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Abstract: The hyperspectral feature extraction technique is one of the most popular topics in the
remote sensing community. However, most hyperspectral feature extraction methods are based on
region-based local information descriptors while neglecting the correlation and dependencies of
different homogeneous regions. To alleviate this issue, this paper proposes a multi-view structural
feature extraction method to furnish a complete characterization for spectral–spatial structures of
different objects, which mainly is made up of the following key steps. First, the spectral number of
the original image is reduced with the minimum noise fraction (MNF) method, and a relative total
variation is exploited to extract the local structural feature from the dimension reduced data. Then,
with the help of a superpixel segmentation technique, the nonlocal structural features from intra-view
and inter-view are constructed by considering the intra- and inter-similarities of superpixels. Finally,
the local and nonlocal structural features are merged together to form the final image features for
classification. Experiments on several real hyperspectral datasets indicate that the proposed method
outperforms other state-of-the-art classification methods in terms of visual performance and objective
results, especially when the number of training set is limited.

Keywords: hyperspectral image (HSI); feature extraction; structural feature; dimension reduction;
superpixel segmentation

1. Introduction

A hyperspectral image (HSI) is able to record hundreds of contiguous spectral channels,
and thus provides an unique ability to identify different types of materials. Owing to this
merit, hyperspectral imaging has been extensively applied in various aspects, such as land
cover mapping [1,2], object detection [3,4], and environment monitoring [5,6]. Over the
past few years, hyperspectral image classification has been made great progress because
of its significance in mineral mapping, urban investigation, and precision agriculture.
Nevertheless, object spectrum is usually affected by the imaging equipment and imaging
environment, resulting in high spectrum mixture among different land covers.

To alleviate this problem, hyperspectral feature extraction methods have been widely
studied to improve the class discrimination among different land covers. Some represen-
tative manifold learning tools [7–10] have been successfully used as feature extractor of
HSIs, such as principal component analysis (PCA) [8], minimum noise fraction (MNF) [10],
and independent component analysis (ICA) [9]. However, most of these techniques only
utilize the spectral information of different objects, and thus fail to achieve satisfactory
classification performance.

To fully exploit the spectral and spatial characteristics in HSIs, a mass of spectral–
spatial feature extraction techniques have been developed [11–15]. For instance, Marpu et
al. developed attribute profiles (APs) to extract discriminative features of HSIs by using
morphological operations [12]. Mura et al. studied extended morphological attribute
profiles (EMAP) to characterize HSIs by using a series of morphological attribute filters [13].
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Kang et al. developed an edge-preserving filtering method for hyperspectral feature
extraction to remove low-contrast details [14]. Duan et al. modeled hyperspectral image as
a linear combination of structural profile and texture information, in which the structural
profile was used as the spatial features [15]. After that, many improved approaches
have been also studied for classification of HSIs, such as ensemble learning [16,17], semi-
supervised learning [18,19], and active learning [20,21]. For instance, in [17], a random
feature ensemble method was proposed by using ICA and edge-preserving filtering to boost
the classification accuracy of HSIs. In [18], a rolling guidance filter-based semi-supervised
classification method was developed in which an extended label propagation technique
was utilized to expand the training set.

In addition, with the development of deep learning models, many deep learning
models have been applied to extract the high-order semantic features of HSIs. For example,
Chen et al. presented a 3D convolutional neural network (CNN)-based feature extraction
technique in which the dropout and L2 regularization were adopted to prevent overfitting
for class imbalance [22]. Liu et al. proposed a Siamese CNN method with a margin ranking
loss function to improve the discrimination of different objects [23]. Liu et al. designed a
mixed deep feature extraction technique by combining the pixel frequency spectrum fea-
tures obtained by fast Fourier transform and spatial features. Lately, all kinds of improved
versions have been also investigated to increase the classification accuracy [24–28]. For
example, Hang et al. designed an attention-guided CNN method to extract spectral–spatial
information, in which a spectral attention module and a spatial attention module were
considered to capture the spectral and spatial information, respectively [26]. Hong et
al. improved the transformer network to characterize the sequence attributes of spectral
information, where a cross-layer skip connection was used to fuse spatial features from
different layers [27].

To better characterize spectral–spatial information, the multiview technique, which
aims to reveal the data characteristics from diverse aspects and provide multiple features
for model learning, has been applied in hyperspectral feature extraction [20,29,30]. In
more detail, the raw data are first transformed into different views (e.g., attributes, feature
subsets), and then, the complementary information of all views is integrated together
to achieve a more accurate classification result. For example, in [20], Li et al. proposed
a multi-view active learning method for hyperspectral image classification, where the
subpixel-level, pixel-level, and superpixel-level information were jointly used to achieve
a better identification ability. Xu et al. proposed multi-view attribute components for
classification of HSIs, in which an intensity-based query scheme was used to expand
the number of training set [29]. In general, these methods can increase the classification
performance because of multi-view strategy. However, most of them only utilize the local
neighboring information without considering the correlation of pixels in the nonlocal
region. Based on the above analysis, it is necessary to develop a novel multi-view method
to further boost the classification performance by jointly using the dependencies of pixels
in the local and nonlocal regions.

In this work, we propose a novel multi-view structural feature extraction method for
the first time, which consists of several key steps. First, the spectral dimension of the original
data is reduced to increase the computational efficiency. Then, three multi-view structural
features are constructed to characterize varying land covers from different aspects. Finally,
different types of features are merged together to increase the discrimination of different
land covers, and the fused feature is fed into a spectral classifier to obtain the classification
results. Experiments are performed on three benchmark datasets to quantitatively and
qualitatively validate the effectiveness of the proposed method. The experimental results
verify that the proposed feature extraction method can significantly outperform other
state-of-the-art feature extractors. More importantly, our method can obtain promising
classification performance over other approaches in the case of limited training samples.
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The remainder of this article is divided into four sections. Section 2 provides the
proposed method. The experimental results are shown and analyzed in Section 3. Section 4
discusses the influence of different components. Finally, Section 5 concludes this work.

2. Method

Figure 1 shows the flowchart of the multi-view structural feature extraction method,
which consists of three key steps. First, the spectral number of the raw data is reduced with
the MNF method. Then, the multi-view structural features, i.e., local structural feature,
intra-view, and inter-view structural features, are constructed based on the correlation of
pixels in the local and nonlocal regions. Finally, the multi-view features are fused together
with the kernel PCA (KPCA) method, and the fused feature is fed into the support vector
machine (SVM) classifier to obtain the classification map.

Figure 1. The flow chart of the proposed multi-view structural feature extraction method.

2.1. Dimension Reduction

To decrease the computing time and the influence of image noise, the maximum noise
fraction (MNF) [31] is first exploited to decrease the spectral dimension of the original data.
Specifically, assume I is the raw data, the MNF is to seek a transform matrix W to maximize
the signal to noise ratio of transformed data.

R = WTI (1)

where R is the dimension-reduced data, and W is the transform matrix, which can be
estimated as

arg max
W

WT ∑S W
WT ∑N W

= arg max
W

WT ∑I W
WT ∑N W

− 1 (2)

where I is regarded as a linear combination of the uncorrelated signal S and noise matrix
N, and cov(I) = ∑I = ∑S + ∑N , in which ∑S and ∑N denote the covariance of S and
N. In this work, the first L-dimensional components are preserved for the following
feature extraction.

2.2. Multi-View Feature Generation

Since the imaging scene contains different types of land covers with different spatial
size, a single structural feature cannot comprehensively characterize the spatial information
of diverse objects. To alleviate this problem, a multi-view structural feature extraction
method is proposed. Specifically, three different types of structural features are generated,
including local structural feature, intra-view, and inter-view structural features.

(1) Local structural feature: The local structural feature aims to remove useless details
(e.g., image noise and texture) and preserve the intrinsic spectral–spatial information.
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Specifically, a relative total variation technique [32] is performed on the dimension-reduced
data R to construct local structural feature F1, which is expressed as

arg min
F1

T

∑
i=1

(F1i −Ri)
2 + α · ( Dx(i)

Lx(i) + ε
+

Dy(i)
Ly(i) + ε

), (3)

where T represents the amount of pixels in total. F1 stands for the desired structural feature.
α denotes a smoothing weight. ε is adopted to prevent dividing by zero. Dx and Dy indicate
the variations in two directions. The solution of Equation (3) refers to [32].

Dx(i) = ∑
j∈R(i)

gi,j · |(∂xS)j|

Dy(i) = ∑
j∈R(i)

gi,j · |(∂yS)j| (4)

where ∂xS and ∂yS stand for the partial derivatives in two directions, which mainly calcu-
lates the spatial similarity within a local window R(i), and gi,j is a weight.

gi,j = exp

(
−
(xi − xj)

2 + (yi − yj)
2

2σ2

)
. (5)

where σ denotes the window size.
(2) Intra-view structural feature: The intra-view structural feature is to reduce the

spectral difference of pixels belonging to the same land cover and increase the spectral
purity in the homogeneous regions. In order to extract the intra-view structural feature,
first, an entropy rate superpixel (ERS) segmentation method [33] is adopted to obtain the
homogeneous region of the same object. In more detail, the PCA scheme is first conducted
on the local structural feature F1 to obtain the first three components F̂1, and then, the ERS
segmentation scheme is utilized to obtain a 2D superpixel resulting map.

S = ERS(F̂1, T) (6)

where S indicates the segmentation result, and T indicates the number of superpixels,
which is determined by

T =

⌊
L× N̂

N

⌋
(7)

where L is empirically selected in this work, N̂ represents the amount of nonzero pixels
in the detected map obtained by performing Canny filter on the base image F̂1, and N
represents the total amount of pixels in the base image. Based on the position indexes
of pixels in each superpixel Si, we can obtain the corresponding 3D superpixels Yi, i ∈
{1, 2, . . . , T}.

Then, a mean filtering is conducted on each 3D superpixel Yi to calculate the average
value. Finally, we assign the pixels in each superpixel to the average value to obtain the
intra-view structural feature F2.

(3) Inter-view structural feature: The intra-view structural feature is able to reduce
the difference of pixels in each superpixel. However, the correlations of pixels for different
superpixels are not considered. Thus, we construct an inter-view structural feature to
improve the discrimination of different objects. Specifically, a weighted mean operation is
performed on the neighboring superpixels Yi,j, {j = 1, 2, . . . , J} of the current superpixel Yi
to obtain the inter-view structural feature F3.

ỹi =
J

∑
j=1

ωi,j × yi,j (8)
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where ωi,j denotes the neighboring superpixels of the ith superpixels. The obtained value ỹi
is assigned to all pixels in the ith superpixel to produce the inter-view structural feature F3.

2.3. Feature Fusion

To make full use of multi-view structural features, the KPCA technique [34] is used
to merge three types of features. Specifically, first, three structural features Fi, {i = 1, 2, 3}
are stacked together F = {F1, F2, F3}. Then, the stacked data F is projected into a high-
dimensional spaceH by using a Gaussian kernel function Φ. Finally, the fused feature F̂
can be calculated:

Kα = λα s.t. ‖α‖2 =
1
λ

(9)

where K indicates Gram matrix ΦT(S)Φ(S). In this paper, K-dimensional features are
preserved in the fused feature. Once the fused feature is obtained, the spectral classifier, i.e.,
SVM, is considered to examine the classification performance. To clearly show the whole
procedure of the proposed method, Algorithm 1 presents a pseudocode to summarize the
key steps of our method.

Algorithm 1 Multi-view structural feature extraction

Input:
Input hyperspectral image I;

Output:
Hyperspectral image feature F̂

1: According to (1), reduce the spectral number of the raw data I to obtain the dimension
reduced image R

2: According to (3), obtain the local structural feature F1 of the input image.
3: According to (6), obtain the 2-D superpixel segmentation map S.
4: Obtain the corresponding 3-D superpixels Y based on the position indexes of pixels in

each superpixels Si.
5: Construct the intra-view structural feature F2 by performing the mean filtering on each

3-D superpixel.
6: According to (8), construct the inter-view structural feature F3.
7: According to (9), fuse the multi-view structural features Fi, {i = 1, 2, 3} to obtain the

final feature F̂.
8: Return F̂

3. Experiments
3.1. Experimental Setup

(1) Datasets: In the experimental section, three hyperspectral datasets, i.e., Indian Pines,
Salinas, and Honghu, are used to examine the classification performance of the proposed
feature extraction method. All these datasets are collected from a public hyperspectral
database.

The Indian Pines dataset was obtained by the Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) sensor over the Indian Pines test scene in northwestern Indiana, which
is available online (http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes (accessed on 10 January 2022 )). This image is composed of 220 spectral
bands spanning from 0.4 to 2.5 µm. The spatial size is 145 × 145 with a spatial resolution
of 20 m. Twenty water absorption channels (No. 104-108, 150-163, and 220) are discarded
before experiments. Figure 2a presents the false color composite image. Figure 2b shows
the ground truth, which contains 16 different land covers. Figure 2c gives the class name.

The Salinas dataset was collected by the AVIRIS sensor over Salinas Valley, California,
USA, which is available online (http://www.ehu.eus/ccwintco/index.php/Hyperspectral_
Remote_Sensing_Scenes (accessed on 10 January 2022)). This image consists of 224 spectral
channels with spatial size of 512 × 217 pixels. The spatial resolution is of 3.7 m. This
scene is an agricultural region, which includes different types of crops, such as vegetables,
bare soils, and vineyard fields. Twenty spectral bands (No. 108-112, 154-167, and 224) are

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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discarded before the following experiments. Figure 3a gives the false color composition.
Figure 3b displays the ground truth, which consists of 16 different land covers. Figure 3c
shows the class name.

The Honghu dataset was captured by the a 17 mm focal length Headwall Nano-
Hyperspec imaging sensor over Honghu City, Hubei province, China, which is available
online (http://rsidea.whu.edu.cn/e-resource_WHUHi_sharing.htm (accessed on 10 Jan-
uary 2022)). This image consists of 270 spectral channels ranging from 0.4 to 1.0 µm. The
spatial size is 940 × 475 pixels with a spatial resolution of 0.043 m. This scene is a complex
agricultural area, including various crops and different cultivars of the same crop. Figure 4
gives the false color composition, ground truth, and class name. Table 1 presents the
training and test samples of all used datasets for the following experiments.

(a) (b) (c)

Figure 2. Indian Pines dataset. (a) False color composite. (b) Ground truth. (c) Label name.

(a) (b) (c)

Figure 3. Salinas dataset. (a) False color composite. (b) Ground truth. (c) Label name.

http://rsidea.whu.edu.cn/e-resource_WHUHi_sharing.htm
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(a) (b) (c)

Figure 4. Honghu dataset. (a) False color composite. (b) Ground truth. (c) Label name.

(2) Evaluation Indexes: To quantitatively calculate the classification accuracies of all
considered techniques, four extensively used objective indexes [35–37], i.e., class accuracy
(CA), overall accuracy (OA), average accuracy (AA), and Kappa coefficient, are used. The
definitions of all objective indexes are shown as follows:

(1) CA: CA calculates the percentage of correctly classified pixels of each class in the
total number of pixels.

CA =
Mii

C
∑

j=1
Mij

(10)

where M is the confusion matrix obtained by comparing the ground truth with the predicted
result, and C is the total number of categories.

(2) OA: OA assesses the proportion of correctly identified samples to all samples.

OA =
C

∑
i=1

Mii/N (11)

where N is the total number of labeled samples, M is the confusion matrix, and C is the
total number of categories.

(3) AA: AA represents mean of the percentage of the correctly identified samples.

AA =

C
∑

i=1
(Mii

/
C
∑

j=1
Mij)

C
(12)

where C is the total number of categories, and M is the confusion matrix.
(4) Kappa: Kappa coefficient denotes the interrater reliability for categorical variables.

Kappa =

N
C
∑

i=1
Mii −

C
∑

i=1

(
C
∑

j=1
Mij

C
∑

j=1
Mji

)

N2 −
C
∑

i=1

(
C
∑

j=1
Mij

C
∑

j=1
Mji

) (13)
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where N is the total number of labeled samples, M is the confusion matrix, and C is the
total number of categories.

Table 1. The number of training and test set. The colors represent different land covers in the
classification map.

No.
Indian Pines Dataset Salinas Dataset Honghu Dataset

Name Train Test Name Train Test Name Train Test
1 Alfalfa 6 40 Weeds_1 5 2004 Red roof 25 14,016
2 Corn_N 7 1421 Weeds_2 5 3721 Road 25 3487
3 Corn_M 6 824 Fallow 5 1971 Bare soil 25 21,796
4 Corn 6 231 Fallow_P 5 1389 Cotton 25 163,260
5 Grass_M 6 477 Fallow_S 5 2673 Cotton firewood 25 6193
6 Grass_T 6 724 Stubble 5 3954 Rape 25 44,532
7 Grass_P 6 22 Celery 5 3574 Chinese cabbage 25 24,078
8 Hay_W 7 471 Grapes 5 11,266 Packchoi 25 4029
9 Oats 6 14 Soil 5 6198 Cabbage 25 10,794

10 Soybean_N 7 965 Corn 5 3273 Tuber mustard 25 12,369
11 Soybean_M 8 2447 Lettuce_4 5 1063 Brassica parachinensis 25 10,990
12 Soybean_C 6 587 Lettuce_5 5 1922 Brassica chinensis 25 8929
13 Wheat 6 199 Lettuce_6 5 911 Small Brassica chinensis 25 22,482
14 Woods 6 1259 Lettuce_7 5 1065 Lactuca sativa 25 7331
15 Buildings 6 380 Vinyard_U 5 7263 Celtuce 25 977
16 Stone 7 86 Vinyard_T 5 1802 Film covered 25 7237
17 Total 102 10,147 Total 80 54,049 Romaine lettuce 25 2985
18 Carrot 25 3192
19 White radish 25 8687
20 Garlic sprout 25 3461
21 Broad bean 25 1303
22 Tree 25 4015

Total 550 386,143

3.2. Classification Results

To examine the effectiveness of the proposed feature extraction method, several state-
of-the-art hyperspectral classification methods are selected as competitors, including (1) the
spectral classifier, i.e., SVM on the original image (SVM) [38]; (2) the feature extraction
methods, i.e., the image fusion and recursive filtering (IFRF) [14], the extended morpholog-
ical attribute profiles (EMAP) [13], multi-scale total variation (MSTV) [15], the PCA-based
edge-preserving features (PCAEPFs) [8]; (3) the spectral–spatial classification methods,
i.e., the superpixel-based classification via multiple kernels (SCMK) [39] and the general-
ized tensor regression approach (GTR) [40]. These methods are adopted because they are
either highly cited publications in the remote sensing field or are recently proposed classifi-
cation methods with state-of-the-art classification performance on several hyperspectral
datasets. For all considered approaches, the default parameters follow the corresponding
publications for a fair comparison.

3.2.1. Indian Pines Dataset

The first experiment is performed on the Indian Pines dataset, in which 1% labeled
samples are randomly selected from the reference image for training (see Table 1). Figure 5
presents the classification maps of all considered methods on the Indian Pines dataset. As
shown in this figure, the SVM method yields very noisy visual effects in the classification
result, exposing the disadvantages of the spectral classifier without considering the spatial
information. By removing image details and preserving the strong edge structures, the
IFRF method greatly improves the classification result over the spectral classifier. However,
there are still obvious misclassified pixels around the boundaries. For the EMAP method,
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some homogeneous regions still contain “noise” such as mislabels in the resulting map.
For the SCMK method, some obvious misclassified results appear in the edges and corners.
The main reason is that the homogeneous region belonging to the same object cannot be
accurately segmented. The MSTV method effectively removes the noisy labels. However,
it tends to yield an oversmoothed classification map. The PCAEPFs method significantly
boosts the classification performance with respect to the IFRF method, since multi-scale
feature extraction strategy is adopted. However, some objects with small size fail to be
well preserved in the classification map. The GTR method yields spot-like misclassification
results since the tensor regression technique cannot fit the spectral curves of different
objects well. By contrast, the proposed method obtains a better visual map by integrating
multi-view spectral–spatial structural features, in which the edges of the classification map
are more consistent with the real scene.

(a) False color image (b) Ground truth (c) SVM (d) IFRF (e) EMAP

(f) SCMK (g) MSTV (h) PCAEPFs (i) GTR (j) Our method

Figure 5. Classification results of all considered approaches on Indian Pines dataset. (a) False color
image. (b) Ground truth. (c) SVM [33], OA = 55.30%. (d) IFRF [14], OA = 70.09%. (e) EMAP [13],
OA = 67.70%. (f) SCMK [39], OA = 71.20%. (g) MSTV [15], OA = 88.25%. (h) PCAEPFs [8], OA =
85.58%. (i) GTR [40], OA = 63.25%. (j) Our method, OA = 90.32%.

For objective comparison, Table 2 lists the objective results of different approaches
including CA, OA, AA, and Kappa. It is easily to observe that the proposed method is
superior than all compared approaches in terms of OA, AA, and Kappa. For instance, OA
value is increased from 53% to 90% obtained by the proposed method with respect to the
SVM method on the original data. Moreover, the proposed feature extraction approach
yields the highest classification accuracies for ten classes. This experiment illustrates that
the proposed feature extraction method is more effective compared to other approaches.

Furthermore, the influence of the number of training set on all classification methods
is discussed. Different numbers of samples varying from 1% to 10% are randomly chosen
from the reference data to construct the training set. Figure 6 shows the change tendency
of all studied methods with different numbers of training set. It is easily found that the
classification performance of all methods tends to be improved when the amount of training
set increases. In addition, the proposed method performs promising performance with
respect to other methods especially when the number of training samples is limited.
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(a) (b) (c)

Figure 6. Classification performance of different approaches on the Indian Pines with different
numbers of training samples. (a) OA. (b) AA. (c) Kappa. The widths of the line areas are the standard
deviation of accuracies produced in ten experiments.

Table 2. Classification accuracies of all methods on Indian Pines dataset. The bold denotes the best
classification accuracy.

Class SVM IFRF EMAP SCMK MSTV PCAEPFs GTR Our Method

1 31.53 (9.74) 63.03 (27.93) 94.21 (9.19) 98.00 (1.05) 95.92 (10.41) 98.02 (4.65) 96.75 (2.06) 100.0 (0.00)
2 47.00 (6.00) 70.64 (15.98) 59.74 (8.25) 60.27 (11.34) 86.93 (5.35) 76.38 (7.21) 55.64 (8.15) 86.37 (5.87)
3 34.03 (14.66) 48.62 (12.35) 53.23 (13.54) 57.23 (13.07) 71.01 (8.26) 73.79 (13.56) 47.42 (8.58) 83.07 (16.27)
4 26.70 (6.66) 52.45 (11.34) 36.54 (6.17) 94.42 (4.94) 67.17 (9.51) 66.83 (7.53) 72.47 (11.74) 86.05 (10.51)
5 63.24 (9.75) 75.81 (10.59) 67.96 (10.27) 78.97 (12.76) 97.49 (3.45) 93.86 (6.29) 83.06 (9.97) 98.30 (3.94)
6 79.83 (8.04) 91.26 (4.32) 90.31 (3.84) 89.78 (11.19) 98.70 (2.05) 94.28 (3.29) 88.07 (5.81) 99.96 (0.13)
7 31.35 (14.53) 57.65 (21.85) 61.05 (20.27) 97.27 (2.35) 98.70 (2.10) 73.05 (31.40) 99.09 (2.87) 80.73 (25.62)
8 95.57 (2.12) 99.89 (0.27) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 100.0 (0.00) 88.77 (7.52) 100.0 (0.00)
9 17.18 (8.59) 28.91 (13.60) 40.28 (10.36) 100.0 (0.00) 96.67 (10.54) 72.87 (21.18) 98.57 (4.52) 98.08 (4.27)

10 41.51 (5.35) 66.42 (8.13) 52.5 (10.53) 67.95 (13.90) 81.22 (9.40) 78.55 (10.42) 54.30 (8.60) 90.70 (8.08)
11 60.65 (8.31) 73.91 (6.22) 75.15 (9.85) 59.69 (9.88) 92.28 (4.04) 90.14 (4.52) 41.52 (11.20) 89.40 (6.90)
12 29.10 (5.43) 56.65 (9.17) 48.07 (5.31) 65.54 (9.57) 78.81 (12.25) 77.19 (12.22) 67.00 (8.52) 83.81 (15.76)
13 79.14 (3.12) 74.79 (12.60) 85.46 (9.48) 100.0 (0.00) 100.0 (0.00) 97.45 (4.78) 99.25 (1.09) 100.0 (0.00)
14 88.92 (5.36) 93.03 (4.09) 91.79 (4.98) 81.92 (9.64) 99.54 (0.65) 99.66 (0.45) 85.77 (9.36) 99.61 (0.24)
15 33.04 (7.36) 59.07 (13.37) 65.61 (14.81) 76.47 (11.34) 89.69 (10.56) 93.72 (5.04) 65.53 (11.80) 93.78 (6.94)
16 76.05 (19.59) 93.16 (5.08) 90.53 (7.63) 97.79 (0.37) 93.82 (3.82) 98.37 (1.07) 97.67 (4.17) 98.80 (0.02)

OA 53.30 (3.23) 70.09 (4.51) 67.70 (5.14) 71.20 (3.52) 88.25 (2.45) 85.58 (3.35) 63.25 (3.46) 90.32 (3.58)
AA 52.18 (2.78) 69.08 (4.43) 69.53 (3.88) 82.83 (1.89) 90.49 (1.93) 86.51 (2.53) 77.55 (1.61) 93.04 (2.75)

Kappa 47.57 (3.44) 66.35 (4.72) 63.67 (5.52) 67.50 (3.90) 86.63 (2.77) 83.65 (3.75) 58.79 (3.59) 88.96 (4.02)

3.2.2. Salinas Dataset

The second experiment is conducted on the Salinas dataset, in which five samples per
class are randomly selected from the reference image to constitute the training samples
(see Table 1). Figure 7 shows the visual maps of all studied approaches. We can easily
observe that the SVM method produces noisy classification performance. The reason is that
the spatial priors are not considered in the spectral classifier. The IFRF method removes
the noisy labels in some homogeneous regions. However, there are still serious misclassi-
fications, such as Grapes_untrained and Vinyard_treils classes. The EMAP method also
yields “pepper and noisy” appearance since this method is a pixel-level feature extraction
method. For the SCMK method, some regions are misclassified into other classes due to the
inaccurate segmentation. The MSTV method produces an oversmoothed visual resulting
map. The main reason is that the feature extraction process removes the spatial information
of land covers with low reflectivity. The PCAEPFs method produces noisy labels in the
edges and boundaries. The GTR method yields a serious misclassification map since the
tensor regression model fails to distinguish the similar spectral curves. Different from other
methods, the proposed method provides the best visual classification effect in removing
noisy labels and preserving the boundaries of different classes.
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Furthermore, Table 3 also verifies the effectiveness of the proposed method. Likewise,
the proposed method obtains the highest classification accuracies with regard to OA, AA,
and Kappa compared to other studied techniques. In addition, the influence of different
numbers of training samples is presented in Figure 8. The number of training set for each
class is varying from 5 to 50. It is shown that the increase of the training size is beneficial to
the classification performance of all methods. Moreover, our method is always higher than
other classification approaches.

(a) False color image (b) Ground truth (c) SVM (d) IFRF (e) EMAP

(f) SCMK (g) MSTV (h) PCAEPFs (i) GTR (j) Our method

Figure 7. Classification results of all considered approaches on Salinas dataset. (a) False color im-
age. (b) Ground truth. (c) SVM [33], OA = 80.08%. (d) IFRF [14], OA = 90.67%. (e) EMAP [13],
OA = 85.54%. (f) SCMK [39], OA = 88.70%. (g) MSTV [15], OA = 94.46%. (h) PCAEPFs [8],
OA = 95.12%. (i) GTR [40], OA = 85.59%. (j) Our method, OA = 98.13%.
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(a) (b) (c)

Figure 8. Classification performance of different approaches on the Salinas with different numbers of
training samples. (a) OA. (b) AA. (c) Kappa. The widths of the line areas are the standard deviation
of accuracies produced in ten experiments.

Table 3. Classification performance of all methods on Salinas dataset. The bold denotes the best
classification accuracy.

Classes SVM IFRF EMAP SCMK MSTV PCAEPFs GTR Our Method

1 99.13 (0.97) 99.95 (0.16) 99.98 (0.05) 97.53 (5.50) 100.0 (0.00) 100.0 (0.00) 97.33 (2.25) 100.0 (0.00)
2 98.74 (1.00) 98.66 (1.31) 99.75 (0.14) 98.90 (3.48) 99.97 (0.05) 99.95 (0.08) 99.84 (0.32) 100.0 (0.00)
3 79.50 (8.77) 98.34 (1.93) 94.55 (2.25) 96.40 (7.65) 97.87 (2.83) 97.72 (2.38) 85.58 (8.80) 99.47 (0.10)
4 96.00 (2.41) 91.59 (3.95) 95.93 (1.39) 90.01 (8.71) 96.90 (1.79) 93.19 (4.02) 99.83 (0.07) 97.03 (0.28)
5 94.01 (7.06) 97.08 (1.77) 96.66 (6.27) 97.93 (1.56) 96.86 (1.49) 98.98 (3.21) 90.12 (6.82) 99.96 (0.01)
6 99.79 (0.53) 100.0 (0.00) 99.41 (0.73) 99.75 (0.00) 98.34 (2.92) 99.98 (0.04) 98.89 (2.86) 99.97 (0.01)
7 95.27 (3.61) 97.43 (2.27) 96.27 (3.16) 99.85 (0.06) 96.23 (5.52) 99.92 (0.06) 99.18 (0.65) 99.83 (0.01)
8 64.94 (4.82) 91.99 (3.74) 80.00 (7.80) 69.96 (8.23) 92.73 (5.95) 93.66 (6.53) 69.49 (11.96) 98.22 (2.96)
9 98.66 (0.87) 98.95 (0.67) 98.99 (0.21) 99.91 (0.19) 98.61 (1.03) 99.58 (0.46) 98.84 (0.95) 99.33 (0.67)

10 77.21 (6.38) 97.51 (1.62) 87.98 (4.27) 82.44 (14.88) 95.02 (7.28) 99.31 (0.97) 80.51 (10.31) 98.98 (0.19)
11 82.43 (10.35) 93.20 (3.51) 79.41 (10.37) 94.93 (5.93) 99.65 (0.78) 95.04 (4.63) 96.43 (2.38) 97.42 (7.25)
12 89.11 (7.96) 94.98 (5.23) 88.64 (6.36) 91.05 (12.43) 99.11 (1.13) 94.71 (4.32) 98.12 (5.45) 98.62 (2.48)
13 79.04 (12.81) 83.39 (11.25) 92.32 (3.45) 93.94 (10.28) 95.32 (6.68) 91.81 (11.56) 98.79 (0.71) 81.85 (6.29)
14 85.09 (12.77) 84.15 (17.99) 97.23 (1.08) 88.92 (3.95) 89.54 (10.17) 92.54 (10.36) 91.01 (5.19) 94.81 (6.19)
15 46.93 (5.71) 70.34 (13.57) 56.84 (7.75) 82.66 (11.52) 84.53 (7.06) 84.52 (8.47) 65.16 (14.05) 95.59 (4.72)
16 93.27 (5.57) 99.12 (0.76) 96.43 (2.26) 93.83 (10.51) 97.68 (4.67) 99.96 (0.08) 86.38 (7.44) 100.0 (0.00)

OA 80.08 (1.96) 90.67 (3.33) 85.54 (2.57) 88.70 (2.84) 94.46 (1.47) 95.12 (1.37) 85.59 (3.54) 98.13 (0.59)
AA 86.19 (1.07) 93.54 (1.84) 91.27 (1.07) 92.38 (2.16) 96.14 (1.18) 96.30 (0.94) 90.96 (1.67) 97.57 (0.75)

Kappa 77.87 (2.15) 89.66 (3.65) 83.97 (2.81) 87.47 (3.15) 93.84 (1.64) 94.56 (1.53) 83.97 (3.94) 97.92 (0.67)

3.2.3. Honghu Dataset

The third experiment is performed on a complex crop scene with 22 crop classes, i.e.,
Honghu dataset, in which the benchmark training and test samples (http://rsidea.whu.
edu.cn/e-resource_WHUHi_sharing.htm (accessed on on Jaunary 2022)) are adopted. The
classification results of all methods are shown in Figure 9. Similarly, the SVM method
produces a very noisy visual map since only the spectral information is used. The IFRF
method greatly improves this problem by using the image filtering on the raw data, obtain-
ing a better classification result over the SVM method. The EMAP method also obtains a
noisy classification map. The reason is that this feature extraction method is in a pixel-wise
pattern. For the SCMK method, the classification map has a small amount of misclassifi-
cation labels for some classes. The MSTV method obtains a better classification map due
to multi-scale technique. However, the edges of different classes still have misclassifica-
tion appearance. The PCAEPFs method yields a similar classification effect to the MSTV
method. For the GTR method, the classification result suffers from serious misclassification
for this complex scene when the amount of training set is limited. By contrast, the pro-
posed method yields the best visual map with respect to other studied approaches, since
multi-view structural features are effectively merged to yield a complete characterization
of different objects.

http://rsidea.whu.edu.cn/e-resource_WHUHi_sharing.htm
http://rsidea.whu.edu.cn/e-resource_WHUHi_sharing.htm
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Furthermore, the objective results obtained by all considered approaches are listed in
Table 4. It is obvious from Table 4 that our method still provides the highest classification
accuracies concerning OA, AA, and Kappa coefficient. In addition, Figure 10 gives the
OA, AA, and Kappa coefficient of all studied approaches as functions of the amount of
training samples from 25 to 300. It should be mentioned that the training samples follow the
benchmark dataset (http://rsidea.whu.edu.cn/e-resource_WHUHi_sharing.htm (accessed
on 10 January 2022)). It is found that the classification accuracies of all methods tend to
improve when the training size increases, and our method still produces the highest OA,
AA, and Kappa coefficient.

(a) False color image (b) Ground truth (c) SVM (d) IFRF (e) EMAP (f) SCMK

(g) MSTV (h) PCAEPFs (i) GTR (j) Our method

Figure 9. Classification results of all considered approaches on Honghu dataset. (a) False color
image. (b) Ground truth. (c) SVM [33], OA = 64.43%. (d) IFRF [14], OA = 84.23%. (e) EMAP [13],
OA = 76.11%. (f) SCMK [39], OA = 86.41%. (g) MSTV [15], 90.74%. (h) PCAEPFs [8], OA = 87.37%.
(i) GTR [40], OA = 51.87%. (j) Our method, OA = 94.01%.

http://rsidea.whu.edu.cn/e-resource_WHUHi_sharing.htm
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(a) (b) (c)

Figure 10. Classification performance of different approaches on the Honghu with different numbers
of training samples. (a) OA. (b) AA. (c) Kappa.

Table 4. Classification performance of all methods on Honghu dataset. The bold denotes the best
classification accuracy.

Classes SVM IFRF EMAP SCMK MSTV PCAEPFs GTR Our Method

1 88.17 98.22 91.04 86.91 97.73 89.84 75.41 89.69
2 54.73 67.79 64.54 86.23 73.31 78.28 57.36 57.95
3 88.51 96.16 92.62 93.44 93.27 96.64 61.13 97.83
4 96.12 99.31 98.30 87.64 99.50 99.56 44.66 99.72
5 17.85 57.84 23.49 98.66 63.24 52.07 55.53 79.29
6 85.18 90.83 89.97 89.74 93.78 93.26 69.41 99.40
7 74.00 89.38 81.95 77.24 89.62 88.44 50.93 95.81
8 6.09 16.05 10.73 90.02 43.87 31.39 42.74 97.99
9 91.60 99.21 89.67 94.61 90.23 86.79 90.75 97.82

10 49.29 73.45 73.62 76.59 91.88 83.72 32.99 99.44
11 28.17 58.82 41.50 77.43 69.88 64.28 21.36 79.63
12 43.33 61.20 52.56 93.64 64.18 61.54 43.77 96.26
13 50.58 77.54 70.86 70.73 79.52 81.99 30.38 78.44
14 43.35 70.73 60.01 86.77 90.14 78.77 61.29 80.40
15 3.97 31.73 23.46 97.24 57.05 51.69 82.80 91.99
16 80.93 93.51 87.57 94.53 99.01 98.66 82.34 98.37
17 54.39 72.82 62.17 93.10 85.53 92.66 73.80 97.09
18 21.83 32.85 39.27 95.08 72.90 67.53 74.91 68.77
19 48.88 64.45 51.52 64.06 83.41 58.41 56.23 74.37
20 38.00 54.19 59.34 99.86 79.59 65.60 46.06 88.71
21 11.04 24.32 38.85 100.00 86.11 43.46 71.14 91.70
22 21.50 47.34 25.73 99.55 82.90 76.21 73.23 89.30

OA 64.43 84.23 76.11 86.41 90.74 87.37 51.87 94.01
AA 49.88 67.17 60.39 88.18 81.21 74.58 59.01 88.64

Kappa 57.68 80.27 70.82 85.86 88.37 84.23 45.79 92.47

4. Discussion
4.1. The Influence of Different Parameters

In this part, the influence of different free parameters, i.e., the number of dimension
reduction L, the number of fused feature K, the smoothing weight α, and the window size
σ, on the classification accuracy of our method is analyzed. An experiment is performed
on the three datasets with training set listed in Table 1. When L and K are discussed, α
and σ are fixed as 0.005 and 3, respectively. Similarly, when α and σ are analyzed, L and K
are set as 30 and 20, respectively. Figure 11 presents the classification accuracy OA of the
proposed method with different parameter settings. It can be observed that the proposed
method can yield satisfactory classification accuracy for all used datasets when L and K
are set to be 30 and 20, respectively. Moreover, when L and K are relatively small, the
classification performance tends to be decreased, since the limited number of features
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cannot well represent the spectral–spatial information in HSIs. Figure 11d–f shows the
influence of different α and σ. It is shown that when α and σ increase, the classification
performance of the proposed method decreases. The reason is that the structural feature
extraction technique smooths out the spatial structures of HSIs. When α and σ are set to be
0.005 and 3, respectively, the proposed method obtains the highest classification accuracy.
Based on this observation, L, K, α, and σ are set as 30, 20, 0.005, and 3, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 11. The influence of different parameters in the proposed method. The first row is the influence
of the number of dimension reduction L and the number of fused feature K. The second row is the
influence of the smoothing parameter α and the window size σ. (a) Indian Pines dataset; (b) Salinas
dataset; (c) Honghu dataset; (d) Indian Pines dataset; (e) Salinas dataset; (f) Honghu dataset.

4.2. The Influence of Three Different Views

In this subsection, the influence of three different views on the classification accuracy
is investigated. An experiment is conducted on the Indian Pines dataset. The classification
performance obtained by the proposed framework with different views is shown in Table 5.
It can be seen that the inter-view feature performs the best classification performance among
three different views. Furthermore, the combination of two different views outperforms
individual view in terms of classification accuracies. Overall, when three types of features
are combined, the proposed method provides the highest classification results. The reason
is that three different views have complementary information, which can be jointly utilized
to improve the classification performance.

Table 5. Classification performance of three different views. The bold denotes the best classification
performance.

Local-View Intra-View Inter-View OA AA Kappa Time (s)

X 87.22 85.08 85.51 3.68
X 86.22 86.78 84.38 3.87

X 87.35 90.66 85.63 3.95
X X 88.32 89.41 86.71 4.17
X X 88.96 91.21 87.43 4.31

X X 88.25 92.07 86.58 4.48
X X X 90.32 93.04 88.96 5.36
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4.3. Effect of Different Hyperspectral Feature Methods

To demonstrate the advantage of the proposed feature extraction method, several
widely used feature extraction methods for HSIs are selected as competitors, including
extended morphological profiles (EMP) [41], extended morphological attribute profiles
(EMAP) [13], Gabor filtering (Gabor) [42], image fusion and recursive filtering (IFRF) [14],
intrinsic image decomposition (IID) [43], PCA-based edge-preserving filters (PCAEPFs) [8],
invariant attribute profiles (IAPs) [44], low rank representation (LRR) [45], multi-scale
total variation (MSTV) [15], and random patches network (RPNet) [46]. An experiment is
performed on the Indian Pines dataset with 1% of training samples listed in Table 1. The
classification accuracy of all considered approaches is shown in Figure 12. The EMP and
EMAP methods only yield around 60% classification performance when the number of
training samples is scarce. The classification performance obtained by the edge-preserving
filtering-based feature extraction methods such as IFRF and PCAEPFs also tends to decrease
when the number of training set is scarce. The RPNet-based deep feature extraction method
also fails to achieve satisfactory performance. By contrast, it is found that the proposed
feature method obtains the highest classification performance among all feature extraction
techniques for three indexes, which further illustrates that the proposed method can better
characterize the spectral–spatial information compared to other methods by fusing local
and nonlocal multi-view structural features.

Figure 12. Classification accuracies of different hyperspectral feature extraction techniques on Indian
Pines dataset.

4.4. Computing Time

The computing efficiency of all considered techniques for all datasets is provided in
Table 6. All experiments are tested a laptop with 8 GB RAM and 2.6 GHz with Matlab 2018.
We can observe from Table 6 that when the spatial and spectral dimensions of HSIs increase,
the computing time of all methods tends to increases. Furthermore, the computing time of
our method is quite competitive among all considered approaches (taking the Indian Pines
dataset as an example, the running time of our method is around 5.36 s). The GTR method
is the fastest as it is a regression model.

Table 6. The computing time of all considered approaches for all datasets. The bold denotes the best
computing efficiency.

Datasets SVM IFRF EMAP SCMK MSTV PCAEPFs GTR Our Method

Indian Pines 5.53 2.32 3.25 4.49 4.35 2.67 2.04 5.36
Salinas 21.08 2.68 4.56 3.23 12.34 12.98 2.49 19.35

Honghu 128.26 16.55 69.94 15.75 45.67 20.79 9.37 102.23
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5. Conclusions

In this work, a multi-view structural feature extraction method is developed for
hyperspectral image classification, which consists of three key steps. First, the spectral
number of the raw data is decreased. Then, the local structural feature, intra-view structural
feature, and inter-view structural feature are constructed to characterize spectral–spatial
information of diverse ground objects. Finally, the KPCA technique is exploited to merge
multi-view structural features, and the fused feature is incorporated with the spectral
classifier to obtain the classification map. Our experimental results on three datasets reveal
that the proposed feature extraction method can consistently outperform other state-of-the-
art classification methods even when the number of training set is limited. Furthermore,
with regard to 10 other representative feature extraction methods, our method still produces
the highest classification performance.
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Abbreviations

The following abbreviations are used in this manuscript:

MNF Minimum noise fraction
HSI Hyperspectral image
PCA Principal component analysis
ICA Independent component analysis
APs Attribute profiles
EMAP Extended morphological attribute profiles
CNN Convolutional neural network
ERS Entropy rate superpixel
KPCA Kernel PCA
SVM Support vector machine
AVIRIS Airborne Visible Infrared Imaging Spectrometer
CA Class accuracy
OA Overall accuracy
AA Average accuracy
IFRF Image fusion and recursive filtering
SCMK Superpixel-based classification via multiple kernels
MSTV Multi-scale total variation
PCAEPFs PCA-based edge-preserving features
GTR Generalized tensor regression

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://rsidea.whu.edu.cn/e-resource_WHUHi_sharing.htm
http://rsidea.whu.edu.cn/e-resource_WHUHi_sharing.htm
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EMP Extended morphological profiles
Gabor Gabor filtering
IID Intrinsic image decomposition
IAPs Invariant attribute profiles
LRR Low rank representation
RPNet Random patches network
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