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Abstract: Leaf chlorophyll content is used as a major indicator of plant stress and growth, and
hyperspectral remote sensing is frequently used to monitor the chlorophyll content. Hyperspectral
reflectance has been used to evaluate vegetation properties such as pigment content, plant structure
and physiological features using portable spectroradiometers. However, the prices of these devices
have not yet decreased to consumer-affordable levels, which prevents widespread use. In this study,
a system based on a cost-effective fingertip-sized spectrometer (Colorcompass-LF, a total price for
the proposed solution was approximately 1600 USD) was evaluated for its ability to estimate the
chlorophyll contents of radish and wasabi leaves and was compared with the Analytical Spectral
Devices FieldSpec4. The chlorophyll contents per leaf area (cm2) of radish were generally higher
than those of wasabi and ranged from 42.20 to 94.39 µg/cm2 and 11.39 to 40.40 µg/cm2 for radish
and wasabi, respectively. The chlorophyll content was estimated using regression models based on
a one-dimensional convolutional neural network (1D-CNN) that was generated after the original
reflectance from the spectrometer measurements was de-noised. The results from an independent
validation dataset confirmed the good performance of the Colorcompass-LF after spectral correction
using a second-degree polynomial, and very similar estimation accuracies were obtained for the
measurements from the FieldSpec4. The coefficients of determination of the regression models based
on 1D-CNN were almost same (with R2 = 0.94) and the ratios of performance to deviation based on
reflectance after spectral correction using a second-degree polynomial for the Colorcompass-LF and
the FieldSpec4 were 4.31 and 4.33, respectively.

Keywords: 1D-CNN; C12880MA-10; chlorophylls; deep learning; de-trending; radish; reflectance
spectra; wasabi

1. Introduction

Chlorophyll is one of the primary pigments involved in photosynthesis, which takes
place in chloroplasts containing the chlorophyll. Therefore, chlorophyll content is related
to photosynthetic capacity [1]. Chlorophyll content has also been used to evaluate crop
status, such as plant physiological activity, to ensure high yield [2,3] and other aspects
of crop management. Portable chlorophyll content meters, such as the SPAD-02 Leaf
Chlorophyll Meter (Konica Minolta Inc.), have been used to measure in-situ leaf chloro-
phyll content. However, the leaf dry weight and thickness often make the results of such
meters ambiguous [4,5], and the use of these devices is restricted. Alternative techniques
based on hyperspectral remote reflectance using portable spectroradiometers, such as the
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Ocean Optics hyperspectral visible and near-infrared (Vis–NIR) spectroradiometer [6,7]
and the Analytical Spectral Devices (ASD) FieldSpec series [8–10], have been proposed.
Reflectance in the blue (420–470 nm) and red (640–680 nm) wavelength ranges depends
on the leaf pigment, especially that due to chlorophyll, and a peak in the green region
(520–580 nm) indicates a high chlorophyll content [11]. Based on these features, vegetation
indices, i.e., the normalised difference [12–16], modified normalised difference [17], simple
difference [18,19], simple ratio [12,13,20–34] or an integration of such measures have been
widely used to characterise vegetation [35], and a number of vegetation indices have been
developed to evaluate the chlorophyll content. In addition, the numerical inversion of
radiative transfer models has been proposed to estimate the chlorophyll content from
hyperspectral reflectance data acquired by FieldSpec spectrometers [36,37]. However, the
prices of spectrometers have not yet decreased to consumer-affordable levels, and this
is the chief obstacle to their practical use. Consequently, the development of a low-cost
hyperspectral remote sensing system would prove useful [38]. Recently, highly sensitive,
cheap, and fingertip-sized spectrometers, such as the C12880MA-10 (Hamamatsu Photon-
ics), have been released, and their potential for estimating chlorophyll content should be
evaluated. In this study, reflectance measurements were obtained from two spectrometers,
the Colorcompass-LF, which is based on the C12880MA-10, and the FieldSpec4. Chloro-
phyll estimates were obtained based on the reflectance measurements, and then the results
from these spectrometers were compared.

Various factors, such as the signal-to-noise ratio of sensors, obscure reflectance data
and therefore reduce the measurement accuracy [39]. Furthermore, vegetation indices
based on measurements from spectrometers whose full width at half maximum (FWHM)
is very precise are not always applicable to data from spectrometers with low FWHM
values. The pre-processing of original reflectance data is effective for noise removal and
for correcting the slope or base shift of the spectra, thereby producing accurate reflectance
data for the evaluation of vegetation properties such as chlorophyll content. Pre-processing
techniques have been widely applied as an essential step to remove noise in original
reflectance data [40,41]. For example, de-trending (DT) is an effective pre-processing
technique used to eliminate the effect of the additive interference of scattered light from
particles [42]. Earlier studies have identified DT as the best pre-processing technique to
estimate various properties of wasabi and tea leaves from reflectance data obtained using a
Fieldspec4 spectroradiometer and leaf clippings [43–45]. Standard normal variate (SNV)
transformation is effective for reducing the noise or baseline shift in raw reflectance data
caused by light scattering [46]. SNV transformation was the most common pre-processing
technique applied in earlier studies [47,48]. DT and SNV have also been compared with
respect to their ability to estimate chlorophyll content.

In addition to the de-noising of original spectra, algorithm choice is one of the im-
portant processes required to improve the estimation accuracy of reflectance data. In
recent years, deep learning-based algorithms have been successful in effectively express-
ing complex relationships, and their strong performance in the evaluation of vegetation
properties has been reported [49]. Furthermore, deep learning has become increasingly
prevalent following the rapid development of big data and computing power in the past
few years [50,51]. One-dimensional convolutional neural network (1D-CNN) is one of the
most effective architectures based on deep learning and has been used to evaluate soil prop-
erties using Vis–NIR reflectance [49,52]. Deep belief nets (DBNs) also have a probabilistic
generative architecture composed of multiple layers of stochastic latent variables [53] and
have performed well in hyperspectral remote sensing [54,55]. In general, high-specification
computers are required to generate regression models based on deep learning algorithms.
Google Colaboratory is a free online cloud-based Jupyter notebook environment that allows
the generation of regression models based on graphics processing units. This server was
used to generate regression models based on 1D-CNN for our proposed method of low-cost
field-scale monitoring.
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The specific sub-objectives of this research are (1) to compare the chlorophyll esti-
mation accuracies based on reflectance from the Colorcompass-LF and Fieldspec4, (2) to
determine the best pre-processing techniques for original reflectance data and (3) to com-
pare regression models based on 1D-CNN with those based on a DBN.

2. Materials and Methods
2.1. Measurements and Datasets

Two Brassicaceae species were examined in this study: radish (Raphanus sativus),
which is normally cultivated in agricultural fields and has a high chlorophyll content, and
wasabi (Eutrema japonicum), which is normally grown in hydroponic culture and has a
relatively low chlorophyll content.

The radish plants were cultivated at a within-row distance of 60 cm and an inter-row
spacing of 90 cm in a field at Shizuoka University, Japan. Basal fertiliser (6 kg of N, P and K)
was applied per 10 a, in addition to 120 kg of silicate fertiliser (The Sangyo Shinko Co. Ltd.,
Tokyo, Japan) and 3.6 g of boric acid. The experiment included a control test without slag
(control) and with slag fertilizer treatment (slag) that contained SK calcium silicate (NJ Eco
Service, Kitakyushu, Japan), of which the soluble silicic acid content was 32%. Seeding was
conducted on 23 October 2020, and two additional supplementary fertiliser applications
were performed, consisting of 4.8 kg of N, P and K per 10 a, on 7 and 25 November. A
total of 144 leaves (72 leaves per treatment) were measured for reflectance and chlorophyll
content determination on 2 and 3 March 2021.

One-year-old wasabi mericlone seedlings were cultivated individually in Wagner pots
(1/5000 a) containing 3 L of tap water (adjusted to a pH of 6.0 using HCl and NaOH)
and were continuously aerated from 28 January 2021. After one week, slightly modified
solutions of 0.1 × Hoagland solution [56] were applied stepwise for one week at a strength
of 1/100 and 1/10 to adapt the plants to the hydroponic system under standard nutrient
solution conditions. Hoagland solution is one of the most widely used solutions for growing
plants, containing 0.25 mM KNO3, 0.25 mM Ca (NO3)24H2O, 0.375 mM (NH4)2SO4, 0.2 mM
MgSO47H2O, 0.2 mM NaH2PO42H2O, 0.25 mM KCl, 0.25 mM CaCl22H2O, 5 µM EDTA–Fe
(III), 2.5 µM H3BO3, 0.2 µM MnSO45H2O, 0.2 µM ZnSO47H2O, 0.05 µM CuSO45H2O,
and 0.05 µM Na2MoO42H2O. Sulphur has been reported to be important in improving
the allyl isothiocyanate concentration and yield, which determine plant pungency, and
sulphur is frequently added to nitrogen fertiliser [57]. Thus, sulphur was added at four
concentrations: the standard concentration (control, 0.58 mM SO4

2−), zero sulphur (0 × S),
half the standard concentration (0.5 × S), and twice the standard sulphur concentration
(2 × S). Different levels of nitrogen (0 × N and 2 × N), potassium (0 × K and 2 × K),
and phosphorus (0 × P and 2 × P) were added except for the control sample. A total of
100 expanding wasabi leaves (10 leaves per treatment) were sampled from the top of the
plants on 16 March 2021.

For quantifying chlorophyll contents, detached leaves were used. However, the re-
flectance was measured immediately after detaching. Reflectance data were measured
using two spectrometers with a plant probe consisting of a halogen light source and a
leaf clip (Figure 1). The first spectrometer was the Colorcompass-LF, which is composed
of a complementary metal–oxide semiconductor (CMOS) sensor (C12880MA-10, Hama-
matsu Photonics, Hamamatsu, Japan) and a shape memory alloy (SMA) fibre patch cable
(M25L05, Thorlabs, NJ, USA) with a 0.22 numerical aperture. The spectral resolution was
resampled in 5 nm bands across the entire wavelength domain from 400 to 850 nm. The
second spectrometer was the FieldSpec4 (Malvern Panalytical, Almelo, The Netherlands),
which is composed of three detectors (visible and near-infrared [VNIR] and shortwave
infrared [SWIR 1 and SWIR 2]), and the spectral drift was measured at two wavelengths
(1000 nm and 1800 nm) due to inherent variations in detector sensitivities. To minimize this
inconsistency, the splice correction function of ViewSpec Pro Software (Malvern Panalytical,
Almelo, The Netherlands) was applied [58]. It is well known that the leaf chlorophyll
content mainly affects reflectance in the 400–780 nm region [59], and the entire wavelength
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domain of the Colorcompass-LF spans the region from 340 nm to 850 nm. To avoid re-
dundant analyses, reflectance values of wavelengths longer than 850 nm were removed
before analysis.

Figure 1. Measurements of the chlorophyll content of wasabi leaves using (a) the Colorcompass-LF
and (b) the FieldSpec4.

Leaf discs were collected after the reflectance measurements were completed, and the
absorbance of dimethyl–formamide extracts was measured using a dual-beam scanning
ultraviolet–visible spectrophotometer (UV–1900, Shimadzu, Kyoto, Japan). Wellburn’s
method [60] was applied to quantify the chlorophyll content based on absorption. N-N
Dimethylformamide was used to prepare extracts from which chlorophyll–a (Chl–a) and b
(Chl–b) contents (in µg mL−1) were calculated according to the following Equations (1 to 3)
with the chlorophyll unit converted to µg/cm2 using the leaf disc area.

Chl-a (µg mL−1) = 12.00 × (A663.8 − A750) − 3.11 × (A646.8 − A750), (1)

Chl-b (µg mL−1) = 20.78 × (A646.8 − A750) − 4.88 × (A663.8 − A750), (2)
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Chla + b (µg mL−1) = Chl-a + Chl-b, (3)

where A is the absorbance and the subscripts are the wavelengths (in nm).
A stratified random sampling approach, which is a method of sampling that involves

the division of all measurements into smaller sub-groups (strata), was applied. The strata
were based on treatments. The measurements were divided into two groups: a training
dataset (75%) and test dataset (25%) following a previous study [49], and this approach
was repeated one hundred times to ensure robust results.

2.2. Pre-Processing of the Raw Reflectance Data

Pre-processing is an essential step to remove noise from original reflectance data and
to improve regression models. In this study, spectra after de-trending (DT) and standard
normal variate (SNV) correction were evaluated in addition to the original reflectance (OR).
DT and SNV were implemented using the “prospectr” package [61] in R version 4.0.2 [62].

2.2.1. De-Trending (DT)

In DT, the baseline is assumed to be a second-degree polynomial function of the
wavelength and is subtracted from the spectrum. This technique has also been used to
account for the variation in baseline shifts and curvilinearity by fitting a second-degree
polynomial through each spectrum [42].

2.2.2. Standard Normal Variate (SNV)

SNV is effective in reducing multiplicative effects of scattering and particle size and is
able to correct multiple scattering noise caused by the surface structure of leaves. This is
mathematically expressed as follows:

xSNV
i,j =

xi,j − xi√
∑

p
j=1(xi,j−xi)

2

p−1

(4)

where xSNV
i,j is the reflectance value after SNV, xi,j is the corresponding original reflectance

value of variable j at wavelength i, xi is the mean of spectrum i, and p is the number of
variables or wavelengths in the spectrum [63].

2.3. Model Development
2.3.1. One-Dimensional Convolutional Neural Network (1D-CNN)

CNN has been applied to automatically detect features of interest from the given data,
and 1D-CNN can provide accurate results for 1D data [52]; 1D-CNN has an input layer,
hidden layers (convolutional, pooling, fully connected and normalization) and an output
layer. Convolution was applied to the reflectance data to extract a feature map using a
convolution filter, and then each unit in the convolutional layer was connected to local
features in the feature map. After the convolution operation, a pooling layer was used for
the dimensional reduction of the feature map, which effectively reduces the computational
cost and minimises the overfitting of the network while preserving important information.
In this study, the max-pooling technique and ReLU were applied. It was reported that 1D-
CNN was effective to estimate the concentrations of the major and minor pigments from the
reflectance and absorption coefficient spectral inputs [64]. In this study, the low and high
of the chlorophyll-content samples were included and then this feature was effective for
generating robust regression models. The architecture was composed of 10 hidden layers
that included four convolutional layers, four max-pooling layers, and two fully connected
layers; two dropout rates, 0.4 and 0.2, were used following previous studies [47,52]. The
regression models based on 1D-CNN were generated using Google Colaboratory.
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2.3.2. Deep Belief Nets (DBNs)

DBNs consist of multi-layer unsupervised restricted Boltzmann machines and produce
an optimum model in comparison to a model based on random weights for the weight
initialisation of a deep neural network [65]. DBNs can be effectively used to perform layer-
by-layer pre-training intended to initialise the training of a backpropagation algorithm [66].
DBNs have been applied to extract vegetation properties, such as quality (chlorophyll-
a content) and stress (chlorophyll-a: b), from hyperspectral data for improved tea tree
management, and some pre-processing could be reduced [54,67]. The initial configurations
were the learning rate (0.1), the maximum iteration number of the pre-training dataset
(100), the learning rate of the pre-training dataset (0.01), the maximum iteration number of
the training dataset (100), and the batch data size (10) following previous studies [67,68].
DBN regression was implemented using the “darch” package in R version 4.0.6 [69].

2.4. Statistical Criteria

The model performance was evaluated using the ratio of performance to deviation
(RPD, Equation (5) [70]), as RPD is a widely applied indicator with a clear definition
(e.g., category A [RPD > 2.0], category B [1.4 ≤ RPD ≤ 2.0], and category C [RPD < 1.4]).
RPD directly compares the index performance of different datasets and is used espe-
cially to examine robustness across different datasets. In addition to RPD, the root mean
square error (RMSE, Equation (6)) and coefficient of determination (R2, Equation (7)) were
calculated using:

RPD =
SD
SEP

, (5)

RMSE =

√
1
n

n

∑
i=0

(ŷi − yi)
2, (6)

R2 = 1 −
(

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2

)
, (7)

where SD is the standard deviation of the measurements, SEP is the standard error pre-
diction, n is the number of samples, yi is the real value, ŷi is the estimated value, and
y is the mean of the measurements. Chang et al. [71] claimed that Category B can be
improved by using different calibration strategies, but properties in Category C may not be
reliably predicted.

The sensitivity of spectral wavelengths was evaluated using the variance principle [52,72].
For wavelength i (nm), the sensitivity Si was calculated as follows:

Si =
Var( f (X400, . . . , Xi, . . . , X850)− f

(
X
)

Var(Y)
, (8)

where Var is the variation, f () is the prediction of spectra due to the variation in wavelength
i (nm) with other wavelengths held constant at their mean values, f (X) is the estimated
value based on the mean reflectance, and Y represents the measured chlorophyll content.
Following the calculation of Si, the scores were converted to percentages.

3. Results
3.1. Chlorophyll Contents in Each Treatment

The chlorophyll contents per leaf area (cm2) of radish were generally higher than those
of wasabi and ranged from 42.20 to 94.39 µg/cm2 and 11.39 to 40.40 µg/cm2 for radish
and wasabi, respectively (Table 1). No significant difference was observed between the
two treatments for radish (p > 0.1, Tukey–Kramer test), and slag fertilizer had no effect on
the chlorophyll content of the radish leaves. Except the different phosphorus fertilizer levels,
the increase in the fertilizer concentrations effectively increased the chlorophyll contents.
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Table 1. Chlorophyll content (µg/cm2) in each treatment.

(a) Radish

Treatment Control Slag All

Number of samples 72 72 144
Minimum (µg/cm2) 43.94 42.20 42.20
Median (µg/cm2) 69.12 71.21 70.23
Mean (µg/cm2) 68.46 70.55 69.51
Maximun (µg/cm2) 94.39 92.74 94.39
Standard deviation (µg/cm2) 10.55 7.94 9.36

(b) Wasabi

Treatment Control 0 × N 2 × N 0 × P 2 × P 0 × K 2 × K 0 × S 0.5 × S 2 × S All

Number of samples 10 10 10 10 10 10 10 10 10 10 100
Minimum (µg/cm2) 30.89 11.39 24.02 24.60 30.55 17.96 23.99 21.17 30.12 33.08 11.39
Median (µg/cm2) 33.67 12.63 31.76 29.68 32.57 22.07 32.22 25.05 35.98 37.34 31.29
Mean (µg/cm2) 33.91 13.00 31.85 29.43 32.97 22.33 31.78 25.15 35.21 36.41 29.20
Maximun (µg/cm2) 38.82 16.11 36.87 33.37 36.56 28.94 39.18 28.97 40.40 38.93 40.40
Standard deviation (µg/cm2) 2.12 1.40 3.63 2.69 2.11 3.14 5.36 2.76 3.22 2.00 7.43

3.2. Spectral Reflectance

The mean reflectance of each crop measured by the spectrometers is shown in Figure 2.
The decrease in reflectance at 825 nm was due to the low sensitivity of the C12880MA-10,
which is the basis of the Colorcompass-LF. Due to high chlorophyll contents, the reflectance
values in the green region were lower than those for wasabi, and high negative corre-
lation coefficients (p < 0.001) were confirmed at 525 nm (r = −0.813 and −0.795 for the
Colorcompass-LF and FieldSpec4, respectively) for wasabi. Significant negative correla-
tions (p < 0.01) were also observed for radish; the absolute values were lower than those
of wasabi (r = −0.205 and −0.391 for the Colorcompass-LF and FieldSpec4, respectively).
Furthermore, strong negative correlation coefficients were observed for the red edge inflec-
tion point (REIP), and the values were −0.867 and −0.802 for the Colorcompass-LF and
FieldSpec4, respectively. In contrast to the reflectance in the green region, a strong negative
correlation was observed for the measurements from the FieldSpec4 (r = −0.670, p < 0.001),
while a lower correlation was observed for the measurements from the Colorcompass-LF
(r = −0.326, p < 0.01).
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Figure 2. Mean reflectance spectra measured by the Colorcompass-LF ((a) radish, (b) wasabi) and
FieldSpec4 ((c) radish, (d) wasabi).

3.3. Accuracy Assessment

The evaluation results of each algorithm and pre-processing technique for measure-
ments from both the Colorcompass-LF and FieldSpec4 are presented in Table 2. Al-
though the OR of both spectrometers was acceptable for estimating the chlorophyll content
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(RPD > 1.4), both pre-processing techniques effectively improved the estimation accuracies
and fitting of the regression models. DT was effective, and the regression models were
categorised as ‘A’ (RPD > 2.0). The best combination was 1D-CNN and DT for both spec-
trometers, and the Colorcompass-LF had almost the same performance (RPD values) for
chlorophyll content estimation (4.31 ± 0.40 µg/cm2 vs. 4.33 ± 0.40 µg/cm2).

Table 2. RPD, RMSE (µg/cm2), and R2 values for the estimation results for each deep learning
algorithm after 100 repetitions.

(a) ColorCompass-LF

Pre-processing technique RPD RMSE R2

1D-CNN DBN 1D-CNN DBN 1D-CNN DBN

OR 2.28 ± 0.37 1.44 ± 0.39 9.88 ± 1.54 16.13 ± 3.46 0.79 ± 0.06 0.43 ± 0.23
DT 4.31 ± 0.40 2.00 ± 0.63 5.13 ± 0.49 12.09 ± 3.73 0.94 ± 0.01 0.66 ± 0.21

SNV 3.70 ± 0.35 1.79 ± 0.57 5.98 ± 0.59 13.32 ± 3.72 0.92 ± 0.01 0.58 ± 0.22

(b) FieldSpec4

Pre-processing technique RPD RMSE R2

1D-CNN DBN 1D-CNN DBN 1D-CNN DBN

OR 2.16 ± 0.48 1.59 ± 0.40 10.69 ± 2.44 14.60 ± 3.28 0.75 ± 0.11 0.53 ± 0.21
DT 4.33 ± 0.40 2.01 ± 0.55 5.11 ± 0.48 11.80 ± 3.42 0.94 ± 0.01 0.68 ± 0.19

SNV 4.12 ± 0.49 1.79 ± 0.46 5.40 ± 0.71 13.12 ± 3.34 0.94 ± 0.01 0.61 ± 0.22

Figure 3 shows the relationships between measured and estimated values when
1D-CNN was applied. The pre-processing techniques effectively reduced the standard
deviation of the estimation errors. In particular, the standard deviations of the RMSEs
decreased after DT, and these values were 0.49 and 0.48 µg/cm2 for the Colorcompass-LF
and FieldSpec4 measurements, respectively.
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Figure 3. Relationship between measured and estimated chlorophyll contents using (a) OR of
Colorcompass-LF, (b) OR of FieldSpec4, (c) DT of Colorcompass-LF, (d) DT of FieldSpec4, and
(e) SNV of Colorcompass-LF, (f) SNV of FieldSpec4.
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3.4. Sensitivity Analysis

Although the peaks of the importance were obscure when OR was applied, the im-
portance of REIP for chlorophyll content estimation increased after the pre-processing
techniques were applied when 1D-CNN was used (Figure 4a,c), and the most important
wavelengths for DT and SNV were 710 nm and 715 nm, respectively, for Colorcompass-LF,
and 720 nm and 705 nm, respectively, for FieldSpec4. The importance of the green peak was
also confirmed for the FieldSpec4 measurements. On the contrary, this was not observed
for DBN (Figure 4b,d).

Figure 4. Cont.
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Figure 4. Sensitivity analysis results for the combinations of algorithms and spectrometers for
the combinations of (a) 1D-CNN and reflectance from Colorcompass-LF, (b) DBN and reflectance
from Colorcompass-LF, (c) 1D-CNN and reflectance from FieldSpec4, and (d) DBN and reflectance
from FieldSpec4.

4. Discussion
4.1. Spectrometer Comparison

When OR was applied, the estimation results from the Colorcompass-LF measure-
ments were superior (60-fold higher) to those from the FieldSpec4. The typical FWHM
wavelength of the C12880MA-10, which is the basis of the Colorcompass-LF, is 12 nm, while
the FieldSpec4 has a more precise FWHM (its spectral resolution is 3 nm). Furthermore, the
relative sensitivity of the C12880MA-10 is less than 0.5 at 700 nm [73]. To reduce the influ-
ence of the low sensitivity of this spectrometer, a plant probe with a halogen light source
and a leaf clip with replaceable white and black background standards was developed
and used in this study. FieldSpec4 is a commercial plant probe that deteriorates over time.
However, pre-processing techniques were required to improve the estimation accuracies of
both sensors (Table 2).

The best sensor, algorithm, and pre-processing technique combinations after
100 repetitions based on the RPD value are listed in Table 3. The estimation results from the
FieldSpec4 measurements were superior (63-fold higher) to those from the Colorcompass-
LF. However, the combination of 1D-CNN and DT effectively improved the chlorophyll
content estimation accuracy, and the RPD values calculated from the estimation values
reached 3.37–5.38 and 3.46–5.28 for the Colorcompass-LF and FieldSpec4, respectively.
Therefore, it is expected that almost the same estimation accuracies can be obtained from
the Colorcompass-LF measurements when 1D-CNN and DT are applied.

Table 3. The best sensor, algorithm, and pre-processing technique combinations after 100 repetitions.

Sensor Algorithm Pre-Processing Times

Colorcompass-LF 1D-CNN
DT 35

SNV 2

FieldSpec4 1D-CNN
DT 37

SNV 26

4.2. Optimal Machine Learning Algorithms

After 100 repetitions, 1D-CNN was included in the best combination (Table 3), and the
accuracy of 1D-CNN was generally superior to that of DBN for each measurement from the
sensors, although DBN had higher accuracies (6-, 2-, and 17-fold for the Colorcompass-LF
original spectra, Colorcompass-LF SNV spectra, and FieldSpec4 original spectra, respec-
tively). The minimum RPD values were 1.59, 2.87, and 1.41 for these combinations, and all
estimation results were acceptable when 1D-CNN was applied. The strong performance
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of 1D-CNN-based regression models has been shown for soil property prediction using
Vis–NIR spectral data [47,52,72], and the advantage of this algorithm was confirmed for
leaf chlorophyll estimation from spectral reflectance between 400 nm and 850 nm. The
important wavebands of the 1D-CNN model were also evaluated, and it was confirmed
that REIP played the most important role in chlorophyll content estimation for the pre-
processed spectra. The high sensitivities of the green peak have also been reported for
the chlorophyll contents, and some vegetation indices based on the green peak have been
proposed [22,23,74–76]. However, the importance of the wavelength around the green peak
was low (less than 5%) for the pre-processed spectra. It has been reported that this stress
moves the green peak position toward long wavelengths [77], and the nutrient content in
the Wagner pots may have influenced the water status of the cultivated wasabi plants. How-
ever, the REIPs of the mean spectra ranged from 710 nm to 715 nm (for both spectrometers)
while the green peak ranged from 520 nm to 530 nm for the Colorcompass-LF measurements
and was 520 nm for the FieldSpec4 measurements. As a result, there were no large shifts
for the two bands. It has been reported that anthocyanin induction is strongly influenced
by a low nitrogen concentration, and the absorption peak of anthocyanin corresponds to
the green peak region, but there is no influence on the red edge region [78]. Therefore,
REIP had relatively high sensitivities in the regression models. In future measurements,
assessments of the influence of anthocyanin contents should be considered. The tendencies
of important wavelengths were obscure for both spectrometer measurements when DBN
was applied, as observed in results of previous studies, and this tendency is important for
processing the spectra, including noise reduction [43,67]. Indeed, the application of the
pre-processing techniques was less effective (Table 2); however, the performances were
lower than those of the 1D-CNN-based regression models, even for the original reflectance.

5. Conclusions

In this study, hyperspectral data were acquired using a low-cost complementary metal–
oxide semiconductor (CMOS) sensor, Colorcompass-LF, and an Analytical Spectral Devices
(ASD) FieldSpec4 to evaluate the performance of the Colorcompass-LF.

De-trending based on a second-degree polynomial effectively removed noise from the
Colorcompass-LF and FieldSpec4 measurements, and the relative percent difference values
reached 3–4 when one-dimensional convolutional neural network-based regression models
were applied. As a result, the low-cost reflectance measurement system (Colorcompass-LF)
estimates the chlorophyll content with almost the same accuracy as the high-specification
spectrometer (ASD FieldSpec4). The information provided by the Colorcompass-LF can
be used for more suitable nutrient management, facilitating quality control and plant
maintenance for less-experienced farmers with low-cost field-scale monitoring.
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