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Abstract: This work proposes the use of a robust geometrical segmentation algorithm to detect inherent
shapes from dense point clouds. The points are first divided into voxels based on their connectivity and
normal consistency. Then, the voxels are classified into different types of shapes through a multi-scale
prediction algorithm and multiple shapes including spheres, cylinders, and cones are extracted. Next, a
hybrid voting RANSAC algorithm is adopted to separate the point clouds into corresponding segments.
The point–shape distance, normal difference, and voxel size are all considered as weight terms when
evaluating the proposed shape. Robust voxels are weighted as a whole to ensure efficiency, while single
points are considered to achieve the best performance in the disputed region. Finally, graph-cut-based
optimization is adopted to deal with the competition among different segments. Experimental results
and comparisons indicate that the proposed method can generate reliable segmentation results and
provide the best performance compared to the benchmark methods.

Keywords: point cloud; segmentation; RANSAC; point voxel; adaptive threshold; building
reconstruction

1. Introduction

Human-made environments consist of many inherent geometric structures. Understand-
ing them is a principal issue for various applications such as urban reconstruction [1–4] and
indoor scene modeling [5,6]. As the most widely used type of geometric data, point clouds
can be derived from various sources, ranging from laser scanners or RGB-D cameras to the
stereo-matching of images. Concise and meaningful abstractions of a point cloud into basic
structure units will greatly benefit the users’ understanding or further processing [7–10]. This
can often be achieved by a geometric segmentation approach that divides objects into typical
shapes [11–13]. Currently, segmentation methods can be divided into four categories [14]:
edge-based or region growing, feature clustering or classification, model fitting, and deep
learning-based segmentation.

Edge- or growing-based approaches [15,16] work by searching for regions that have
distinct height or curvature saltations and using them to find a complete edge or determin-
ing the stop criterion while growing. These methods are relatively simple and efficient but
are prone to errors in the presence of noise or when the transition between adjacent regions
is smooth. Techniques using clustering or classification [14] first calculate the feature vector
for each point or voxel using elements such as point coordinate, normal, or slope, and then
group similar ones. These methods are problematic when deciding the segment number
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and when noise or tree points close to the segments have not been completely filtered
beforehand. End-to-end instance segmentation approaches [17,18] can also be used to
segment point clouds into planar instances; their limitations are their need for a large
amount of training data and their poor ability in network migration.

Compared with the above approaches, model-fitting methods are suggested to be
more efficient and robust in the presence of noise and outliers [19]. RANdom SAmple
Consensus (RANSAC) [20] adopts a hypothesis-then-verify fitting strategy which iteratively
samples models and verifies them with the remaining data to find the best hypothesis.
Numerous variants have been derived from RANSAC; a comprehensive review of these can
be found in [21]. For speed, Local-RANSAC [22] via local sampling and Normal Driven (ND)
RANSAC [23,24] via normal constraints are used to avoid meaningless hypotheses. Grid
voxels are also used in FRANSAC or Voxel RANSAC [25,26]; these can greatly decrease the
number of voting terms. For robustness, weighted terms or loss functions can be used to avoid
spurious planes, including MSAC, MLESAC [27], and our earlier work [19]. Normal vector
consistency [22,24] and spatial connectivity [28] can also be used to validate a hypothesis.

Advances in recent techniques have led to increasingly dense point clouds. This
provides the possibility to recognize subtle object details while also creating challenges for
current segmentation methods. RANSAC-based approaches have several limitations:

(1) Efficiency with large-scale or dense data. RANSAC methods require a large number
of iterations; their point–model consistency and spatial connectivity [29] need to be
calculated in each iteration.

(2) Robustness to poor (under-, over-, or no) segmentation or spurious planes [19]. The
adjustment of parameters to achieve the best performance is not easy when the point
density and object scale are changeable over a large area.

(3) Most current segmentation methods only consider planar segments, while the object
shape in a real scene can be much more complex.

In order to tackle the aforementioned issues, a voxel-based RANSAC segmentation
algorithm is proposed for the detection of multiple shapes from dense point clouds. The
points are first divided into connected point voxels based on the work of [30]. These
voxels are then classified and evaluated based on their local features and quality, and
multiple shapes, such as spheres, cylinders, and cones are identified, similar to [7]. After
the prediction of shape types, a hybrid voting RANSAC approach is used to separate
the point clouds into corresponding shapes and fit the parameters. When evaluating the
hypothesized shape parameters, voxels with a good quality vote as a whole, which can
decrease the voting terms. Others will be decomposed into proper parts and single points,
which will vote for themselves. This ensures robustness when voxels are located near the
disputable area or when the data quality is poor. Graph-cut-based optimization is also
adopted to deal with competition among adjacent shapes and poor segmentation results.

In summary, the contributions of the proposed methods are two-fold: (1) the creation
of a hybrid voting strategy to balance the requirements for efficiency and robustness when
evaluating the hypothesized shapes; and (2) the creation of a prediction-then-fit strategy to
extract multi-shape structures, which can effectively consider the shape scale and shape-
type competition. The remainder of this paper is organized as follows. Section 2 describes
the related work and Section 3 presents the details of the proposed approach. Section 4
contains an assessment and discussion, and the conclusion is provided in Section 5.

2. Related Work

This section reviews two main issues related to our segmentation approach: (1) voxel
clustering, which groups relative points to reduce the number of calculated objects; and
(2) existing RANSAC-based point cloud segmentation.

2.1. Voxel Clustering

The concept of the voxel is similar to that of the superpixel in 2D image processing,
which provides a natural and compact representation of 3D points. Based on voxels,
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operations can be performed on regions rather than on single points; thus, this is beneficial
for applications that are time-consuming with the original 3D points. Current voxel
clustering approaches remain in the development stage, and can be divided into the
following categories [30,31], as shown in Table 1:

Table 1. The categories of voxel clustering methods.

Method Type 2D Clustering
3D

3D Partitioning Boundary Enhanced

Description converts points into a 2D grid uses octree or 3D cells considers boundary quality

Pros and cons fast, well researched,
but only considers 2D information

voxels may overlap
multiple planes preserves boundaries

Examples SLIC [32], Parallel SLIC [33],
mean-shift [34], Multiscale Superpixels [35] VCCS [26], VGS [36] BESS [30,37]

2.1.1. Superpixel-Based 2D Clustering

The superpixel-based approach directly partitions point clouds into a 2D grid or
superpixel through horizontal and vertical cutting. Since segmentation for superpixels has
already been thoroughly studied in the field of image processing, such as SLIC [32,33] or
mean-shift [34], voxels can be easily generated by simply extending them to 3D. Though
they have been successfully adopted in video and 3D image segmentation [35], these
methods can be problematic when their primitives are uniformly distributed since only 2D
information is considered.

2.1.2. Octree-Based 3D Partitioning

Unlike 2D partitioning, the VCCS [26] and VGS [36] algorithms first voxelize the
points using an octree and then extract the voxels by evenly partitioning the 3D space.
These methods are efficient and can achieve reasonably good results on RGB-D test data.
The issue is that their performance is dependent on the voxel resolution and a single voxel
may overlap multiple objects; thus, they cannot preserve object boundaries.

2.1.3. Boundary-Enhanced Segmentation

The aim of this category is to better confirm object boundaries in 3D. In the work of [37],
points near boundaries are estimated beforehand and their connections are excluded from
neighborhood graphs. As a result, the voxels will be separated near the boundaries of objects.
Reference [30] formalizes voxel segmentation as a subset selection problem and utilizes the
dissimilarity distance term to better extract the boundary locally. The problem is that when
the transition between two segments is smooth, the voxel may still overlap two segments.
Meanwhile, small objects can be ignored when the voxel resolution has not been properly set.

In our research, voxels with a good quality were taken as integral voting units in the
RANSAC-based workflow and boundary-enhanced voxel segmentation by [30] was used.
We found that not all the voxels were suitable for voting as a whole based on the following
reasons: (1) all points in the scene, including vegetation and noise, are divided into voxels;
(2) boundaries may not be well preserved when the transitions between adjacent regions
are smooth; and (3) small segments and voxels belonging to curve surfaces are not well
considered. As a result, the hybrid voting strategy was used after multiple-scale shape-type
prediction on each voxel.

2.2. RANSAC-Based Segmentation

As shown in Figure 1, a standard RANSAC algorithm was used to iteratively and ran-
domly sample points to generate a model hypothesis (hypothesis generation) and then evaluate
the model using the remainder of the dataset (hypothesis evaluation). A point was taken as an
inlier if its consistency with the hypothesis satisfied a certain condition—i.e., the point–plane
distance was smaller than the threshold (step 3). After a certain number of iterations, the shape
that possessed the largest number of inliers was extracted (step 5). This method detects planes
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one by one from the entire dataset, which means that once a plane is accepted, the points
belonging to it are removed and the algorithm continues to work on the remainder of the
dataset until no satisfactory planes are found. The improvements made in RANSAC-based
segmentation are discussed in each step of the workflow [21], which is shown below:

Figure 1. The workflow of RANSAC and improvements from its variants.

2.2.1. Guided Sampling

Guided sampling works in the hypothesis generation step; its aim is to improve the
quality of the hypothesis. Local-RANSAC [22] and ND-RANSAC [23,24] are two classical
means used to achieve this goal. Local-RANSAC decreases the sampling space by searching
only near the first seed points instead of throughout the whole dataset. ND-RANSAC
considers the normal of the seed points and then evaluates the model only when the
normals of seeds points are similar to those of the model. These methods can be used to
identify meaningless models beforehand, thus avoiding unnecessary hypothesis evaluation.

2.2.2. Multiple Shapes

The RANSAC method can detect any shape in theory as long as the models are
defined beforehand and verified through iterations. Though most RANSAC algorithms
only consider planar surfaces, a representative implementation of multiple shapes can be
found in the work of [7], where curved shapes such as spheres, cylinders, and cones can
also be extracted. The major problems experienced are the existence of competition among
different shapes.

2.2.3. Loss Function and Weighted RANSAC

The original RANSAC method finds the model with the largest inlier ratio for each it-
eration, and each inlier makes the same contribution. This might lead to poor segmentation
or spurious planes [14,22], especially when the data are noisy or adjacent segments have
similar orientations. For weighted RANSAC—i.e., MSAC, MLESAC [27], and our earlier
work [19]—a loss function can be identified and points with smaller errors will make a
large contribution. Spurious planes with large inlier ratios but smaller total weights will be
suppressed, leading to better segmentation results.

2.2.4. Adaptive Threshold

Since most RANSAC methods detect segments one by one from the entire dataset, the
inliers need to be moved from the data once a model is accepted. Fixed thresholds are often
required to decide the inliers—i.e., the point–model distance and normal difference [24].
The adaptive threshold approach—i.e., [38,39]—is used to estimate the parameters accord-
ing to the data quality and adjust them while searching for the best proposed models. These



Remote Sens. 2022, 14, 2024 5 of 19

methods are more adaptive when the dataset is not consistent over a large area, i.e., stereo
matching data whose quality and density are not that reliable.

2.2.5. Connectivity and Normal Consistency

The inlier points detected by RANSAC approaches are mathematically coplanar, though
they may not be connected or consistent in space. Density-based connectivity and growing-
based normal consistency analysis [22,40,41] can be used in the post-processing step to enhance
the segmentation results. In the Cc-RANSAC [29] method, the connectivity is calculated to
obtain the most connected component in each iteration, which is robust but time-consuming.

In our work, a classify-then-fit segmentation strategy is proposed; this strategy first iden-
tifies the model type and then fits the model parameters. This can help to avoid meaningless
competition occurring among different types of shapes; meanwhile, it can decrease the data
scale while evaluating the hypothesized shapes. The hybrid voting algorithm can decrease
the number of voting terms and increase the robustness under conditions of noise.

3. Methods

First, the overall workflow of the proposed segmentation algorithm is introduced
in Section 3.1, followed by the multi-scale shape prediction in Section 3.2. Details of the
hybrid voting RANSAC algorithm and the improvements made in connectivity analysis
are introduced in Section 3.3. Section 3.4 introduces the graph-cut-based multi-shape
optimization method.

3.1. Overall Workflow and Problem Setup
3.1.1. Overall Workflow

As shown in Figure 2, this method starts with a clustering algorithm that divides the
points into voxels based on the work of [30]. These voxels are further evaluated and classified
according to their quality and possible shape type, where curved shapes such as spheres,
cylinders, and cones are considered. A hybrid voting RANSAC approach is used to separate
the points into corresponding segments. Voxel-based connectivity analyses are also intro-
duced to improve the robustness and efficiency in complex scenes. Finally, graph-cut-based
optimization is adopted to deal with poor segmentation and spurious shapes.

Figure 2. The overall workflow of the proposed approach.

3.1.2. Problem Setup

Before introducing the details of the proposed methods, we first briefly describe some
important terms.

• 3D point P. Basic item, considering its position (x, y, z) and normal vectors nv(nx, ny, nz).
• Super voxel V. A group of points {Pk, k = 1, 2, 3 . . .} that have similar features and

shape types. Each voxel has its centre of gravity PV and an average normal nV .
• Observation errors E. The consistency between the point and the proposed shapes,

including the distance (edis) and normal difference (env).
• Shape type T. Each point or voxel needs to be classified into certain shape types,

including planes, spheres, cylinders, and cones.
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• Object segment S. A group of points and voxels with the same shape types and
segment labels.

The segmentation task carried out in this work needs to separate the point clouds into
their corresponding shapes and identify the shape type, which means there are two labels for
each P or V: segment index and shape type. Competition among different shape types and
parameters need to be applied, and the shapes with the highest scores will be accepted based
on the observation errors E regarding edis and env. The V are evaluated in Section 3.2, and the
E of high-quality V are evaluated as a whole based on the PV and nV . Otherwise, points inside
V need to be considered. To avoid the unnecessary competition among different shapes, multi-
scale shape predictions are adopted and curve objects are extracted first. Graph-cut-based
optimization is used on the final results to produce a global solution.

3.2. Multi-Scale Shape Prediction

Considering that curved surfaces are less numerous in most scenes and are more
computationally expensive compared to planar ones, a shape prediction procedure is first
adopted for each voxel, and the basic idea is quite simple: propose different shapes and
compare them to select the best-performing ones. To ensure efficiency, only the voxel
centers are used and the fitting is limited to within the local neighborhood. Below are the
details of how we created the hypothesis and performed the evaluation.

3.2.1. Shape Hypothesis

Similar to the work of [7], four types of shapes were included in this work: plane, cone,
sphere, and cylinder. Figure 3 shows the definition and samples required to calculate the
parameters for different shapes. Since we attempted to predict the shape of the target voxel,
P0 was always the first seed and the other seeds were sampled within their neighbors based
on the expected shape types and scales. Below are the details of the different shapes; their
edis and env were verified before they were proposed as candidates.

(a) (b) (c) (d)

Figure 3. Definition of different shapes and the required samples. P0 is the gravity center of the target
voxel and Pk is that of its random neighbors, np and nk are the normal vectors, and edis and env are
the observation errors regarding point-to-shape distance and normal difference: (a) plane, (b) cone,
(c) sphere, (d) cylinder.

• Plane. A plane can be estimated using P0 and other two random voxel centers, P1 and P2.
• Cone. Two more samples, P1 and P2, with normal vectors are used. Their apex O was

intersected by the planes defined from the three point and normal pairs. The axis OO′

and the opening angle θ could from calculated by the average values of normalized
OP0, OP1, and OP2. Moreover, if we limit the axis to be vertical in some situations, one
sample point will be sufficient.

• Sphere. Another point P1 with anormal vector is required. The sphere center O is the
middle point of shortest line segment between the lines defined by the two point and
normal pairs P0 A0 and P1 A1. The sphere radius is the average of P1O and P0O.

• Cylinder. Another sample with a normal vector is sufficient. The axis orientation OO′

is defined by n0 × n1. We then project n0 and n1 to the plane vertically to the axis and
intersect them for the center. The sphere radius is the average of P0O0 and P1O1.
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3.2.2. Shape Evaluation and Prediction

This section evaluates the shapes based on the neighbor voxel centers, where the
observation errors E is used to evaluate the performance. Similar to work of [19], the point-
to-shape distance edis and normal difference env are considered in the weight function:

w(edis, env) = exp

(
−

e2
dis

σ2
dis
− e2

nv
σ2

nv

)
(1)

where σdis and σnv are two pre-calculated values that reflect the quality of the raw dataset
(the distance threshold Th_dis is considered to be 1.96σdis according to [21]). The weight
values range from 1 to 0, with an increase in edis and env, which reflects the consistency
between the hypothesized shapes and the neighbor voxels, regardless of the shape type.

The prediction procedure iteratively selects the shape type and samples the necessary
seeds to calculate the parameters. The most likely hypothesized shape M̂ is decided by
maximizing the total weights:

M̂ = arg max
M

{
∑

Pi∈U
wi(edis, env)

}
(2)

where U is the set of selected neighbor voxel centers, which is the same for all scored
shapes and parameters. Since objects in real scenes often have a large range of scales, the
presence of improper seeds and the neighborhood size will greatly influence the prediction
results. As such, multiple scales need to be considered. The workflow of shape prediction
is provided below in Algorithm 1:

Algorithm 1: Shape prediction
Input: Target voxel center: P0; Number of selected neighbor voxels: n; Number of

alternative neighbors: N; Point sets of neighbor centers besides the seeds:
n, N, {Pk, k = 1, 2, 3 . . . N}

Output: Selected shape T; Scores: s

1 Ascending sort {Pk, k = 1, 2, 3 . . . N} based on the length of P0Pk;
2 Scale level: lmax = N/n + 1; s = 0
3 for l ∈ [1, lmax] do
4 while not enough iteration do
5 Select shape: Tnow
6 Set m Required samples beside P0
7 Seeds[m]← {Pl , n× (l − 1) < l < n× l}
8 Shape parameters← Seeds[m] & P0
9 if ! accepted then

10 continue;
11 end
12 Randomly samples n points from {Pk, k < n× l}
13 Calculate the scores of the shape: snow
14 if snow > s then
15 snow = s ; T = Tnow
16 end
17 end
18 end
19 return T and s
20 end
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The scale level is decided based on the distance between the target voxel center P0
and its neighbors {Pk, k = 1, 2, 3 . . .}. The random seeds beside P0 are selected from the
corresponding scale levels. After a certain number of iterations, a simple winner-take-all
principle is used to find the most probable shape type for the target voxel. Voxels with the
same shape types are clustered based on their connectivity, and ones that are too small (less
than 4 voxels) are converted into planar types.

It should be noticed that when the searching scale is much smaller than the local
curvature radius, the curved shape will be no longer significant compared to the planar
ones. As shown in Figure 4, since the right triangle P0P1B is similar to P0 AP1:

‖P0B‖
‖P0P1‖

=
‖P0P1‖
‖P0 A‖ (3)

where ‖P0B‖ is the diameter of the circle equal to 2r and ‖P0P1‖ is the distance (dismax)
between P0 and the farthest neighbor voxel centers. To avoid ambiguous curved shapes,
‖P0 A‖ should be larger than the root mean square error σdis; thus, r should satisfy:

r =
dis2

max
2‖P0 A‖ <

dis2
max

2σdis
(4)

which is changed at the neighborhood scale.

Figure 4. The competition between planar and curved shapes.

3.3. Hybrid Voting RANSAC-Based Segmentation

The segmentation approaches extract shapes in a subtractive manner, which means
that once a shape is detected, the points belonging to it are removed and the algorithm
continues on the remainder of the dataset until no satisfactory shapes are found. With
the help of the prediction results, target shapes will be detected only from voxels that
have the same shape types. The fitting and verification procedures used are similar to
those described in Section 3.2; our contribution here is the consideration of voxels in
verifying the hypothesis and in the connectivity analysis procedure, instead of using pure
point-by-point calculation.

3.3.1. Hybrid Voting

Once the shape prediction approach is completed, we obtain the observation error E
between its points and the best shape, diving the points into “good” or “poor” ones. The
“good” points will be used to re-calculate the voxel center and normal vectors. If a certain
ratio of inliers is taken as “good”, i.e., 80%, the whole voxel will be marked as good and
the recalculated voxel centers will be used to represent the whole voxel in the voting step
of RANSAC. If less than 20% of the points are marked as “voxel”, the whole voxel will be
taken as noise and will only be considered in post-segmentation. Otherwise, it is calculated
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as a hybrid form: “good” points as a whole and “poor” ones as unit elements. As such, the
contribution of a voxel can be expressed as:

w(V) =
m− n

m
w(PV , nV) +

1
m

n

∑
i=1

wi(edis, env) (5)

where m is the number of points in the voxels and n is the number of “poor” points. n is
set as 0 for “good” voxels and PV and nV are those for the recalculated voxel center. The
weights for hypothetical shapes are defined as the sum of all inside voxels:

M̂ = arg max
M

{
∑

Vi∈U
wi(w(Vi))

}
(6)

For most voxels, their quality is sufficient; thus, the evaluation procedure used can be
much faster than point-based approaches. Meanwhile, the possible poor voxel quality at
smooth voxel boundaries or noisy areas also needs to be fully considered to obtain robust
results. After a certain number of iterations, the models that generate the best evaluation
will be extracted.

3.3.2. Voxel-Based Connectivity

The points detected by RANSAC methods are mathematically co-planar but may not
necessarily be connected in space. As a result, connectivity analysis is widely adopted
in RANSAC-based approaches; this approach is robust but time-consuming, especially
for methods such as Cc-RANSAC [29] that check the connectivity in each iteration. In
our issue, since the voxels are already defined, it is very convenient for us to check the
connectivity at the level of voxels. A graph structure is built, in which the voxel centers are
the graph vertexes and the graph edges will connect the adjacent voxels. When analyzing
the connectivity, we mark the selected voxels and find the largest connected component
within the graph structure. Since the number of voxels is much smaller than the number of
point clouds and the graph structure only needs to be constructed once, the efficiency can
be ensured.

3.3.3. Post-Segmentation

The main task of the post-processing step is to refine the segmentation results, which
includes: retrieving roof points from unsegmented point sets, finding missing planes, and
removing false spurious ones. For the voxel-based approach, small roof segments, with
a scale closed to the voxel size, mayb e missed during RANSAC segmentation. These
segments cannot be easily found during optimization; thus, they must be searched for
from the unsegmented point sets. This can be realized through a density-based connectives
analysis of the unsegmented point clouds, and an extra fitting procedure is adopted to
generate segments with a good quality.

3.4. Graph-Cut-Based Optimization

The optimization of the segmentation results can be taken as an energy minimization
problem, and this is often solved by graph-cut-based approaches [9,42,43]. In this work,
such procedures are used to solve the competition between different shapes and segments,
since they are extracted separately and in a subtractive manner. Meanwhile, the poor
(under-, over-, or un-) segmentation caused by improper parameters and noise can also
be improved. The energy definition is similar to that of [42], and only voxel centers are
considered here:

E(L) =

data cost︷ ︸︸ ︷
∑

p∈V
Dp(Lp) +

smooth cost︷ ︸︸ ︷
∑

p,q∈N
wpq · δ(Lp 6= Lq) +

label cost︷ ︸︸ ︷
∑
l∈L

hl · δ(l ∈ L′) (7)
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where data cost measures the discrepancy between the voxel centers and labeled shapes
and the smooth cost term considers the inconsistency between neighboring voxels p and
q that have different labels, The label cost term measures the number of labels appearing
in L.

The difference here in our work is that multiple shapes are considered; thus, the data
cost must be updated. On one hand, the point-to-plane distance should be converted into
the point-to-shape distance (edis in Figure 3), regarding the shape type and parameters. On
the other hand, we also consider the normal errors env in the data cost, as defined below:

Dp(Lp) = − ln(
1

2πδdisδnv
exp(−

e2
dis

2δ2
dis
− e2

nv
2δ2

nv
)) (8)

where δdis and δnv are the same as the values given in the RANSAC-based segmentation
that represent the quality of the raw dataset. The formulation of smooth cost and label
cost is similar to that used in the work of [42] and is not further discussed. The calculation
of minimal energy can be solved using the graph-cut technique, which can decide the
belonging of voxels and obtain the global best solution.

4. Experimental Evaluations

This section evaluates the proposed methods experimentally. The datasets, parameters,
and evaluation metrics are introduced first, followed by the overall results and local
details. An analysis and comparison with existing approaches are also provided to verify
the performance.

4.1. Dataset, Parameters, and Metrics

For the experiments, we utilized three datasets, as shown in Figure 5. The first one
was selected from the City of Toronto in Canada; it contains the benchmark data from
the “ISPRS Test Project on Urban Classification and 3D Building Reconstruction” [44], and
contains representative scene characteristics of the modern megacity with a wide variety
of rooftop structures. Only the building points are considered here for evaluating our
segmentation performance for 3D building reconstruction. The second one is an indoor
scene containing multiple objects with different shapes, generated by the dense matching
of more than 20 close-range images using the Colmap software. The third one is two rooms
selected from the Stanford 3D Dataset [45]; it consists of indoor scenes containing objects
such as desktops and chairs. These datasets are used to test the performance in various
different scenes. The basic information of the three datasets is introduced in Table 2.

(a) Toronto (b) Indoor scene 1 (c) Indoor scene 2

Figure 5. The introduction to the datasets: (a) The ISPRS benchmark data from the city of Toronto,
ON, Canada; and (b,c) indoor scenes created by the matching of close-range images.
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Table 2. The properties of the datasets.

Toronto Indoor1 Indoor2

Data February 2009 June 2021 2016
System ALTM-ORION M Phone 8 plus Matterport Camera
DOV 650 m 2–3 m unknow
Density ∼6/m2 >104/m2 >5× 103/m2

The parameters used in the proposed approaches are described in Table 3. The distance
and normal vector thresholds are used for the shape prediction, RANSAC segmentation, and
optimization procedure; they are the same and are adjusted according to the data quality.

Table 3. The parameters used in the experiments.

NNP Th_dis Th_nv
Voxel Shape Prediction RANSAC

Size QuaV n N Ang P_0 MinV

Toronto 25 0.2 m 10◦ 2 m 80% 5 50 15◦ 0.99 3
Indoor 1 25 0.03 m 10◦ 0.05 m 80% 5 50 15◦ 0.99 3
Indoor 2 25 0.05 m 10◦ 0.1 m 80% 5 50 15◦ 0.99 5

NNP: Nearest N Points used to estimate the point normals. Th_dis and Th_nv are the distance and normal
thresholds regarding data quality. Size is the scale factor for the voxels and QuaV is used to decide the quality
of the voxels regarding the percentage of “good” inliers. n and N are used in Algorithm 1 for controlling the
multiple-scale neighborhoods. Ang is the threshold used to avoid meaningless shapes. P_0 is the confidence
probability used to control the iteration, which ensures that the positive hypotheses are selected at least once.
MinV is the minimum number of voxels in a segment.

The evaluation metrics include three parts: the object-level segmentation precision [46],
the quality of topology between adjacent shapes [19], and the precision in detecting curved
shapes. All of the considered elements use the completeness (Comp), correctness (Corr), and
quality (Qua) as metrics:

Comp =
‖TP‖

‖TP‖+ ‖FN‖

Corr =
‖TP‖

‖TP‖+ ‖FP‖

Qua =
‖TP‖

‖TP‖+ ‖FN‖+ ‖FP‖

(9)

where ‖TP‖ (True Positive) is the number of objects that exist in both the reference and
results, ‖FP‖ (False Positive) is the number of objects not found in the reference, and ‖FN‖
(False Positive) is the number of objects not found in the results.

4.2. Overall Segmentation Results

The overall segmentation results obtained for the Toronto dataset are provided in
Figure 6. The test area contains various shapes with multiple scales and different styles;
these exist not only on the rooftops but also on the vertical walls. The error-prone regions
are designated and enlarged to demonstrate the details, and it can be seen that curved
shapes with various scales are successfully extracted. Big curved surfaces are completely
extracted and the small details are also successfully extracted—i.e., the small segments in
enlarged region 1 and cylinders are enlarged in 2. Additionally, the proposed methods
can deal with buildings with complex shapes and roof topologies—i.e., there are slender
roofs in regions 3 and 5 and the overlapping segments in region 4. More details and a
comparison with other researches will be provided later.
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1

2

3

4

5

Figure 6. Overall segmentation results. From left to right: segmentation results, enlarged details, and
corresponding Google images.

4.3. Local Details and Precision

Figure 7 demonstrates our segmentation results obtained in the local scene and compares
them to those of existing research. Since the segmentation approaches shown in the Point
Cloud Library (PCL) [15] only work on planar surfaces, we adopted efficient RANSAC first [7]
for the curved parts and then evaluated the combined results. The Toronto data and the
indoor point cloud were compared. Quantitative results are provided in Table 4. The overall
performance demonstrates that our methods outperform the other two compared results, and
the overall completeness and correctness reached 89% and 88%, respectively.

The local details also demonstrate the performance of the proposed approach. Build-
ings Figure 7a,c contain several vertical cylindrical walls and sphere rooftops, which can be
successfully predicted and extracted. Especially for the sliders and small features, the effi-
cient RANSAC is very likely to fail by being broken into several parts and making spurious
ones. Buildings Figure 7b,d have many small planar segments and complex roof topologies.
Voxel-based approaches will face difficulties under such situations, especially when the
voxel size is close to that of the segments. Our methods still obtained appropriate results,
benefiting from the hybrid voting strategy and the graph-based optimization. Moreover,
in the post-segmentation approach, we also try to find the missing segments based on
the connectivity analysis of the unsegmented point clouds. Figure 7e consists of several
high-rise roofs with very complex shapes and slender structures, as well as noise points on
the rooftop. For the six intersecting cylinders in the marked area, a plane overlapping the
top of these cylinders is falsely extracted. Our methods show advantages in such situations,
and they are correctly classified as cylinders and successfully extracted. For the close-range
data shown in Figure 7f, the main curve structures are successfully extracted, including the
cone of the cup. The performance of Global-L0 method in Figure 7f is poor, due to the fact
that it dose not make curve hypothesis.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 7. Segmentation details and comparison with the results of other research, from left to right:
Google/input images; results obtained for efficient RANSAC, RG+efficient RANSAC, GlobalL0; and
our final results. (a–e) are selected from the Toronto dataset, (f) and (g,h) are the segmentation results
of Indoor scene 1 and 2, accordingly.
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Table 4. Comparison of the segmentation results.

ID nPls nCur nTop Meth
Segmentation Curved Shapes Topology

%cm %cr %qua %cm %cr %qua %cm %cr %qua

a 29 1 16

eRAN 83 92 77 100 50 50 69 85 61
RG + eR 93 87 82 100 50 50 81 93 76
GloL0 86 92 81 / / / 88 93 82
Ours 93 93 87 100 100 100 94 88 83

b 44 0 23

eRAN 86 86 76 / / / 83 86 73
RG + eR 98 81 78 / / / 96 81 76
GloL0 89 93 83 / / / 96 85 81
Ours 93 91 85 / / / 87 91 80

c 15 7 17

eRAN 80 60 52 57 36 29 47 58 32
RG + eR 80 57 50 57 36 29 47 58 32
GloL0 93 88 82 / / / 88 88 79
Ours 100 88 88 100 78 78 100 81 81

d 89 0 76

eRAN 73 89 67 / / / 45 79 40
RG + eR 75 79 63 / / / 42 64 34
GloL0 76 92 72 / / / 40 81 37
Ours 88 93 82 / / / 83 93 78

e 97 7 41

eRAN 77 87 69 0 0 0 54 81 48
RG + eR 73 83 58 0 0 0 49 87 45
GloL0 75 92 71 / / / 54 85 51
Ours 92 86 80 100 100 100 88 92 82

f 13 7 6

eRAN 92 75 71 100 78 78 100 88 88
RG + eR 92 75 71 100 78 78 100 88 88
GloL0 31 18 13 / / / 33 17 13
Ours 92 92 86 100 88 88 100 100 100

g 72 0 29

eRAN 70 85 63 / / / 90 87 79
RG + eR 75 79 63 / / / 90 93 84
GloL0 82 78 66 / / / 97 93 90
Ours 85 87 75 / / / 97 93 90

h 103 0 66

eRAN 77 79 65 / / / 91 88 81
RG + eR 84 76 67 / / / 89 91 82
GloL0 87 80 72 / / / 92 91 85
Ours 86 83 73 / / / 94 89 84

sum 462 22 274

eRAN 77 83 67 55 57 40 65 84 58
RG + eR 78 78 64 55 57 40 65 85 59
GloL0 81 84 70 / / / 68 84 60
Ours 89 88 79 100 88 88 86 91 79

nPls: number of planes in reference; nCur: number of reference curved shapes; nTop: number of intersecting
shapes in reference; eRAN: efficient RANSAC in [7]; RG + eR: combining the eRAN with region-growing
methods [15]; GloL0:the GlobalL0 method proposed in [9]. For indoor scenes 2, we only consider planes with
more than 200 points and ridges longer than 0.5 m.

For Figure 7g,h, it causes a great deal of trouble compared to current methods, and the
quality scores are all less than 80%. This is because of the existence of irregular objects such
as chairs, which can be hard to describe through simple shapes. For efficient RANSAC,
it has a poor performance due to the lack of spatial connectivity analysis. As a result,
chair planes are merged, causing a low level of completeness. For our methods, since
the voxels are used, small broken pieces are more likely to be avoided, leading to a high
level of correctness. Moreover, our methods can generate a far higher ridge quality, 20%
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higher than that of the test, benefiting from the graph-cut-based optimization and the
boundary-preserved voxel segmentation. This will be of great benefit to the follow-up
modeling approach. In conclusion, our methods can generate more robust results under
varous scenes; thus, they can obtain the highest overall quality possible, which is 10%
higher than that of Global-L0 in the test.

4.4. Parameter Sensitivity

In a local analysis approach, shape prediction may be influenced by the scale of the
selected neighborhood. Generally, using a neighbor size that is too small will cause ambiguity
between curved shapes and planar ones, leading to noisy prediction results. Meanwhile,
using large neighbor size will lead to errors at shape boundaries and cause small objects to be
missed. The adaptive neighborhood used in our approach will decrease such influence and
produce better prediction results. As shown in Figure 8, three error-prone roofs are selected.
Roof a consists of six small cylinders, three horizontal and three vertical and intersected with
each other, which can be difficult for both prediction and detection. The locations where two
vertical cylinders intersect can be falsely identified as planar surfaces, and the holes between
four cylinders may be detected as a sphere when the neighborhood size is set to 10. With the
increase in the neighbor size, planar prediction results will become lower and more spheres
will appear. Our methods can produce fewer errors, since adaptive scales are more likely
to find the most appropriate fitting result. It should be noticed that all the results here are
sufficient for the segmentation and fitting, since most points are recognized as cylinders and
the clustering of voxels will remove discrete errors. Roof b is a half-sphere with a horizontal
eave, and the prediction results at small scales failed because of the limitation provided in
Figure 4, where the use of planar surfaces and spheres is controversial. Since the scores of
spheres at large scales fit the points better, they can still be successfully identified as spheres.
At roof c, three cylinders with different radii are clustered together. What makes this situation
worse is that the data quality of the nearby planar surfaces is poor. As a result, some planer
voxels are also detected as cylinders. Our methods are also robust under such situations, since
the scores achieved under smaller sizes are better in such situations.

(a)

(b)

(c)

Figure 8. Comparison of the shape prediction results achieved under different searching scales.
(a,b) are the areas marked as Figure 7e,c. (c) is the enlarged area marked as ‘2’ in Figure 6. From left
to right: referenced segmentation result; prediction results of fixed neighborhood size: 10, 20, and 30;
and our adaptive results. Red: sphere; yellow: cylinder; and blue: planar surface.
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4.5. Discussion

In this work, several issues are considered in the segmentation strategy to extract the
curved shapes successfully:

• Shape type competition. This issue is unavoidable in complex scenes or when the
quality of data is poor. For instance, a horizontal plane may generate more inliers than
the cylinders in Figure 8a, causing the poor results seen in Figure 9b. Considering that
there are relatively fewer curved shapes, a prediction-then-segmentation strategy that
estimates the shape type first is adopted. In Figure 8a, since most points are predicted
as cylinders, the influence of other shapes and their meaningless iteration are avoided.

• Spurious shapes. Even if the shape types are successfully identified, spurious shapes
will also cause trouble in current methods—i.e., the segmentation results obtained
for efficient RANSAC shown in Figure 9c. A spurious plane can be accepted when it
contains more inliers or the iteration terminates too early. In our work, the weighted
RANSAC approach, which takes the point–shape distance and normal difference into
consideration, is adopted. Spurious shapes with greater numbers of points but smaller
total weights are suppressed. Moreover, the approaches adopted in post-segmentation
and graph-cut-based optimization will also further improve the segmentation results.

• Object scale and neighborhood size. Since the shape prediction approach is achieved
through local analysis, it can be influenced by neighborhood size. Meanwhile, when
the radius of curved shapes is much larger than the neighborhood size, they can be
identified as planes. As such, scale factors are considered in this work, including the
radius of curved shapes and the neighborhood size. This ensures the extraction of
multiple-scale curved shapes under various different scenes.

(a) (b) (c)
Figure 9. A local comparison of the our direct results with those of efficient RANSAC. (a) Our
results before post-segmentation, (b) efficient RANSAC for all shapes, and (c) efficient RANSAC for
cylinders only.

5. Conclusions

This paper proposed the use of a robust RANSAC-based segmentation algorithm
to detect both planar and curved shapes from dense point clouds. A prediction-then-
segmentation strategy was adopted for distinguishing different shape types, in which voxels
were used as the basic elements instead of the traditional point-by-point strategy. In shape
prediction, multiple-scale neighborhoods were considered; this can be adapted to curved
shapes with variable sizes, and multiple shapes such as spheres, cylinders, and cones can
be extracted. The point–plane distance, normal difference, and voxel size are all considered
as weight terms when evaluating the hypothesis planes using the hybrid voting strategy.
The experimental results obtained over both large urban cities and close-range point clouds
demonstrate that the proposed methods can outperform the state-of-the-art approach, and
the overall completeness and correctness can reach 89% and 88%, respectively.

A limitation of the proposed approach is the extraction of small curved shapes or
when the voxels overlap with more than one shape at a smooth segment boundary. Further
work will be devoted to speeding up the performance of these methods under denser point
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clouds and in large scenes as well as the application of this method to more types of shapes
and more correct shape boundaries.
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