - - 1 3682 0.13 0.0030 100

MH02 - - - - - - - - - - 1 3038 0.13 0.0024 99.9

MH03 - - - - - - - - - - 1 2698 0.17 0.0049 99.9

MH04 - - - - - - - - - - 1 2031 0.30 0.0046 99.9

MH05 - - - - - - - - - - 1 2271 0.30 0.0051 99.9

KITTI

00 1 4538 6.67 0.16 99.9 1 4541 0.86 0.02 100 - - - - -
01 1 1062 458.9 10.53 96.5 1 1101 8.68 0.04 100 - - - - -
02 1 4658 22.29 0.22 99.9 1 4661 5.42 0.02 100 - - - - -
03 1 798 0.66 0.05 99.6 1 801 0.26 0.02 100 - - - - -
04 1 268 1.26 0.09 98.9 1 271 0.55 0.02 100 - - - - -
05 1 2650 8.21 0.23 96.0 1 2761 0.49 0.01 100 - - - - -
06 1 1098 11.98 0.29 99.7 1 1101 0.47 0.01 100 - - - - -
07 1 1094 2.89 0.12 99.4 1 1101 0.42 0.01 100 - - - - -
08 1 4067 50.24 0.73 99.9 1 4071 2.89 0.03 100 - - - - -
09 1 1586 42.51 0.78 99.7 1 1591 2.40 0.02 100 - - - - -
10 1 1168 6.08 0.12 97.3 1 1201 0.82 0.01 100 - - - - -
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Table 6. Cont.

Dataset Monocular Stereo Visual-Inertial

Name Seq Id NS ATF WAPE WRPE TR/% NS ATF WAPE WRPE TR/% NS ATF WAPE WRPE TR/%

WHUVID

01 4 2181 83.57 2.74 96.9 10 536 6.60 1.53 59.5 1 8834 20.89 0.18 98.1
02 2 4111 115.11 3.00 95.3 6 811 4.12 0.56 56.4 5 1681 36.99 0.32 97.4
03 2 4230 116.43 2.81 99.7 6 718 5.21 0.91 50.8 5 1652 46.89 0.27 97.3
06 9 2675 100.59 3.29 97.8 2 12,303 82.01 2.73 100 11 2154 54.28 0.30 96.2
07 3 1632 50.71 3.11 99.7 1 4905 37.28 2.24 99.8 3 1392 31.13 0.25 85.0
09 7 2048 99.01 3.68 97.8 3 4849 187.46 3.11 99.3 7 1939 73.71 0.33 92.6
10 2 1886 76.88 4.65 97.6 16 225 16.75 3.22 93.1 3 1010 37.91 0.45 78.4
11 1 1107 28.89 2.52 64.1 2 843 20.57 2.79 97.6 1 1208 20.32 0.27 69.9
12 5 2885 109.55 3.64 97.6 2 7278 195.97 2.89 98.5 5 2855 105.23 0.32 96.6
13 7 2330 75.67 3.29 96.0 9 1273 12.33 1.95 67.4 7 2334 81.54 0.32 96.2
14 9 2146 67.18 3.00 81.1 13 1309 32.44 2.00 71.5 10 2290 84.49 0.22 96.2
15 2 2705 80.33 2.53 73.6 4 1494 10.49 1.86 81.3 2 2417 65.43 0.32 65.7
16 4 4284 179.72 5.23 94.8 7 2122 26.51 2.64 82.2 8 1947 61.90 0.43 86.2
17 3 5606 538.88 9.50 91.3 5 3478 583.01 6.67 94.4 10 1763 61.53 0.71 95.7
18 3 2620 321.37 6.76 98.2 2 3772 75.25 5.11 94.3 5 1502 70.05 0.63 93.9
19 1 1031 48.38 6.51 98.9 1 1033 11.11 4.76 99.1 1 990 17.50 0.47 95.0
20 3 1286 196.98 9.06 96.4 1 3993 330.95 7.05 99.8 2 1693 75.11 0.86 84.6
21 2 2429 357.05 12.38 99.1 1 3745 330.79 8.07 76.4 3 1235 87.53 1.14 75.6
22 2 1970 73.91 4.56 95.9 1 3657 38.81 3.78 89.0 3 1122 40.90 0.52 82.0
23 1 2369 36.30 1.70 99.5 1 2371 11.36 1.22 99.6 2 1138 11.41 0.12 95.5
24 2 3237 33.94 1.77 99.7 1 6483 25.80 1.06 99.8 3 1877 13.40 0.13 86.7
25 3 2560 73.52 4.93 99.6 1 7383 292.80 3.07 95.7 3 1641 67.57 0.52 63.8
29 6 1406 182.90 13.20 93.3 4 2080 180.47 7.04 92.0 6 1431 105.03 0.92 94.9
30 5 2393 242.01 7.76 99.5 4 1434 56.71 6.73 47.7 9 1160 92.40 0.89 86.8
31 4 1572 602.26 13.80 97.0 8 741 181.64 7.82 91.5 4 1462 81.36 0.89 90.2
32 1 1828 3.92 3.34 98.1 1 1855 11.18 0.78 99.5 1 1751 5.80 0.09 93.9
33 2 3887 196.06 7.93 97.8 1 7935 174.40 3.93 99.9 4 1728 39.99 0.47 87.0
34 3 2878 94.23 2.39 95.5 1 9033 132.31 - 99.9 5 1746 54.59 0.27 96.5

The results clearly reveal that FORD performs worst and KITTI and EuRoC perform
best among all comparative datasets. On the one hand, FORD encounters too many
interruptions, resulting in far smaller ATFs compared with others, mainly because its
monocular images themselves have heavy distortion and narrow FOV (<80◦). Such images
are usually not suitable for visual SLAM systems. On the other hand, algorithms achieve
minimum trajectory errors and maximum tracking rates in both monocular and stereo cases
on KITTI and in the visual-inertial case on EuRoC. One notable fact is that no interruption
occurred on the two abovementioned datasets during the entire trip. This is probably
because both KITTI and EuRoC have good-quality data particularly suitable for testing,
and algorithms along with related hyperparameters are carefully tuned and optimized
in advance.

In contrast to KITTI and EuRoC, errors and number of interruptions on WHUVID
are higher, indicating the increased level of difficulty of our real-world dataset. According
to the phenomena observed in experiments, we conclude that most interruptions come
from nonstationary driving situations including (but not limited to) turning at large angles,
long-time low-speed movement, being blocked by surrounding vehicles, and frequent
start and stop. Such driving conditions are rarely seen in comparative datasets, whose
sequences are usually carefully split up into pieces of continuous driving segments with
steady speeds. As analyzed before, although such splits make subsequent evaluations
convenient, they do change the real-world driving condition. WHUVID does not perform
meticulous splits, and thus, different types of real-world challenges continually pose
additional difficulties to relevant algorithms from multiple aspects. Apart from that, wide
roads, dense pedestrian and traffic flow, and other complex environments also present
great challenges. Nevertheless, the fact that the ATFs of almost every sequence of WHUVID
are universally as high as thousands of frames proves the reliability of our dataset. One
interesting fact to be noticed is that the positioning accuracy of the stereo and visual-inertial
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cases is not designed to be significantly better than that of the monocular case, which may be
caused by problems such as insufficient baseline length, high random noise of the consumer-
grade built-in IMU, and the lack of hardware-level visual-inertial synchronization.

6. Conclusions

In this paper, we proposed a large-scale dataset with a diverse set of sequences repre-
senting complex urban scenarios for the evaluation of VIO/SLAM, autonomous driving,
and object detection. It contains well-calibrated high-resolution binocular RGB image
pairs and high-frequency 3-axis accelerometer and gyroscope measurements, together with
accurate 6-DOF ground truths. We believe that our work will complement other works
by helping to reduce overfitting to existing datasets and will contribute to the practical
progress of these technologies. Furthermore, we plan to offer a more comprehensive bench-
mark to facilitate an evaluation service for more computer vision tasks such as semantic
segmentation, target tracking, scene recognition, and 3D object detection in the near future.
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Abbreviations
The following abbreviations are used in this manuscript:

WHUVID Wuhan Urban Visual-inertial Dataset
VIO visual-inertial odometry
SLAM simultaneous localization and mapping
GNSS Global Navigation Satellite System
IMU inertial measurement unit
DOF degree of freedom
VO visual odometry
RGB-D RGB-depth
UAV unmanned aerial vehicle
AUV autonomous underwater vehicles
ENU east-north-up
PDOP position dilution of precision
FOV field of view
GPS Global Positioning System
SBAS Satellite-Based Augmentation System
QZSS Quasi-Zenith Satellite System
CEP circular error probable
RTK real-time kinematic
SUV sports utility vehicle
HDOP horizontal component of position dilution of precision
VDOP vertical component of position dilution of precision
DGPS Differential Global Positioning System
DR dead reckoning
APE absolute pose error
RPE relative pose error
NS the number of subsegments
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ATF average tracked frames of subsegments
WAPE weighted average of absolute pose error of subsequences
WRPE weighted average of relative pose error of subsequences
TR tracking rate of the whole section
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