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Abstract: Accurate and real-time land use/land cover (LULC) maps are important to provide precise
information for dynamic monitoring, planning, and management of the Earth. With the advent of
cloud computing platforms, time series feature extraction techniques, and machine learning classifiers,
new opportunities are arising in more accurate and large-scale LULC mapping. In this study, we
aimed at finding out how two composition methods and spectral–temporal metrics extracted from
satellite time series can affect the ability of a machine learning classifier to produce accurate LULC
maps. We used the Google Earth Engine (GEE) cloud computing platform to create cloud-free
Sentinel-2 (S-2) and Landsat-8 (L-8) time series over the Tehran Province (Iran) as of 2020. Two
composition methods, namely, seasonal composites and percentiles metrics, were used to define
four datasets based on satellite time series, vegetation indices, and topographic layers. The random
forest classifier was used in LULC classification and for identifying the most important variables.
Accuracy assessment results showed that the S-2 outperformed the L-8 spectral–temporal metrics
at the overall and class level. Moreover, the comparison of composition methods indicated that
seasonal composites outperformed percentile metrics in both S-2 and L-8 time series. At the class
level, the improved performance of seasonal composites was related to their ability to provide better
information about the phenological variation of different LULC classes. Finally, we conclude that this
methodology can produce LULC maps based on cloud computing GEE in an accurate and fast way
and can be used in large-scale LULC mapping.

Keywords: Tehran; Iran; Landsat-8; LULC mapping; random forest; Sentinel-2; remote sensing

1. Introduction

Land use maps are fundamental data sources for land planning and management [1,2].
Accurate and up-to-date land use/land cover (LULC) mapping has always been of interest
to geoscience and remote sensing societies [3–5], mainly because it is a provider of valuable
information to understand human–environment relationships [6,7]. The starting point for
LULC mapping was that of using mono-temporal and mono-source satellite images [8]. For
these approaches, spectral and textural features played a substantial role in improving the
classification results [9,10] and the efforts continued with the combined use of multi-source
datasets, such as those integrating optical and radar satellite images [11,12]. Previous stud-
ies attempted to integrate different types of remotely sensed data and to use their unique
capabilities to produce accurate LULC maps. For example, Clerici et al. [13] reported that
optical and radar Sentinel data provide supplementary information; therefore, LULC classi-
fication can take advantage of the integration of both data sources leading to an increase
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in classification accuracy. The development and global consolidation of remotely sensed
data [14,15], cloud computing platforms [16–18], time series-based approaches [19,20] and
artificial intelligence, machine learning, deep learning, and deep transfer learning [21–25]
provided new insights into the field of large scale LULC mapping. Cloud computing
platforms such as Google Earth Engine (GEE) and Framework for Operational Radiomet-
ric Correction for Environmental monitoring (FORCE) provide high computing power
and accessibility to dense time series [16,26,27]. GEE provides various satellite data and
satellite-derived products through its data catalog [28]. Those using GEE platforms can
avoid storing images locally and access greater computing power to analyze and process
images [29].

Analyzing time series of satellite imagery enables the integration of a diverse set of
features and spectral–temporal metrics to capture seasonal and phenological characteristics
of various LULC classes [30–32]. The application of such features and metrics to map-
ping LULC classes has increased the classification accuracy [33,34]. Among the medium
resolution satellite images, Landsat-8 (L-8) and Sentinel-2 (S-2) products provide high
temporal resolution data, short revisit time, and rich spectral configuration, making them
appropriate sources for time series feature extraction [35,36]. Generally, three methods are
used to extract time series features and to manage missing data: (1) time series composition,
(2) spectral–temporal metrics, and (3) phenological metrics [37,38].

Composition methods convert all images into a single image covering a given time
window (annual, seasonal, etc.). Each pixel in the resulting image represents the reflectance
of all pixels from the original image collection based on defined roles. The most important
benefit of this method is that of reducing the atmospheric effects, such as cloud and snow
masking [39]. Spectral–temporal metrics produce statistical spectral information of all
pixels along a time scale. These metrics can be produced based on the mean, standard
deviation, maximum, minimum, or percentiles of spectral information during the defined
period [40]. Phenological metrics are generated based on the periodicity of land cover
classes, such as the date of start, peak, and end of the growing season and they represent
well the phenological variation of different LULC classes or vegetation types [41]. In this
regard, Azzari and Lobell [42] used both seasonal composites and 0.1, 0.25, 0.5, 0.75, and
0.90 quintile spectral–temporal metrics and achieved 89% overall accuracy in cropland
mapping. Phenological metrics are mainly used in the mapping of vegetation types.
Hemmerling et al. [43] reported that using phenological metrics extracted from dense
S-2 time series helped mapping different forest tree species. Xie et al. [44] assessed the
capabilities of percentile metrics and monthly composites in large-scale LULC mapping to
identify which methods would produce more accurate results. The importance of cloud
computing platforms and time series feature extraction methods becomes evident when
there is a need to process large amounts of data and a high number of features for accurate
and large-scale LULC mapping [45,46].

Moving to the context of the analysis, most of the previous studies used time series
spectral–temporal metrics to capture detailed characteristics of LULC classes and to build
powerful models for accurate LULC prediction. Most of the previous LULC mapping
studies used mono source satellite time series and a single method for time series feature
extraction [47,48]. Some studies used several methods for time series feature extraction but
on mono-source satellite data [49]. The novelty of this study is that it aimed at comparing
two commonly used time series feature extraction methods, namely, seasonal composites
and percentile metrics, and evaluating their performance in large-scale LULC mapping
based on two sources of data, namely, S-2 and L-8 time series. The above-mentioned
approach to the problem was operationalized by using a random forest (RF) machine
learning classifier. Hence, the objectives of this study were the following: (1) evaluating
the effect of two composition methods (i.e., percentile and seasonal) on LULC mapping
accuracy, (2) comparing the performance of data provided by S-2 and L-8 satellite images
in LULC mapping, and (3) identifying the most suitable variables for LULC prediction.
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The rest of the paper is organized as follows. In Section 2, the study area, datasets,
and methodologies of LULC classification and accuracy assessment are described. The
results and analyses are presented in Section 3. A discussion is presented in relation to
other studies in Section 4, and finally, the paper concludes in Section 5.

2. Materials and Methods
2.1. Study Area

This study was carried out in the Tehran Province, including Tehran city and its
suburbs, covering an area of 14,000 Km2 located in the northcentral part of Iran at the
southern face of the Alborz Mountains (Figure 1), spanning over 34◦ to 36◦5′N and 50◦

to 53◦E. This region is the most industrialized region in the country and has the highest
population density (11,800 individuals/km2) which is mainly concentrated in 10 cities. In
general, this province is characterized by an arid climate [7,50] being cold and semi-humid
in the northern areas and cold with long winters in the higher regions. Grasslands are
located in the northern and western parts, while croplands and bare lands are mainly found
in the southern and eastern parts of the region. The boundary of the study area was chosen
in a way that could well represent a complex landscape and involved densely built-up
and suburban residential areas, industrial cities, croplands, woodlands, grasslands, and
bare lands.
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Figure 1. The geographic location of the Tehran Province. Blue box: the Sentinel-2 (S-2) false color
composite of Tehran Province (NIR, red, green; 843).
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2.2. Datasets
2.2.1. Satellite Data

In this study, the S-2 and L-8 Operational Land Imager (OLI) time series data were
used for mapping the LULC classes. The L-8 OLI consists of nine spectral bands (coastal:
443 nm, blue: 485 nm, green: 563 nm, red: 655 nm, panchromatic: 640, NIR: 865 nm,
short-wave infrared 1 (SWIR1): 1610 nm, SWIR2: 2200 nm, and cirrus: 1375 nm) (https://
www.usgs.gov/landsat-missions/landsat-8; accessed on 14 December 2021). S-2 provides
high temporal resolution data with a rich spectral configuration, including 13 spectral
bands. It has six land monitoring bands that are comparable with Landsat-8 (blue: 490 nm,
green: 560 nm, red: 665 nm, NIR: 842 nm, SWIR1: 1910 nm, and SWIR2: 2190 nm) and
three additional bands covering the red-edge part of the spectrum which are centered at
705 nm, 740 nm, and 783 nm, and a NIR narrow band at 865 nm (https://sentinel.esa.int/
web/sentinel/missions/sentinel-2; accessed on 14 December 2021).

2.2.2. Digital Elevation Model

Shuttle radar topography mission (SRTM) digital elevation model (DEM) with a reso-
lution of 1 arc second (approximately 30 m) was used to extract the elevation and slope
bands. The SRTM resulted from international cooperation between the National Aero-
nautics and Space Administration (NASA), the National Geospatial-Intelligence Agency
(NGA), and German and Italian space agencies. SRTM provides a near-global DEM be-
tween 60◦N and 56◦S latitude, built on the data collected by a specially modified radar
system onboard the Space Shuttle Endeavour (SSE) during 11 days in February 2000
(https://lpdaac.usgs.gov/products/srtmimgmv003/; accessed on 14 December 2021).
Since all L-8 30 m and SRTM 30 m spatial resolution datasets were used in the analysis,
all the bands were resampled to 10 m (S-2 resolution) and registered to match the S-2
georeferenced images. Moreover, in GEE, the scaling is executed automatically and all the
bands are overlaid perfectly.

2.2.3. Reference Datasets and LULC Classes

In this study, the attempt was to develop an appropriate methodology to achieve
the specific research objectives outlined above. Four datasets were prepared so as to
be characterized by different time series feature set configurations based on S-2 and L-8
satellite images and two common composition methods. Generally, a high classification
accuracy of the remotely sensed datasets requires large sets of training and validation
samples. Therefore, a second step was that of generating a high number of training and
validation samples to properly manage the issues of insufficient sample sizes and large
numbers of dimensions [51,52]. Based on the above, an RF classifier was used to produce
LULC maps and to evaluate the classification accuracy by a set of metrics. Since the accurate
mapping of LULC classes based on machine learning methods requires a sufficient number
of training samples [53], a visual inspection of high-resolution satellite imagery is a typical
method used to extract training and validation samples [54,55]. In this study, a number of
3800 ground polygon samples (33,530 pixels) were defined based on a random distribution
within LULC classes which included artificial land, cropland, woodland, grassland, bare
land, and water bodies; this was done by a visual interpretation of the Google Earth high-
resolution satellite imagery (Table 1). The characteristics of LULC classes are described in
Table 1. Some studies indicated that the reference datasets should represent approximately
0.25% of the total study area [56,57]. Therefore, we used this proportion to collect our
samples in each LULC class and there was an imbalance between them. All the samples
were divided into training (60%) and validation (40%) subsets.

https://www.usgs.gov/landsat-missions/landsat-8
https://www.usgs.gov/landsat-missions/landsat-8
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://lpdaac.usgs.gov/products/srtmimgmv003/
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Table 1. The characteristics of land use/land cover (LULC) classes (pixel resolution = 10 m).

LULC Subclasses
No. of Polygons No. of Pixels

Training Validation Training Validation

Artificial land (AL) Urban, suburban and rural areas, industrial
cities, roads, bridges, airports, and buildings 594 396 4638 3092

Cropland (CR) Irrigated and rainfed croplands 600 400 5168 3445
Woodland (WO) Planted forests, gardens, and parks 262 175 2700 1800
Grassland (GR) Plain and mountainous grassland 583 389 5265 3510

Barren land (BA) Lands with no dominant vegetation cover 220 148 1987 1325
Water bodies (WA) Lakes and rivers 21 12 360 240

2.2.4. Time Series Image Analysis

The GEE cloud computing platform (https://earthengine.google.com; accessed on
14 December 2021) [16] was used to create image collections and process the time series. All
of the 2020 S-2A/B level 2A and L-8 OLI surface reflectance products over the study area
were processed to extract spectral–temporal metrics as predictors for LULC classification.
All images with less than 30% cloud cover were filtered as a beginning step. After that, we
used the S2cloudless algorithm (for S-2 images) and the function of mask (FMASK; for L-8
images) for masking pixel-wise cloud, cloud shadow, and snow from image collections.
During the masking process for both satellites, the results were visually inspected and all
parameters were redefined until the best result was obtained [58].

For the extraction of spectral–temporal metrics, two methods were considered to meet
the research goals:

1. Seasonal composites method: The median reducer was used to generate cloud-free
seasonal composites [59]. Satellite images were filtered based on the climatological
regime from the North of Iran, and took into consideration three seasons: spring
(March, April, and May), summer (June, July, and August), and autumn (Septem-
ber, October, and November). Images from winter were discarded because of the
high amounts of clouds and snow cover. This method was aimed at including the
phenological information in LULC classification [60].

2. Percentile metrics method: For each image collection, the percentile metric method
constructs the histogram of feature collection and then calculates the specified per-
centiles of the feature distribution [61]. In this study, all the images from 2020 (March
to November) were used to produce the 0.1, 0.25, 0.5, 0.75, and 0.95 percentile-based
metrics for all spectral bands and indices.

In addition to the spectral bands, the following spectral indices were calculated:
normalized difference vegetation index (NDVI; [62,63]), normalized difference built-up
index (NDBI; [64,65]), and green normalized difference vegetation index (GNDVI; [66,67]).
The spectral–temporal metrics were calculated (Table 2) by using the aforementioned
strategy. In the classification process, these topography-based features were used to include
the terrain attributes of the LULC classes [68].

Table 2. Spectral–temporal and topography metrics used for the land use/land cover (LULC) classification.

Source Datasets Method Spectral–Temporal and Terrain Metrics Number of Features

Sentinel-2
Dataset-1 Seasonal Seasonal median composite (S-2 bands: 2-8A, 11, 12 + NDVI, NDBI,

GNDVI) + DEM, slope 41

Dataset-2 Percentile 10th, 25th, 50th, 75th, 95th percentiles
(S-2 bands: 2-8A, 11, 12 +NDVI, NDBI, GNDVI) + DEM, slope 67

Landsat-8

Dataset-3 Seasonal Seasonal median composite (L-8 bands: 2-7 + NDVI, NDBI, GNDVI) +
DEM, slope 29

Dataset-4 Percentile
10th, 25th, 50th, 75th, 95th percentiles

(L-8 bands: 2-7, 10, 11 + NDVI, NDBI, GNDVI) +
DEM, slope

47

https://earthengine.google.com
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2.2.5. Land Cover Classification and Accuracy Assessment

A number of 2280 ground polygon samples (Section 2.2.3) were used to extract per-
band pixel values of the four composited datasets. These samples were used to train the RF
classifier. RF is an ensemble learning method based on a combination of decision trees [69].
This classifier was also found to perform better compared with other machine learning (ML)
classifiers such as support vector machine (SVM) [70]. RF requires less processing time,
fewer parameters, and minimal manual intervention compared with SVM [71,72]. It can
also cope properly with multi-modal data [73] and implicitly performs spectral selection
due to its underlying principle [69]. Based on previous findings [74,75], a RF classifier
with 500 decision trees (i.e., ntree) was trained and tested on each dataset described in
Table 2 to create LULC classifications. The assessment of classification accuracy was carried
out by comparing the LULC classes resulted from the training phase with data yielded
by the testing phase (numbers of ground polygon samples = 1520) using for this purpose
confusion matrices. Based on the confusion matrices, global quality metrics such as the
overall accuracy (OA) and kappa coefficient (K) were calculated (Equations (1) and (2)) to
evaluate the impact of composition methods on LULC classification.

Overall Accuracy (OA) =
Number of Correctly Classified Samples

Number of Total Samples
(1)

Kappa =
Overall Acuuracy− Estimated Chance Agreement

1− Estimated Chance Agreement
(2)

Moreover, the class level consumer’s accuracy (CA), producer’s accuracy (PA), and
F1-score were calculated (Equations (3)–(5)). The F1-score is the harmonic mean between
producer’s and user’s accuracies and can be used to evaluate the accuracy at class level [76].

CA =
Number of Correctly Classified Samples in each Class

Number of Samples Classified to that Class
(3)

PA =
Number of Correctly Classified Samples in each Class
Number of Samples from Reference Data in each Class

(4)

F1 =
2×CA × PA

CA + PA
(5)

PA is the probability that a pixel was correctly classified in a given class. CA is the
probability that a pixel classified in a given class of the map represents that class on the
ground [77]. The F1 was found to be the best performance metric and is widely used in
previous research, which gives equal importance to both PA (as a precision) and CA (as a
recall) by combining them into a single model performance metric [78,79]. The methodology
adopted in this study is provided in the flowchart shown in Figure 2.

2.2.6. Variable Importance

Variable importance stands for the variables’ contribution to distinguish between
LULC classes, which helps by improving the classification accuracy while reducing data
redundancy and processing workload. In this study, variable importance was derived from
the RF model to estimate the contribution of variables (i.e., spectral bands and indices) to
the obtained accuracy of the model [80].
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3. Results
3.1. LULC Maps and the Overall Accuracy

Figure 3 shows the LULC maps resulting from the four datasets based on the S-2 and
L-8 spectral–temporal metrics.

The accuracy figures reached by the four datasets characterizing different composition
methods are provided in Table 3. Based on the results, the overall accuracy of all datasets
was relatively close. The highest overall accuracy and K coefficient were reached by the
S-2 seasonal composites (OA = 95.48%, K = 0.9387), closely followed by S-2 percentile
metrics (OA = 95.34%, K = 0.9365), L-8 seasonal composites (OA = 94.30%, K = 0.9220), and
L-8 percentile metrics (OA = 93.87%, K = 0.9116). Therefore, in terms of satellite images,
the highest overall accuracy and K coefficient were reached by S-2 using seasonal and
percentile composites. Moreover, seasonal composites produced slightly higher accuracies
than percentile metrics (Table 3).

Table 3. Accuracy assessment results of different datasets.

Datasets Composition Methods OA (%) K (Unitless)

Dataset-1 S-2 seasonal composites 95.48 0.9387
Dataset-2 S-2 percentile metrics 95.34 0.9365
Dataset-3 L-8 seasonal composites 94.30 0.9220
Dataset-3 L-8 percentile metrics 93.87 0.9116

Figure 4 provides some false color composites with their associated seasonal com-
posites to better evaluate the effect of phenological information for an accurate LULC
classification. As observed, the phenological variation of LULC classes, particularly of
croplands and woodlands, was provided effectively via seasonal composites.
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Figure 4. Comparison of different seasonal composites. False-color images (R: near infrared
(NIR), G: red, and B: green) from Landsat-8 and Sentinel-2 time series. (a) Spring, (b) summer,
and (c) autumn.

3.2. Class Level Accuracy Assessment

For a more in-depth evaluation, per-class producer (PA) and consumer (CA) accuracies
and F1-scores are provided for all datasets in Table 4. Regarding the role of time series
composition methods, for both S-2 and L-8 datasets, it can be observed that the CA, PA,
and F1 scores were higher in all LULC classes when using seasonal composites rather than
percentile metrics. The lowest CA, PA, and F1-score were calculated for bare lands and the
highest ones were observed for water bodies in all datasets.

Table 4. Class level accuracy assessment results for all LULC classes (AL: artificial lands, WA: water
bodies, WO: woodland, CR: cropland, BA: bare land, and GR: grassland). Dataset-1: S-2 seasonal
composites, dataset-2: S-2 percentile metrics, dataset-3: L-8 seasonal composites, and dataset-4: L-8
percentile metrics.

Dataset Performance Metric AL WA WO CR BA GR

Dataset-1
CA (%) 97.12 100.00 98.03 95.11 86.17 89.04
PA (%) 98.13 100.00 93.18 96.01 81.06 94.11
F1 (%) 97.62 100.00 95.54 95.55 83.53 91.50

Dataset-2
CA (%) 97.01 99.02 97.11 95.02 84.17 91.09
PA (%) 98.00 100.00 92.27 96.10 78.23 94.11
F1 (%) 97.49 99.50 94.62 95.55 81.09 92.57

Dataset-3
CA (%) 95.25 98.84 97.19 94.02 78.15 91.01
PA (%) 98.11 100.00 93.09 94.11 74.32 92.20
F1 (%) 96.65 99.44 95.09 94.06 76.18 91.09

Dataset-4
CA (%) 95.01 97.05 97.01 94.09 78.06 90.32
PA (%) 98.00 100.00 92.16 94.03 71.01 92.12
F1 (%) 96.48 98.50 94.52 94.06 74.36 91.21
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The highest CA, PA, and F1-scores for all LULC classes were produced by dataset-1
(except grasslands). In contrast, dataset-4 had lower CA, PA, and F1 score values of all
LULC classes (except grasslands). As observed in Table 4, the CA, PA, and F1 score values
of artificial lands (AL) in all datasets were very high (F1-score ranged between 97.62 and
94.48%) and there were no contrasting differences between different datasets. Similar results
were also observed in terms of woodland (WO) classification (F1-score varied between
95.54 and 94.52%), with the exception that PA values for all datasets were quite low (ranged
between 93.18 and 92.16%). There were some omission errors in the woodland classification.
Regarding the cropland (CR) classification, S-2 based datasets (seasonal composites and
percentiles metrics) achieved higher CA, PA, and F1-score values than the L-8 datasets.
A similar difference in accuracy was observed by comparing the values returned by the
composition methods used for each satellite time series. The F1-scores produced for
cropland based on S-2 and L-8 datasets (seasonal and percentiles) were of 95.55 and 94.06%,
respectively. Based on the results (Table 3), the lowest CA, PA, and F1-score values were
calculated for bare land in all datasets. The results also showed that the S-2 datasets had a
higher capability of mapping bare lands than L-8 datasets. For example, the CA and PA
values produced for bare land using S-2 seasonal composites (dataset-1) increased by nearly
8% and 7%, respectively, as opposed to L-8 seasonal composites (dataset-3). Moreover, an
important difference was observed in CA, PA, and F-1 scores of bare land classification
between these datasets. These differences were also observed between dataset-2 (S-2
percentiles) and dataset-4 (L-8 percentiles). In terms of grassland classification, the best
result was obtained with dataset-2, in which we used S-2 percentiles. But there were no
remarkable differences between all datasets in grassland mapping accuracy.

Figure 5 provides some finer-scaled partitions of the maps to better evaluate the differ-
ences between the datasets in identifying LULC classes. As shown, there were problems
in all datasets to distinguish between bare and artificial land, grassland, and harvested
croplands, which remain challenging to differentiate due to similar spectral properties.
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3.3. Variable Importance

In all datasets, elevation, slope, and vegetation indices were found to be the most
important variables in RF models (Figure 6). In regard to S-2 seasonal composites, S-2
new spectral bands such as B8A, B5, and B6 were among the most important variables.
In the case of L-8 seasonal datasets (datasets 3 and 4), in addition to vegetation indices,
spectral bands including B5, B4, and B2 had a higher importance than other bands in
LULC prediction.
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Figure 6. Variable importance scores of all datasets. (D-1) S-2 seasonal composites, (D-2) S-2 percentile
metrics, (D-3) L-8 seasonal composites, and (D-4) L-8 percentile metrics.
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4. Discussion

Spatial distribution of LULC classes is often related to topographic factors [9,81].
Therefore, we considered elevation and slope factors in training and testing the RF models.
As a result, in all RF models, elevation factors obtained high importance scores. The
importance of topographic variables in large-scale LULC classification was also reported in
similar studies [39,82]. For example, Rufin et al. [83] used topographic factors (elevation
and slope) in their LULC model and indicate their high importance in increasing the overall
accuracy. In another study, Htitiou et al. [30] used elevation and slope layers in the attempt
to map croplands at national scale. Based on their results, these variables improved the
ability to distinguish croplands, particularly in regions characterized by high elevation and
steep slopes. Phan et al. [84] defined several datasets based on L-8 time series and auxiliary
bands such as topographic factors and reported that the elevation was the most important
variable in all of the models. Therefore, the high importance of topographic factors used in
this study was consistent with the results reported by previous studies.

Regarding the composition methods used for S-2 and L-8 time series, the results
showed that seasonal composites outperformed percentile metrics in distinguishing dif-
ferent LULC classes. In terms of accurate LULC mapping, the strategy used to generate
composites depends on the types of LULC classes and the density of available time se-
ries [44]. The higher performance of seasonal composites in this study can be related to
the selected LULC classes which covered cropland, woodland, and grassland. The use of
seasonal composites enabled the inclusion of phenological information. These kinds of sea-
sonality features were a piece of sufficient and valuable information for distinguishing the
LULC classes with similar spectral attributes. The importance of phenological information
was also reported in similar studies. Xie et al. [44] defined two datasets based on monthly
median composites and percentile metrics to classify different LULC classes including vari-
ous types of vegetation such as evergreen forests, deciduous forests, shrublands, croplands,
etc., using Landsat TM/ETM+ time series and reported that the highest overall accuracy
was produced by using monthly median composites.

When comparing the two satellite time series, accuracy assessment results indicated
that S-2 composition methods (seasonal composites and percentiles metrics) produced
higher accuracies than their L-8 counterparts did. The L-8 time series used in this study had
similar spectral features to S-2 time series, excluding the red-edge bands of S-2. Therefore,
the better results provided by the S-2 could be related to the red-edge bands and their
spectral–temporal metrics. The feasibility and efficiency of red-edge bands were also
present in variable importance scores. As Figure 6 illustrates, in both seasonal and percentile
composites, red edge bands (B-7, 6, and 5) played a significant role in the performance of the
RF classifier. Forkuor et al. [85] defined several datasets with different feature configurations
based on mono date S-2 and L-8 bands. Based on their results, the S-2 dataset produced the
highest accuracy. To evaluate the effect of red edge bands on the classification results, they
also added S-2 red edge bands to the L-8 dataset and reported a 4% improvement compared
with L-8 bands. Moreover, Immitzer et al. [86] reported that red-edge bands, particularly
B-5 (RE1), are among the most important data features in mapping vegetation types such
as croplands and woodlands. Ghayour et al. [87] compared the performance of S-2 and
L-8 satellite images in LULC mapping by using classifiers such as SVM, artificial neural
network (ANN), maximum likelihood classification (MLC), minimum distance (MD), and
Mahalanobis distance (MHD). According to their findings, S-2 produced higher accuracies
compared with the L-8 datasets irrespective of the classifier used.

Analyzing the confusion matrices indicated that bare lands were poorly identified
and most of them were classified as grasslands. Moreover, some pixels of the bare land
were misclassified as artificial lands. This problem occurred more often in the L-8 based
datasets (dataset-3 and dataset-4). Therefore, the largest difference between the S-2 and
L-8 composites was that observed in the classification of bare lands. The classification of
bare lands, on the other hand, is a common challenge in LULC mapping studies. Zhao
and Zhu [88] reported that some LULC classes such as artificial lands, bare lands, deserts,
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and harvested croplands have similar spectral signatures and tried to develop a spectral
index to better distinguish these classes. They introduced the artificial surface index (ASI)
by considering the artificial surface enhancement, vegetation, and bare soil suppressing
and reported that ASI could increase the separability of artificial lands from other types of
land use. Ettehadi Osgouei et al. [89] faced the same challenge and tried to use spectral
indices, including the normalized difference tillage index (NDTI), red-edge based NDVI,
and modified normalized difference water index (MNDWI). They reported that these
spectral indices could improve the performance of the SVM classifier to distinguish bare
land from urban areas. We used similar spectral indices in this study, including the NDVI,
GNDVI, and NDBI, but it seems that this challenge still remains. Nevertheless, these
spectral indices showed a good performance in differentiating other classes with similar
spectral signatures, such as woodland and dense croplands.

In this study, croplands were composed of irrigated and rain-fed crops, which hold
heterogeneous spectral patterns [90]. Considering all these spectral similarities and hetero-
geneous patterns, our approach and the used spectral–temporal metrics could enhance the
classification accuracy. In some studies, the integrated use of textural and spectral features
was found to be a solution to distinguish LULC classes with similar spectral properties.
For example, Petrushevsky et al. [91] integrated S-2 multispectral bands, Sentinel-1 texture
features, and object-based image analysis to generate an urban mask and reached a 90%
overall accuracy. The radar signal is sensitive to geometry (e.g., roughness, texture, and
internal structure), while physiology influences optical reflectance [92]. As such, these two
spectral domains may provide complementary information [93]. Hence, the integration of
radar time series and textural feature is recommended for future research [94,95].

Under the GEE platform, the satellite image processing time can be greatly shortened,
which helps users to store decades of data and removes the need to download the satellite
images one by one. However, one of the limitations of our study was the limited availability
of data with suitable resolution in the Google Earth catalog, whose improvement in this
direction is desirable for both researchers and practitioners. The second limitation of this
study was the lack of precise training and validation samples, making it impossible for us
to conduct our study on a much larger scale. These samples were collected automatically
from existing reference datasets such as the land use/cover area frame survey (LUCAS)
in similar studies. There was no access to accurate reference datasets or reliable LULC
maps in our study area. Therefore, we used very high resolution (VHR) satellite images
provided by Google Earth and visual interpretation, which are very time-consuming and
challenging, particularly when dealing with large areas. Moreover, based on the previous
studies and our results, topographic bands (such as elevation and slope) are very important
variables in increasing the overall accuracy. In this study, we used freely available SRTM
DEM with a resolution of approximately 30 m. Considering the importance of topographic
variables, using more accurate DEMs could considerably increase the classification results.
Unfortunately, we didn’t have access to such high-resolution DEM in this study (third
limitation). Therefore, future studies could use more accurate DEM, especially when
dealing with mountainous landscapes. Future research may compare the existing land use
products, such as those from this paper, with global products (e.g., ESA WorldCover and
GlobCover maps). Since the classification accuracy may be affected by the type of machine
learning model used, future studies could compare the results of other popular classifiers
for LULC mapping such as SVM, ANN, and deep learning models. Finally, we suggest
comparing balanced and imbalanced reference datasets in terms of classification accuracy
as well as considering larger study areas with different climate conditions.

5. Conclusions

This study aimed at evaluating the potential of S-2 and L-8 time series and the RF
classifier to produce accurate LULC maps. The S-2 and L-8 time series were used to generate
spectral–temporal metrics based on two composition methods (seasonal and percentiles) to
achieve the research objectives. Datasets, including S-2 and L-8 spectral temporal metrics
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and vegetation indices were defined, then their performance in identifying six common
LULC classes (artificial land, water bodies, woodland, cropland, bare land, and grassland)
was compared. The study concludes that medium resolution satellite time series and
the extracted spectral–temporal metrics are robust sources for accurate LULC mapping.
However, some differences among the datasets were observed. For instance, the LULC
maps generated from the S-2 time series were more accurate than those generated from
the L-8 time series. The comparison between composition methods indicated that seasonal
median composites outperformed percentile metrics in both S-2 and L-8 time series. The
results proved the efficiency of vegetation indices, particularly of NDVI and NDBI and
S-2 red-edge bands, concerning the variable importance. In short, the approach used in
this research and the generated spectral–temporal metrics can be used to produce accurate
LULC maps based on the GEE cloud computing platform. These results highlight that
cloud computing platforms such as GEE and new Earth-observing satellites such as S-2
have contributed significantly in improving LULC mapping and monitoring.

Author Contributions: Conceptualization, V.N., A.D., F.M. and S.M.M.S.; data curation, V.N. and
A.D.; formal analysis, V.N., A.D. and F.M.; funding acquisition, A.D., S.M.M.S. and S.A.B.; inves-
tigation, V.N.; methodology, V.N., A.D., F.M. and S.M.M.S.; software, V.N. and A.D.; supervision,
A.D. and S.M.M.S.; visualization, V.N. and S.M.M.S.; writing—original draft, V.N.; writing—review
and editing, A.D., S.M.M.S. and S.A.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding and the APC was funded by the Department of
Forest Engineering, Forest Management Planning, and Terrestrial Measurements.

Data Availability Statement: The data supporting the findings of this study are available from the
first author (V.N.) upon reasonable request.

Acknowledgments: Azade Deljouei’s and Seyed Mohammad Moein Sadeghi’s research at the Tran-
silvania University of Brasov, Romania, was supported by the program “Transilvania Fellowship for
Postdoctoral Research/Young Researchers”.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AL Artificial land
ANN Artificial neural network
ASI Artificial surface index
BA Barren land
CA Consumer’s accuracy
CR Cropland
DEM Digital elevation model
FMASK Function of mask
FORCE Framework for Operational Radiometric Correction for Environmental monitoring
GEE Google Earth Engine
GNDVI Green normalized difference vegetation index
GR Grassland
K Kappa coefficient
L-8 Landsat-8
LULC Land use and land cover
LUCAS Land use/cover area frame survey
MD Minimum distance
MHD Mahalanobis distance
MLC Maximum likelihood classification
MNDWI Modified normalized difference water index
NASA National Aeronautics and Space Administration
NGA National Geospatial-Intelligence Agency
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NIR Near infrared
NDBI Normalized difference built-up index
NDTI Normalized difference tillage index
NDVI Normalized difference vegetation index
OA Overall accuracy
OLI Operational Land Imager
PA Producer’s accuracy
RF Random forest
S-2 Sentinel-2
SRTM Shuttle radar topography mission
SSE Space Shuttle Endeavour
SVM Support vector machine
SWIR Short-wave infrared
VHR Very high resolution
WA Water bodies
WO Woodland
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