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Abstract: Carbon sequestration in terrestrial ecosystems plays an essential role in coping with global
climate change and achieving regional carbon neutrality. In mining areas with high groundwater
levels in eastern China, underground coal mining has caused severe damage to surface ecology. It
is of practical significance to evaluate and predict the positive and negative effects of coal mining
and land reclamation on carbon pools. This study set up three scenarios for the development of the
Yanzhou coalfield (YZC) in 2030, including: (1) no mining activities (NMA); (2) no reclamation after
mining (NRM); (3) mining and reclamation (MR). The probability integral model (PIM) was used to
predict the subsidence caused by mining in YZC in 2030, and land use and land cover (LULC) of 2010
and 2020 were interpreted by remote sensing images. Based on the classification of land damage, the
LULC of different scenarios in the future was simulated by integrating various social and natural
factors. Under different scenarios, the InVEST model evaluated carbon storage and its temporal
and spatial distribution characteristics. The results indicated that: (1) By 2030, YZC would have
4341.13 ha of land disturbed by coal mining activities. (2) Carbon storage in the NRM scenario would
be 37,647.11 Mg lower than that in the NMA scenario, while carbon storage in the MR scenario would
be 18,151.03 Mg higher than that in the NRM scenario. Significantly, the Nantun mine would reduce
carbon sequestration loss by 72.29% due to reclamation measures. (3) Carbon storage has a significant
positive spatial correlation, and coal mining would lead to the fragmentation of the carbon sink. The
method of accounting for and predicting carbon storage proposed in this study can provide data
support for mining and reclamation planning of coal mine enterprises and carbon-neutral planning
of government departments.

Keywords: carbon storage; high groundwater level mining area; land reclamation; mining subsidence
prediction; land use simulation

1. Introduction

The climate problem characterized by global warming has attracted wide attention
from the international community, which has brought enormous challenges to the develop-
ment of human society, the economy, and the world energy structure. Global warming of
the past 150 years has exceeded total global warming of the past 6500 years [1]. Increased
greenhouse gas concentrations due to human disturbance, such as rapid industrialization,
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overexploitation and utilization of fossil fuels, and land use change, are considered the
leading causes of significant warming, with carbon dioxide accounting for 70% of total
atmospheric greenhouse gas emissions [2]. As a critical carbon pool in the carbon cycle,
terrestrial ecosystems play an important role in maintaining the global carbon cycle. In-
creasing terrestrial ecosystem carbon storage can effectively reduce atmospheric carbon
dioxide content [3]. Timely and practical assessment of terrestrial ecosystem carbon storage
is significant to global/regional carbon cycle research, mitigation of climate change, and
sustainable development.

Carbon storage has been estimated at different scales for forests [4,5], cities [6–8],
cultivated land [9,10], wetlands [11,12], and other ecosystems. At present, the leading
carbon storage estimation methods include measurement methods [13,14], inventory-based
methods [15,16], estimation methods based on remote sensing data [17–19], etc. The
measurement method needs to collect samples on the spot and take them back to the lab
to measure carbon density. Estimating carbon storage in a small area is more accurate
but time-consuming and laborious. Inventory-based methods are often used to estimate
forest carbon stocks. Data on tree species, area, age, and height are needed for calculation.
Remote sensing technology can play a key role in estimating carbon storage’s temporal
and spatial changes in the study area with a large area and complex surface ecology. Net
primary productivity (NPP) [20,21], land use and land cover (LULC) [22,23], and other data
or related forms are usually used in this context. The combination of the InVEST model and
land use change simulation model can predict the future carbon storage pattern in the study
area to carry out ecological conservation measures in advance and improve the carbon
sequestration capacity of the regional ecosystem [24,25]. In recent years, various land use
simulation models have been proposed [26–28]. To improve the simulation accuracy, it is
necessary to comprehensively consider climate, transportation, population, economy, and
other factors based on the law of changing land use. Liang [29] proposed a patch-generating
land Use Simulation (PLUS) model, which can better explore the incentives of various land
use changes and simulate the patch-level changes of various types of land use.

In recent decades, China’s rapid economic development has been accompanied by
increasing energy demand, with coal accounting for 56.8% of the country’s total energy
consumption in 2020. Coal will continue to be China’s primary energy source for some time
to come. The large-scale exploitation of coal resources has caused large-scale damage to
the surface and has affected the original ecosystem function, including the carbon storage
function [30,31]. Some scholars have studied carbon storage in the mining area [32–35].
However, coal mining is a dynamic process, and the existing research does not estimate
the future changes in carbon storage based on the analysis of the impact of mining on
the surface. And these studies also do not explain the contribution of land reclamation to
increasing carbon storage.

Especially in the mining area with a high groundwater level in east China, coal is
mainly mined underground, which results in severe subsidence and damage to the surface
and to the formation of a subsidence basin. The high groundwater table can easily rise
above the surface elevation after the coal mining subsidence, forming perennial or seasonal
water [36,37]. As a result, the original land production and living facilities suffers severe
damage, soil salinization, and vegetation degradation, which seriously reduces the carbon
sequestration function of the terrestrial ecosystem [38,39]. It is urgent to conduct ecological
restoration work to improve carbon sequestration levels in eastern China mining areas.

China has set a target to achieve carbon neutrality by 2060. It is of great significance
for China to increase carbon sinks by rapidly and reasonably estimating and predicting
the impact of coal mining on the spatio-temporal change of carbon storage. Based on the
prediction of coal mining subsidence, this study analyzes the changes and spatial layout of
carbon reserves in mining areas under different development scenarios, so as to provide a
reference for local governments and coal mining enterprises to carry out environmental
governance. In this paper, using the Yanzhou coalfield (YZC) as an example, the main
research objectives are:
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(1) Propose a method to estimate the impact of mining and reclamation measures on
carbon storage;

(2) Prediction of land change in mining areas affected by mining by coupling the PLUS
model and probability integration method;

(3) Spatial–temporal relationship of carbon storage using the spatial analysis method.

2. Materials and Methods
2.1. Study Area

YZC (Figure 1) is in Jining, southwest of Shandong Province, China. It belongs to the
Huai River basin and is relatively rich in water resources. Its inland rivers are all seasonal
rivers, mainly including the Si River, the White Horse River, the Shahe River, the muddy
river, etc. YZC is a transitional climate between temperate monsoon ocean and continental,
with four distinct seasons and abundant rainfall. YZC is about 32.2 km in length from north
to south, 23.4 km in width from east to west, with a total area of 403.7 km2 and 14 coal
mines, including Datong, Baodian, Yangcun, Tianzhuang, Taiping, Henghe, Liyan, Beiju,
Nantun, Dongtan, Xinglong, Xingcun, Gucheng, and Shanjiacun. Coal seam thickness is
generally 1–10 m, buried depth is below 300 m, mostly gently inclined coal seam, and the
coal mines have adopted shaft development for underground mining.
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YZC; (c) coal mining has led to water accumulation in large areas of cropland; (d) wetland landscape
was formed after reclamation.

YZC is an important part of the Luxi coal base (one of China’s fourteen large coal
bases). In the meantime, YZC is a typical coal-grain complex area with more than 70%
cropland. The coal–grain complex area is where the coal resources and the grain production
space overlap. It bears the critical responsibility of national food security and mineral
resources supply [40]. YZC entered a period of high-intensity mining from the late 1980s
to the 1990s and is still operating normally today. Large cropland areas collapsed after
decades of coal mining and then turned into water areas. Native terrestrial ecosystems have
been severely disturbed and are difficult to repair, as shown in Figure 1c, which directly
threaten regional and even national food security, energy security, and ecological security.
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More and more attention has been paid to the ecological rehabilitation of mining areas
in recent years. In 2016, the State Council General Office issued Opinions on accelerating the
comprehensive control of coal mining subsidence areas, which laid out plans for controlling
coal mining subsidence areas throughout the country. In 2020, Shandong province issued
the Special plan for comprehensive treatment of coal mining subsidence, of which YZC is
the key area. Under the background of carbon neutrality, the ecological restoration of the
mining area is endowed with a new connotation and target. Therefore, this study takes
YZC as an example to discuss the carbon sequestration effect of coal mining and restoration.

2.2. Data Source

The study used Landsat TM/OLI data from April to May in 2010 and 2020, down-
loaded from the USGS (https://earthexplorer.usgs.gov/) (accessed on 1 December 2021),
for LULC classification. ENVI 5.3 was used for image preprocessing, including image
cropping, radiation correction, and atmospheric correction. In addition, the coal mining
data used in this study were provided by local enterprises, and the spatial data sources and
descriptions for carbon storage assessment and land use simulation are shown in Table 1
and Figure 2.

Table 1. Description of spatial data.

Data Name Spatial Resolution Sources

Soil type 1 km HWSD v1.2
Precipitation

1 km WorldClimv2.1Temperature
DEM 30 m SRTM1 v3.0

GDP density
1 km

http://www.geodoi.ac.cn/
(accessed on 6 December 2021)Population density

Road network information - https://www.openstreetmap.org/
(accessed on 6 December 2021)

Distribution of railway stations - http://lbsyun.baidu.com/
(accessed on 6 December 2021)Government location -
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2.3. Method

The analysis process of this study includes four key steps. First, according to the
mining parameters of each mining area in YZC, the probability integral method (PIM) was
used to predict the subsidence in 2030 and classify it. Second, combined with the subsidence
situation and LULC in 2010 and 2020 and various influencing factors, the PLUS model was
used to simulate land use in the three scenarios of 2030. Third, the carbon density was
corrected, and the InVEST model was used to calculate the carbon reserves of each year and
each mine to calculate the carbon effect of coal mining and land reclamation. Fourth, ESDA
was used for spatial analysis of the gridded carbon density. The organizational process of
this study is shown in Figure 3.
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2.3.1. Principle of Predicting Mining Subsidence

By predicting mining subsidence, we can study the time and space distribution law
of strata and surface movement affected by the mining and master the situation of land
subsidence in the mining area to take the corresponding disaster prevention and reclama-
tion work.

PIM is the most widely used method for predicting mining subsidence in China,
which is also one of the methods recommended by the National Energy Administration in
its 2017 revision of Regulation of mining and pillar leaving under building, water-body,
railway and main underground engineer [41]. PIM is based on stochastic medium theory,
which decomposes the whole mining area into an infinite number of small units. The
influence of the entire mining process on the strata and the surface is equal to the sum
of the influence of each mining unit on the strata and the surface. The subsidence basins
of surface units caused by the unit mining process show normal distribution, consistent
with the distribution of probability density [42–44]. Thus, the equation for the subsidence
profile generated by the entire mining process can be expressed as an integral formula for
the probability density function:

We(x) =
1
r2 exp

(
−π

x2

r2

)
(1)
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We(x) is the unit point subsidence value, r is the main influence radius, mainly related
to the unit mining depth and the primary influence angle, and x is the horizontal coordinate
value of any point on the surface.

The movement of the overlying strata after coal mining does not reach the surface
immediately, and the process is gradual and relatively slow. When the coal mining is
completed for some time, the movement of the surface passes through the initial stage, the
active stage, and the declining stage. Eventually, a steady state will emerge, as shown in
Figure 4. All the subsidence areas obtained in this study are stable.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

subsidence in the mining area to take the corresponding disaster prevention and reclama-
tion work. 

PIM is the most widely used method for predicting mining subsidence in China, 
which is also one of the methods recommended by the National Energy Administration 
in its 2017 revision of Regulation of mining and pillar leaving under building, water-body, 
railway and main underground engineer [41]. PIM is based on stochastic medium theory, 
which decomposes the whole mining area into an infinite number of small units. The in-
fluence of the entire mining process on the strata and the surface is equal to the sum of the 
influence of each mining unit on the strata and the surface. The subsidence basins of sur-
face units caused by the unit mining process show normal distribution, consistent with 
the distribution of probability density [42–44]. Thus, the equation for the subsidence pro-
file generated by the entire mining process can be expressed as an integral formula for the 
probability density function: 𝑊 (𝑥) = 1𝑟 exp −𝜋 𝑥𝑟  (1)𝑊 (𝑥) is the unit point subsidence value, r is the main influence radius, mainly re-
lated to the unit mining depth and the primary influence angle, and x is the horizontal 
coordinate value of any point on the surface. 

The movement of the overlying strata after coal mining does not reach the surface 
immediately, and the process is gradual and relatively slow. When the coal mining is com-
pleted for some time, the movement of the surface passes through the initial stage, the 
active stage, and the declining stage. Eventually, a steady state will emerge, as shown in 
Figure 4. All the subsidence areas obtained in this study are stable. 

According to the relevant provisions of Comprehensive land remediation norms, 
combined with the actual mining area, the degree of land damage of coal mining subsid-
ence is divided into three types. Surface vertical subsidence within 1 m (including 1 m) is 
light damage, 1–3 m (including 3 m) is moderate damage, and more than 3 m is severe 
damage [45]. According to the mining plan, mineral resources utilization plan, and mining 
parameters provided by each coal mine (corner coordinates, coal seam strike, coal seam 
mining thickness, mining depth, coal seam dip angle, subsidence coefficient, main influ-
ence angle tangent, horizontal movement coefficient, and influence propagation angle), 
we used MSPS software based on PIM for predicting coal mining subsidence in 2030. 

 
Figure 4. Schematic diagram of surface ecosystem disturbance caused by underground mining. 

2.3.2. Classification and Simulation of LULC 
Random forest (RF) is an integrated classification learner that classifies samples 

based on multiple decision trees [46]. The basic composition of RF is a decision tree, 

Figure 4. Schematic diagram of surface ecosystem disturbance caused by underground mining.

According to the relevant provisions of Comprehensive land remediation norms,
combined with the actual mining area, the degree of land damage of coal mining subsidence
is divided into three types. Surface vertical subsidence within 1 m (including 1 m) is
light damage, 1–3 m (including 3 m) is moderate damage, and more than 3 m is severe
damage [45]. According to the mining plan, mineral resources utilization plan, and mining
parameters provided by each coal mine (corner coordinates, coal seam strike, coal seam
mining thickness, mining depth, coal seam dip angle, subsidence coefficient, main influence
angle tangent, horizontal movement coefficient, and influence propagation angle), we used
MSPS software based on PIM for predicting coal mining subsidence in 2030.

2.3.2. Classification and Simulation of LULC

Random forest (RF) is an integrated classification learner that classifies samples based
on multiple decision trees [46]. The basic composition of RF is a decision tree, trained
and classified by one hundred/thousand decision trees. Finally, a decision is made by
considering the voting results of multiple learners. Compared with the traditional decision
tree method, RF integrates multiple classifiers, which makes up for the defect of a single
classifier. The RF classifier has many advantages over other algorithms using remote
sensing data to produce land cover change images [47]. Compared with most algorithms,
including advanced algorithms such as support vector machine (SVM), RF algorithms are
more efficient and require fewer parameters to input [48]. Therefore, this paper used the RF
classification tool of ENVI5.3 to classify the LULC of YZC with the object-oriented method.
According to the classification of LULC in the Chinese Academy of Sciences [49] and the
requirements of China’s Guidelines for the preparation of mine geological environment
protection and land reclamation plans for the classification of mining areas, the land
use types of YZC were classified into six types: cropland (paddy and dry farmland),
woodland (deciduous forest land, evergreen forest land, mixed forest land), grassland
(typical grassland and shrub forest land), built-up land (construction land and traffic land),
water body (lake, river, reservoir, pond, marsh, and wetland) and unused land (exposed
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land and unused land). The classification accuracy was evaluated by confusion matrix,
producer accuracy (PA), user accuracy (UA), overall accuracy (OA), and Kappa coefficient.

The patch-generating land use simulation (PLUS) model, which integrates land expan-
sion strategy analysis (LEAS) and a CA model based on multi-type random patch seeds
(CARS), was proposed in 2021. Compared with other land use simulation models, the two
sub-modules of PLUS have outstanding advantages. LEAS absorbs the advantages of the
traditional transformation analysis strategy and can better explore the driving factors of
land use change. Conversely, CARS combines random seed generation and the threshold
decline mechanism, which can better simulate the evolution of land use patch level. At
present, the PLUS model has been proven to be a more effective model, which provides
more accurate simulation results [29,50]. Therefore, this study uses this model for land
use simulation.

At present, the local mining arrangements of YZC are up to about 2030, and the
ecological restoration planning period issued by the management department is also up to
2030. Therefore, 2030 was taken as the year of land use simulation in this paper. The study
used the YZC LULC data for 2010 and 2020; the LEAS model to analyze the impacts of
climate, population, GDP, and transport on land expansion LULC in 2030 was simulated
by the CARS module.

To evaluate the different impacts of future mining disturbance and land reclamation
on YZC land use and then calculate the carbon effect under different policy tendencies,
there are three scenarios for the 2030 development of the study area:

(1) No mining activities (NMA) scenario: It is assumed that YZC will have no mining
activity until the end of 2030. The law of land use conversion is determined by the
LEAS module, but the water area is no longer increasing. This scenario serves as
a benchmark land use scenario to measure the impact of mining and reclamation
activities on the land.

(2) No reclamation after mining (NRM) scenario: Because of the small subsidence extent,
the lightly damaged areas are easy to restore to the original type, while the moderately
damaged areas are relatively deep in subsidence and are easy to transform from the
original type into the water area.

(3) Mining and reclamation (MR) scenario: The lightly damaged area is reclaimed to
the original type of land. As the surface of the mining area is mainly cropland, to
ensure food security, according to the principle of priority cropland, the scene of land
transfer rules is set as follows: the built-up land and water area are restored to the
original type of land in the moderately damaged area, other areas are restored to the
cropland, the heavily damaged area is not easy to be reclaimed, and the land type is
transformed into the water area.

NRM scenario and MR scenario were simulated based on the NMA scenario, as shown
in Table 2.

Table 2. Land conversion rules in NRM and MR scenarios.

NRM MR

Light damage Natural restoration to the original LULC Natural restoration to the original LULC

Moderate damage All LULC will be converted to the water area Built-up land and water will be restored to the original
land. Other LULC will be reclaimed for cropland

Severe damage All LULC will be converted to the water area All LULC will be converted to the water area

2.3.3. Calculation of Carbon Storage

The InVEST model, developed jointly by Stanford University, The Nature Conservancy,
and the World Wide Fund for Nature in the United States, aims to simulate changes in the
quantity and quality of ecosystem values under different land use scenarios, achieving a
quantitative spatial assessment of ecosystem service values [51]. The carbon module in the
invest model is a direct and effective model to evaluate the impact of land use change on
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carbon storage. It has the advantages of convenient use, flexible parameters, and relatively
accurate results and has been widely used [52,53]. Carbon storage (C) is determined by
aboveground biomass carbon (Cabove), underground biomass carbon (Cbelow), surface soil
organic carbon (Csoil) and litter carbon (Cdead) in terrestrial ecosystems.

C = Cabove + Cbelow + Csoil + Cdead (2)

Many studies showed a significant linear relationship between carbon density and
climate factors [54,55]. In 2018, based on 14,371 measured data, Tang [56] developed models
of soil organic carbon, bioorganic carbon and litter carbon under different climatic condi-
tions. Combined with the research of Alam [57] and Zhou [58], we used the relationship
model (Formulas (3)–(11)) to modify the carbon density data of Ma [59] in the Yellow River
Delta of Shandong province. By referring to the local annual statistical yearbooks, the
average temperatures of Jining City, where YZC is located, and Dongying City, the central
city of the Yellow River Delta, in the past decade are 14.9 and 14.0 ◦C, respectively, and the
average precipitation is 715.6 and 593.4 mm, respectively.

Regression model considering temperature (MAP > 400 mm):

CST = −3.4 × MAT + 157.7 (3)

CBT = −0.4 × MAT + 43.0 (4)

CDT = −0.03 × MAT + 2.03 (5)

Regression model considering precipitation (MAT > 10 ◦C):

CSP = 0.03∗MAP + 45.3 (6)

CBP = 0.02∗MAP + 5.87 (7)

CDP = 0.004∗MAP + 0.85 (8)

where CST and CSP are the fitted values of MAT and MAP for soil carbon density, CBT and
CBP are the fitted values of MAT and MAP for biomass carbon density, respectively, CDT
and CDP are the fitted values of MAT and MAP for carbon density of litter, respectively.

Correction model:

KSP =
CSP1

CSP2
; KST =

CST1

CST2
; Ks = Average(KSP, KST) (9)

KBP =
CBP1

CBP2
; KBT =

CBT1

CBT2
; KB = Average(KBP, KBT) (10)

KDP =
CDP1

CDP2
; KDT =

CDT1

CDT2
; KD = Average(KDP, KDT) (11)

where KSP and KST are the correction coefficients of soil carbon density considering precip-
itation and temperature factors, respectively, KBP and KBT are the correction coefficients of
soil carbon density considering precipitation and temperature factors, respectively, KDP
and KDT are the carbon density correction coefficients of the litter biomass considering the
precipitation and temperature factors, respectively, 1 and 2 correspond to Dongying and
YZC, respectively, and KS, KB and KD were the revised coefficients of soil carbon density,
biomass carbon density and litter biomass carbon density, respectively.

According to the modified model, the carbon density of different land use in YZC was
determined, as shown in Table 3.
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Table 3. Carbon density (Mg/ha) of different LULC in YZC.

Cabove Cbelow Csoil Cdead

Cropland 11.71 3.19 18.08 0.43
Woodland 36.40 7.88 19.40 2.99
Grassland 13.41 5.96 16.05 1.50

Built-up land 0.00 0.00 8.13 0.00
Unused areas 1.06 0.00 15.24 0.00

Water area 2.13 1.06 10.16 0.00

2.3.4. Spatial Analysis

The spatial and temporal characteristics of different areas of YZC carbon storage can
be mined by grid analysis. The basic grid shapes commonly used in grid analysis include
quadrilateral grid, hexagon grid, and triangle grid, etc. Hexagon mesh can reduce the
sample deviation due to the boundary effect of the mesh shape [60]. Since hexagons have
the same distance from the center of mass in all six directions, neighborhood analysis can
yield more realistic results [61]. Therefore, according to YZC’s actual situation, the hexagon
grid with a height of 300 m was selected for the spatial analysis of carbon storage.

Exploratory spatial data analysis (ESDA) is an analytical method of data depth mining
and spatial visualization. The core content is to measure the spatial correlation pattern
through spatial autocorrelation analysis, and then measure the homogeneity or heterogene-
ity of spatial data. In this research, ESDA was implemented by QGIS 3.16 and GEODA1.6.7,
and we chose the average carbon density of the cell grid as the ESDA variable. The spatial
autocorrelation recognition is carried out using the Global Moran’s I index and the Local
Moran’s I index. The global spatial autocorrelation is an index parameter to study the
global spatial correlation and similarity of the attribute values of the adjacent grids in the
studied region. The value range of Global Moran’s I is [−1, 1]. When the value is positive,
the spatial correlation is positive, and the larger the value is, the more pronounced the
space correlation is. When the value is negative, the spatial correlation is negative. The
smaller the value, the more pronounced the spatial correlation is. When the value is zero,
the spatial distribution is random. Local Moran’s I can measure the local spatial correlation
and spatial differentiation between each grid and its surrounding grid.

I =
∑n

i=1 ∑n
j=1 wij(xi − x)

(
xj − x

)
S2

(
∑i ∑j wij

) (12)

Ii =
(xi − x)∑n

j=1 wij(xi − x)
S2 (13)

S2 =
1
n

n

∑
i=1

(xi − x)2 (14)

where n is the total number of grid units; xi (xj) is the measurement value of grid unit i(j);
(xi − x) is the deviation between the measured value and the average value on the ith grid
element; wij is the standardized spatial weight matrix; S2 is variance.

3. Results
3.1. Area of Land Subsidence Expected

According to mining enterprises’ mining plan and mineral resources planning, the
MSPS software integrated with PIM was used to predict coal mining subsidence. The
spatial distribution of subsidence is shown in Figure 5a. Because some mines are in the
closed stage without mining damage, the subsidence location is mainly distributed in the
middle of YZC. By 2030, YZC’s subsidence area would reach 4341.13 ha, accounting for
10.74% of the total coalfield area. The total area of lightly land damage is 1484.66 ha, the
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total area of moderate land damage would be 1275.08 ha, and the entire area of severe land
damage would be 1581.38 ha. The Dongtan mine’s most significant light and moderate
land damage areas reached 637.47 ha (45.36%) and 532.28 ha (41.75%). In contrast, the
mines with the most significant proportion of severe land damage are Baodian, reaching
491 ha (31%).
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3.2. LULC Changes and Simulations

Using Google Earth Pro high-resolution images, we identified 1000 sample points as
test samples and evaluated the accuracy of the classification results using the obfuscation
matrix (shown in Table 4). In 2010 and 2020, the overall accuracies were 91.00% and 92.50%,
respectively, and the kappa coefficients were 0.86 and 0.88, respectively. The classification
accuracy met the need of the research.

Table 4. Classification accuracy of LULC.

LULC Type
2010 2020

PA (%) UA (%) PA (%) UA (%)

Cropland 94.18% 93.17% 94.73% 97.02%
Woodland 88.00% 78.57% 84.00% 72.41%
Grassland 91.00% 79.82% 89.00% 83.96%

Built-up land 89.33% 93.71% 94.00% 95.92%
Unused areas 56.00% 66.67% 52.00% 59.09%

Water area 87.33% 94.93% 93.33% 88.05%
OA (%) 91.00% 92.50%
kappa 0.86 0.88

Cropland accounted for more than 70% between 2010 and 2020, but its share declined
by 6.4% over the decade, a total reduction of 2593.46 ha. The proportion of built-up land
increased from 15.51% to 20.74%, reaching 8375.49 ha. In the multi-scenario simulation
of 2030 LULC, we found that built-up land area would increase significantly in three
scenarios, which reached 10,120.32 ha in NMA. As shown in Figures 6 and 7, there would
be a significant difference between NRM and NMA in cropland and water. If no reclamation
measures are taken, the cropland area would be lost close to 2000 ha, while the water area
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would increase by 2740 ha. Compared with NRM, the area of cropland would increase by
1013 ha, and the water area would decrease by 1217 ha.
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From the spatial distribution of different LULC, the new built-up land in 2030 would
be distributed around the original built-up land. The newly added water bodies in NRM
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and MR scenarios would basically be within the mining subsidence range and would
mainly be areas that were originally cropland. It can be seen that mining severely impacts
YZC’s food security.

3.3. Results of Carbon Storage Estimation

From 2010 to 2020, YZC’s carbon storage dropped from 1,143,225.16 to 1,099,412.47 Mg
and would continue to decline in 2030 (Table 5). Even if mining were to cease in the
future, the expansion of built-up land due to urban economic development would reduce
44,699.6 Mg of carbon storage in the NMA scenario. In the NRM scenario, YZC’s carbon
storage would only be 1,017,065.75 Mg, 82,346.71 Mg less than in 2020. In the MR scenario,
the carbon storage of YZC would be 1,035,216.79 Mg, 18,151.03 Mg more than that of NRM.
The average carbon density of each mine was significantly different. In 2010, the Xinglong
mine with the lowest average carbon density (24.55 Mg/ha) was 6.2 Mg/ha lower than the
Shanjiacun mine with the highest average carbon density (30.75 Mg/ha). Shanjiacun mine
would be 9.15 Mg/ha higher than the Nantun mine in the NRM scenario. The standard
deviations of average carbon density in 2010, 2020, NMA, and NRM scenarios were 1.69,
2.00, 2.35, and 2.76, respectively, indicating that coal mining leads to an increasingly
apparent gap in carbon density among different coal mines.

Table 5. Total carbon storage and density of each mine in different periods.

2010 2020 NMA NRM MR

Mg Mg/ha Mg Mg/ha Mg Mg/ha Mg Mg/ha Mg Mg/ha

Baodian 95,097.97 27.05 92,114.36 26.20 89,675.94 25.50 79,722.99 22.67 83,969.50 23.88
Beisu 79,173.56 27.09 72,867.65 24.93 65,880.23 22.54 65,880.23 22.54 65,880.23 22.54

Datong 33,162.10 28.39 31,598.83 27.05 30,282.25 25.92 30,282.25 25.92 30,282.25 25.92
Dongtan 176,068.13 29.39 170,302.82 28.42 165,247.74 27.58 149,167.59 24.90 158,160.24 26.40
Gucheng 48,217.04 28.95 47,587.00 28.57 46,544.92 27.94 46,544.92 27.94 46,544.92 27.94
Henghe 29,207.00 27.50 28,543.83 26.88 27,951.31 26.32 27,451.27 25.85 27,726.96 26.11
Liyan 65,943.97 29.52 63,345.92 28.36 60,835.32 27.23 60,835.32 27.23 60,835.32 27.23

Nantun 97,611.11 27.40 88,211.17 24.77 80,763.19 22.67 77,539.11 21.77 79,869.75 22.42
Shanjiacun 18,436.03 30.75 18,746.12 31.26 18,538.82 30.92 18,538.82 30.92 18,538.82 30.92

Taiping 65,574.81 30.26 64,180.26 29.61 62,796.85 28.98 62,796.85 28.98 62,796.85 28.98
Tianzhuang 97,304.52 30.29 91,270.22 28.42 86,311.79 26.87 86,311.79 26.87 86,311.79 26.87

Xingcun 113,058.93 30.08 108,220.02 28.79 101,840.17 27.09 101,796.83 27.08 101,839.59 27.09
Xinglong 141,720.12 24.55 140,189.05 24.29 137,284.50 23.78 129,452.26 22.43 131,698.73 22.82
Yangcun 82,649.87 30.11 82,235.22 29.95 80,759.83 29.42 80,745.52 29.41 80,761.82 29.42

Total 1,143,225.16 28.31 1,099,412.47 27.23 1,054,712.87 26.12 1,017,065.75 25.19 1,035,216.79 25.64

We plotted the change rates of different mines in 2020 compared with 2010 and in 2030
compared with 2020. In Figure 8, we can clearly see the response of different coal mines to
carbon storage change in different scenarios. From 2010 to 2020, we found that the carbon
storage of the Nantun mine changed significantly compared to 2010, a reduction of 9.63%. In
addition, the reduction rate of carbon storage of the Beisu mine and Tianzhuang mine was
much larger than the average value of YZC. Only the Shanjiacun mine increased its carbon
storage by 1.68%. In the NMA scenario, all mines’ coal storage would be decreasing. The
rate of change of the Datong, Tianzhuang, and Nantun mines would be lower, which may
be related to the mining area’s ecological background and a stronger self-recovery ability.
In the NRM scenario, Baodian, Dongtan, and Nantun mine would decrease, especially in
Baodian, where the change rate would be −13.45%. In the MR scenario, the carbon storage
of those mining areas significantly affected by coal mining would be significantly higher
than that in the NRM scenario due to reclamation work. Especially in Dongtan Mine, the
reduction rate of carbon storage would be reduced from 12.41% of MR to 7.13%.
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3.4. Spatial Pattern Analysis

To grasp the spatial distribution of carbon storage change more clearly and to carry
out the conservation and restoration work, we carried on with the grid analysis. From
2010 to 2030, YZC has a uniform distribution of high carbon density. However, with time,
the area of high carbon density would gradually decrease. In the GeoDA software, the
global Moran’s I index of carbon density in 2010, 2020, NMA, NRM and MR scenarios
was calculated as 0.611, 0.600, 0.619, 0.618 and 0.617, respectively (Figure 9). The global
Moran’s I index is greater than 0 and above 0.6, indicating that the overall distribution of
YZC carbon storage shows a significant spatial positive correlation.

To reveal the local spatial aggregation of carbon storage in the study area, according
to the remarkable spatial aggregation relation of 5466 grid units of YZC, the local spatial
autocorrelation analysis was carried out at the remarkable level of 0.001. The spatial
correlation between the specific attributes of each grid and the surrounding grid elements
was represented by the aggregation graph of the local indices of spatial association (LISA)



Remote Sens. 2022, 14, 2014 14 of 20

and was then divided into four types (high–high aggregation, low–low aggregation, low–
high aggregation, and high–low aggregation). According to Figure 10, the distribution
of YZC clusters is scattered, and the clusters are mainly high–high and low–low. As the
concentrated area of the built-up area is not disturbed by coal mining, the types of clusters
in the northwest are stable. However, the aggregation types in the middle east varied
greatly. The enlargement of regions 1 and 2 in Figure 10f–i showed that both regions show
high–high aggregation reduction and low–low aggregation increase, indicating a significant
decrease in carbon storage and a decrease in carbon sink function; the ecological source of
carbon storage will be gradually broken. Compared with regions 1 and 2 of Figure 10i,j, it
is found that the fragmentation of carbon sequestration source areas caused by coal mining
can be significantly improved by land reclamation.
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4. Discussion
4.1. Ecological Problems in High Submersible Coal Mining Areas in Eastern China

At present, many studies have monitored the ecological environment of high sub-
mersible mining areas in eastern China [39,40], mainly focusing on land use change [62,63],
ecosystem service value assessment, water accumulation area identification [64,65], settle-
ment monitoring [66] and vegetation quality evaluation [67,68]. This area is of concern by
scholars, mainly because the mining area is located in eastern China, where the economy is
more developed and densely populated. The land here carries the multiple functions of
living, food production, economic construction, and coal mining, and underground coal
mining seriously undermines surface ecology, production, and life.

Currently, the focus of coal resources exploitation in China has shifted from eastern
China to northwestern China, but some coal mines in the eastern part will continue to
produce. The existing research mainly evaluates and summarizes the ecological problems
that have occurred. We used the scenario simulation method, PLUS model, and PIM to
predict future surface changes to obtain LULC under various scenarios in 2030. It was
found that the coal mining of YZC would continue to cause surface subsidence and form
large-scale water accumulation, resulting in dramatic changes in land structure. There
would be 4341.13 ha of land disturbed to varying degrees, forming more than twice the
water area in 2020.

At present, China is carrying out all kinds of ecological protection and restoration to
achieve the goal of carbon neutrality; thus, it is urgent to optimize the carbon accounting
system. The carbon emission of underground coal mining mainly comes from fossil energy
and electricity used in mining, transportation, processing, and slag emission. Carbon sink
capacity mainly depends on vegetation and soil microorganisms in the mining area and on
emerging CCUS technology.

Remote sensing technology will be used to monitor large-scale carbon budgets in coal
mining areas. Therefore, this paper proposes a method for estimating carbon storage in
coal mining areas by coupling land use simulation with the InVEST model. We predict that
YZC would lose 37,647.11 Mg C due to coal mining, and the high carbon accumulation area
tends to be broken. Especially in the Baodian and Dongtan mines, carbon storage of the
NRM scenario would be different from that of the NMA scenario, and it is urgent to carry
out targeted protection measures.

4.2. Land Reclamation Can Effectively Alleviate the Weakening of Carbon Sequestration Function

Over the past 30 years, China has successfully implemented many land reclamation
projects in mining areas. Most of the land reclamation model is terminal treatment. That
is, reclamation is carried out after land damage. Land type conversion mainly follows the
principle that the reclaimed land should be preferentially used for agriculture in China’s
land reclamation regulations. In combination with the actual situation of YZC as a coal–
grain complex area and the local reclamation plan, the reclamation objectives are set for land
types with different damage levels. If the reclamation is carried out in full compliance with
the target, 18,151.03 Mg C loss can be reduced, 48.21% less than in the scenario. Especially
in the Nantun mine, 72.29% carbon loss can be avoided after reclamation.

Given the complexity and urgency of land reclamation in high groundwater level min-
ing areas, scholars have put forward the technology of concurrent mining and reclamation
(CMR) [69,70], which means in the process of mining, when the land is not submerged,
effective reclamation measures are taken to improve the reclamation rate. Therefore, if
there is CMR technology reclamation in YZC, the local carbon sequestration function will
be further protected.

According to the national mine geological survey report released by China geological
survey in 2016, as of 2015, 2.14 million ha had not been reclaimed in China. However, with
the gradual attention paid to the ecological restoration of mining areas in recent years, more
and more mining areas have been systematically treated. In March 2022, Jining City, where
YZC is located, prepared the Comprehensive treatment plan for the Jining coal mining
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subsidence area (2021–2030), which set the goal of completely treating all stable subsidence
areas by 2030. At the same time, the focus of China’s coal production has gradually shifted
from the east to the west. Many coal mines in Jining have been closed in recent years.
Therefore, we believe that the MR scenario will be closer to the actual situation in 2030.

4.3. Applicability and Limitations

As the world’s largest coal producer and consumer, China vigorously carries out
carbon neutralization-related work. The ecological restoration of coal mining areas cannot
be ignored, which is of great significance to achieving the goal of carbon neutralization.
Some scholars have now evaluated the loss of carbon sink in mining areas through field
sampling [71,72]. Still, these works are time-consuming and labor-consuming, which is
unsuitable for evaluating large coalfields. Using remote sensing technology can more
conveniently and quickly evaluate the carbon accounting of large-scale regions. In addition
to the methods used in this article, there are also many methods to evaluate the carbon
sink level by remote sensing technology. The data sources include NPP [73,74], LiDAR [75],
carbon satellites [76], and so on. However, these methods are mainly used to evaluate
the past change trend or the current carbon storage level and cannot predict the future
situation. However, the goal of carbon neutralization is the top-level goal set by the state,
and coal mining is a continuous industrial activity. The management department needs to
make plans in advance for facing the possible ecological problems in the mining area in
the future and to realize the goal of carbon neutralization. Therefore, our method is more
suitable for predicting the impact of future coal mining and reclamation on regional carbon
reserves, which can provide reference data for the management department to formulate
goals and plans.

This paper uses the InVEST model to evaluate carbon storage from land use and then
evaluate the regional carbon sink function. Through the principle of the model, it is found
that increasing the area of high carbon density land, such as multi-planting afforestation,
dramatically improves the regional carbon sink level. However, since this region is a
coal–grain complex area, to ensure the safety of cropland, our reclamation strategy is to
increase the cropland area preferentially. Protecting arable land, improving carbon storage
levels, and directly balancing economic development and coal mining is a problem that
needs to be further solved.

In addition, the data for each LULC type of carbon pool used in the InVEST model
is fixed. Although it has been modified using relevant climate data, the heterogeneity
of the carbon density of YZC is not considered. In addition, it has been found that the
light damage caused by coal mining in high groundwater level mining areas also affects
carbon density. In future research, it is necessary to conduct field research and sampling
and to use various remote sensing technologies to improve the accounting accuracy of the
carbon budget.

5. Conclusions

Aiming at the disturbance of the carbon pool caused by coal mining in high ground-
water level mining areas, this paper simulated and studied coupling of PIM, the InVEST
model and PLUS models, and the angle of LULC change. A method for evaluating and
predicting the impact of coal mining and land reclamation on carbon storage was proposed.
The results showed that YZC would have 4341.13 ha of land disturbed by underground
coal mining in 2030, the loss was estimated to be 37,647.11 Mg C, and the loss of 48.21%
would be avoided by land reclamation. The spatial analysis of carbon storage found that
YZC carbon storage has a significant positive spatial correlation. Coal mining would lead
to the fragmentation of carbon sink, and reclamation can alleviate this trend.

The scheme is suitable for high groundwater level mining areas and can quantita-
tively calculate the carbon benefit of coal mining and reclamation. This study can provide
data support for coal mining and land reclamation plans and reference the local govern-
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ment’s ecological supervision and regional sustainable development plan in setting carbon
neutrality targets.
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