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Abstract: Accurate combined bundle adjustment (BA) is a fundamental step for the integration of
aerial and terrestrial images captured from complementary platforms. In traditional photogrammetry
pipelines, self-calibrated bundle adjustment (SCBA) improves the BA accuracy by simultaneously
refining the interior orientation parameters (IOPs), including lens distortion parameters, and the
exterior orientation parameters (EOPs). Aerial and terrestrial images separately processed through
SCBA need to be fused using BA. Thus, the IOPs in the aerial–terrestrial BA must be properly treated.
On one hand, the IOPs in one flight should be identical for the same images in physics. On the
other hand, the IOP adjustment in the cross-platform-combined BA may mathematically improve the
aerial–terrestrial image co-registration degree in 3D space. In this paper, the impacts of self-calibration
strategies in combined BA of aerial and terrestrial image blocks on the co-registration accuracy were
investigated. To answer this question, aerial and terrestrial images captured from seven study areas
were tested under four aerial–terrestrial BA scenarios: the IOPs for both aerial and terrestrial images
were fixed; the IOPs for only aerial images were fixed; the IOPs for only terrestrial images were
fixed; the IOPs for both images were adjusted. The cross-platform co-registration accuracy for the BA
was evaluated according to independent checkpoints that were visible on the two platforms. The
experimental results revealed that the recovered IOPs of aerial images should be fixed during the
BA. However, when the tie points of the terrestrial images are comprehensively distributed in the
image space and the aerial image networks are sufficiently stable, refining the IOPs of the terrestrial
cameras during the BA may improve the co-registration accuracy. Otherwise, fixing the IOPs is the
best solution.

Keywords: image orientation; UAVs; photogrammetry; data integration

1. Introduction

Multi-view images captured by aerial or unmanned aerial vehicle (UAV) platforms
have become a major source of data in 3D city modeling projects [1–4]. To alleviate
occlusions and increase observation redundancy, in the last decade, images captured by
different cameras, such as vertical and oblique views in multi-camera systems, are combined
to product photo-realistic 3D models with better geometry quality and textures [5–7].

Because the accuracy of modeling image distortions and orientations directly affects
the product quality in subsequent image-processing steps such as dense image matching,
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3D mesh generation, and texture mapping, numerous methods have been developed to
recover EOPs and IOPs (including lens distortion parameters) [8–12].

Among existing photogrammetry research and engineering practices, self-calibrated
bundle adjustment (SCBA), through which IOPs and EOPs are simultaneously estimated
according to image tie points, is an effective method for decreasing re-projection errors
in 2D space and intersection errors in 3D space [13–17]. Different from the traditional
laboratory or field calibration processes, self-calibration (SC) methods treat IOP calibration
as part of routine photogrammetric procedures in every project through bundle adjustment
(BA), whether the cameras have been pre-calibrated or not [18].

In recent years, terrestrial images captured by hand-held cameras or mobile map-
ping platforms have been integrated with aerial views through structure-from-motion
and multi-view stereo pipelines to produce better 3D maps and models [19–22]. Due to
large differences in viewpoint and scale and possible illumination conditions, automatic
feature matching for cross-platform images is non-trivial work [21]. The numbers and
distributions of cross-platform tie points are not as favorable as those for inner-platform
images. Hence, in 3D modeling applications that integrate images captured by aerial and
terrestrial platforms, images taken in the same platform are often first aligned through BA
using only inner-platform tie points. Then, aerial and terrestrial images are co-registered
using a cross-platform involving BA [19–21]. Although IOPs should be refined during the
inner-platform BA, it remains unclear whether the IOPs in the cross-platform BA should
be fixed.

On one hand, the IOPs are recovered through SCBA with inner-platform tie points, and
the images used in the cross-platform remain unchanged; thus, the IOPs in the second BA
should be physically the same as those in the first BA. IOP fixation could reduce the number
of unknown parameters and stabilize the calculation of the nonlinear least square problem.
On the other hand, according to SCBA theory, refining the IOPs in the cross-platform BA
may mathematically improve the modeling quality of the image formatting process and
thus enhance the co-registration quality between the aerial and terrestrial images.

Both strategies seem reasonable. Hence, to investigate the optimal SC strategy for
the BA of aerial–terrestrial integrated images, four aerial–terrestrial BA settings were
experimentally compared and analyzed in this study. According to the experimental
results, recommendations on the integration of aerial and terrestrial images blocks in BA
are provided.

The remainder of this paper is organized as follows: Section 2 reviews the existing
work on SCBA. Section 3 introduces the four plausible SCBA strategies and the experimental
datasets and procedure. Section 4 reports the experimental results and analysis. Section 5
presents the discussion, conclusions, and future perspectives.

2. Related Works

The geometry quality of image-based 3D mapping products largely relies on the
precision of the recovered image IOPs and EOPs [23]. In traditional photogrammetry
engineering, the IOPs of metric cameras are first calibrated in the laboratory or field before
image capture [9,13,24]. After image collection, EOPs are recovered through BA according
to image correspondence and a few ground control points [4,25,26]. Previous investigations
have proved that when a sufficiently accurate camera model is used, the 3D mapping
inaccuracy related to systematic errors in IOPs is negligible [27]; however, this is not the
case in close-range photogrammetry [28,29].

With the rapid development of UAVs, consumer-level cameras are widely used in
small- or clustered-area survey tasks [30–35]. Compared with traditional aerial photogram-
metry, which collects images with only vertical views, adding oblique cameras could not
only result in better façade information but also favor geometry measuring accuracy due
to the larger intersection angles between overlapped images [6,36,37]. This advantage is
more noticeable for UAV photogrammetry since the flight plans are far more flexible [38,39].
While image collection is relatively easy, a rigorous laboratory or field camera calibration
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process is often neglected. Moreover, the images are often captured by unprofessional oper-
ators with inferior geometry networks. Furthermore, the sensor stability may be imperfect,
as 3D mapping and modeling are not the main purposes of the camera design.

Hence, in most UAV photogrammetry applications, SCBA is commonly adopted to
refine the IOPs to improve the 3D accuracy of object mapping [3,26,32,40]. In standard
SCBA, the IOPs are treated as unknown parameters with initial observations; moreover, the
IOPs, EOPs, and 3D coordinates of tie points during the BA process are refined according to
the collinearity equation [18]. Regarding the sensor stability under different temperatures
and humidities, SCBA is often conducted in every image block, because the images are
collected under various conditions.

Apart from the conventional focal length and the location of principal points, ad-
ditional parameters are used to describe the distortions that occur between 3D points
and their locations in 2D images, because the image formatting process is not a perfect
perspective transformation [24]. As pointed out in previous works [41], there are two major
categories of additional parameters: the physical and mathematical models [13,41,42]. The
physical models simulate the systematic errors caused by optics, while the mathematical
models approximate the simulation process through algebra expansion.

The Brown model [13] is the most widely used model in close-range photogrammetry,
and it has been incorporated into numerous image-processing packages and commercial
softwares in United States, China, and Russia [43–45]. Although SCBA implementation
with additional parameters may improve geometric accuracy in practice, the correlation
between parameters may weaken the BA process [18]. Moreover, to obtain satisfactory
results, a large number and good distribution of image tie points are required [46].

In recent years, 3D environmental modeling applications have combined images
captured by airborne cameras and terrestrial platforms [20,21,39]. Images captured by a
singular platform and processed through BA also require cross-platform BA for accurate
co-registration in 3D mapping and modeling tasks [19].

In addition to the viewing perspective and image scales, images obtained by aerial
and terrestrial platforms also vary in other aspects. First, the networks for aerial images are
often more stable, because aerial views have more image connectivity than terrestrial views.
Moreover, owing to the differences in looking directions and scenes, terrestrial images
might have weak textures at the corners or edges. Thus, the distributions of automatic tie
points are often more unsymmetrical than for aerial datasets.

However, it is still unclear whether it is best to re-compute the IOPs during the BA of
aerial and terrestrial images. On one hand, the SCBA are already adopted in the BA, which
align images captured by the same platform; the IOPs can be treated as stable because the
images remain unchanged [19]. Moreover, IOP fixation can reduce the number of unknown
parameters, which may stabilize the EOP calculation process and possibly enhance the
estimation accuracy. Furthermore, the additional cross-platform tie points that align aerial
and terrestrial images can result in uneven tie point distribution [39]. Because more tie
points (mainly the cross-platform tie points) are incorporated into the BA process, the image
geometric network is varied. From a mathematical viewpoint, the integrated refinement
of both IOPs and EOPs may improve the recovery of the image formatting process and
thereby improve the co-registration between aerial and terrestrial images.

To investigate the optimal SC strategy for the BA of aerial–terrestrial integrated images
after the inner-platform SCBA, four SC strategies for the BA were compared and analyzed
using real datasets.

3. Experimental Settings and Datasets
3.1. Experimental Hypothesis and Settings

To evaluate the performances of different SCBA strategies for aerial–terrestrial image
blocks (Figure 1), the following procedures were adopted. Starting from aerial and terres-
trial images with initial EOPs and IOPs in seven study sites, a SCBA was separately adopted
for aerial and terrestrial images, and the updated EOPs and IOPs were obtained. Then, BA
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was implemented to integrate aerial and terrestrial images. In the BA, four SC strategies
were used: (1) fixing the IOPs for both aerial and terrestrial images (FA_FT); (2) fixing the
IOPs for aerial images while refining the IOPs for terrestrial images (FA_RT); (3) refining
the IOPs for aerial images while fixing the IOPs for terrestrial images (RA_FT); (4) refining
the IOPs for both aerial and terrestrial images (RA_RT). After the implementation of BA,
IOPs and EOPs for aerial and terrestrial images were obtained.
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In this study, the camera was the classic pinhole model; the lens distortion parameter
is given in Equation (1).

x = F · D(∏ R(X− Xc)) + x0

F =

[
f 0
0 f

]
(1)

∏(u, v, w) = (u/w, v/w) (2)

where X, a 3D column vector, represents the 3D position of a point in the object space, and
x, a 2D vector, denotes the position of the corresponding point in the image space. Xc and
R are the EOPs, where Xc is the 3D position of the camera center, while R represents a
3 × 3 rotation matrix that maps between the axes of world coordinates and the camera axes.
f denotes the focal length, and x0 denotes the position of the principal point. ∏ : R3 → R2

represents the perspective projection defined by Equation (2), and u, v, and w represent
the coordinates of a 3D point in the camera space. The additional parameters of the lens
distortion are given by D : R2 → R2 , where

D(u, v) =
(

(1 + k1 · r2 + k2 · r4 + k3 · r6) · u + 2p2 · u · v + p1 · (r2 + 2u2)
(1 + k1 · r2 + k2 · r4 + k3 · r6) · v + 2p1 · u · v + p2 · (r2 + 2v2)

)
r2 = u2 + v2

(3)

Here, k1, k2, and k3 denote the radial distortion coefficients, and p1 and p2 represent
the tangential distortion coefficients.
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To reveal the co-registration accuracy between the aerial and terrestrial datasets, some
checkpoints visible in the images captured by the two platforms were selected, measured,
and triangulated. For precision, each checkpoint is measured in four images from the same
platform at least. Finally, the 3D residuals between the triangulated position of the same
checkpoint from the two platforms were computed, and the statistical parameters of mean
value, maximum value, variance, and root mean square error (RMSE) were calculated.

3.2. Aerial–Terrestrial Datasets Used in the Experiments

To explore the performance of the different SCBA strategies, seven datasets were
used in the experiments, including the benchmark datasets released by the International
Society for Photogrammetry and Remote Sensing [47], SWJTU [21], and collected images.
Tables 1 and 2 present some general information on the used image datasets.

Table 1. Basic information of the test datasets used in the study (GSD: ground sample distance).

Datasets
Sensors Image Numbers Average GSD (cm)

Aerial Terrestrial Aerial Terrestrial Aerial Terrestrial

Rathaus Sony Nex-7 Sony Nex-7 146 204 1.10 0.53
Stadthaus Sony Nex-7 Canon 600D 345 132 1.79 0.52
Pferdestall Sony Nex-7 Sony Nex-7 147 172 0.80 0.32
Verwaltung Sony Nex-7 Canon 600D 728 351 0.65 0.28
Lohnhalle Sony Nex-7 Canon 600D 426 194 0.66 0.27

SWJTU-LIB Sony ILCE-5100 Canon M6 123 43 1.69 1.06
SZU-YPS DJI FC6310R DJI FC6310 178 53 2.47 0.86

Table 2. Basic information of the cameras used in the study.

Sensors Resolution Focal Length (mm/pixel) Pixel Size (µm)

Sony Nex-7 6000 × 4000 16/4000 4 × 4
Canon 600D 5184 × 3456 20/4545 4.4 × 4.4

Sony ILCE-5100 6000 × 4000 40/10,256 3.9 × 3.9
Canon M6 6000 × 4000 18/4839 3.72 × 3.72

DJI FC6310R 5472 × 3648 8.8/3651 2.41 × 2.41

The Rathaus, Stadthaus, Pferdestall, Verwaltung, and Lohnhalle datasets were col-
lected from Dortmund, Germany; the SWJTU-LIB dataset was collected from Chengdu,
China; the SZU-YPS dataset was captured from Shenzhen, China. In all the tested datasets,
most of the aerial (UAV) images are oblique, which would not only broaden the overlapping
areas with the terrestrial views but also increase the intersection angles and result in better
geometry accuracy for the image blocks. Sample images of the test datasets are shown in
Figure 2. As shown in each row of Figure 2, although obvious perspective distortions and
scale variations exist between aerial and terrestrial views, the lighting condition between
them are rather similar. Therefore, the cross-platform image feature matching is more
reliable than on those images with distinct radiometric discrepancies, which creates a good
foundation for our cross-platform BA tests.

The UAV images in the SWJTU-LIB dataset were collected during regular strip flights,
while the other aerial (UAV) and terrestrial images were captured surrounding and focusing
on target buildings. In all datasets, the GPS information stored in the flights provided
absolute ground control, and no ground control points are incorporated in the image
orientation process. The SIFT algorithm [48] is implemented to find corresponding points
between overlapping images, and the Gauss–Newton method [8] is adopted to solve the
nonlinear least square problem in BA.
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Figure 2. Sample images of the tested datasets.

4. Experimental Results and Analysis
4.1. Experimental Results

The EOPs and sparse point clouds after the BA of both aerial and terrestrial images
are shown in Figure 3. In the seven tested areas, aerial and terrestrial images were correctly
aligned, which enabled integrated 3D mapping and 3D scene reconstruction. Except for the
Stadthaus dataset, the aerial images were captured through convergent shooting strategies,
which resulted in stable image networks. Moreover, the terrestrial image networks in the
Rathaus and Verwaltung datasets were more stable than those in the other five datasets.
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Figure 3. EOPs of images and sparse point clouds after aerial–terrestrial BA in the tested datasets. The
blue and pink squares represent aerial and terrestrial images, respectively. (a) Rathaus; (b) Stadthaus;
(c) Pferdestall; (d) Verwaltung; (e) Lohnhalle; (f) SWJTU-LIB; (g) SZU-YPS.

The refined IOPs of the aerial (UAV) and terrestrial images after SCBA, and the IOPs
after aerial–terrestrial BA using the four different strategies, are presented in Tables 3–9.
For convenience, the focal lengths and coordinates of the principal points are represented
in pixels. As presented in Tables 3–9, during the refining of the IOPs of aerial images in
the BA, the focal lengths after optimization were highly stable, and the differences in focal
length between RA_RT, RA_FT, and FA_FT&FA_RT were within 1 pixel. Meanwhile, the
corresponding differences for terrestrial images were slightly greater; for example, the focal
length after FA_RT BA strategies was greater than the original value of 1 pixel (Table 5).
The principal points xp and yp also exhibited the same trend. The differences in xp and yp
between the four compared BA strategies were less than 2 pixels in all of the tested datasets
for aerial images, but greater than 2 pixels in the tested datasets for terrestrial images.
For the Pferdestall dataset, the variations between xp obtained through the FA_RT and
FA_FT&RA_FT methods were greater than 3 pixels. For the other additional parameters
related to radial distortion and tangential distortion, the adjusted values obtained through
the four compared BA strategies were similar.
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Table 3. IOPs of aerial (UAV) and terrestrial images after the BA of the Rathaus dataset using different
SC strategies.

IOPs
Aerial (UAV) Terrestrial

FA_FT & FA_RT RA_RT RA_FT FA_FT & RA_FT RA_RT FA_RT

f (pixels) 4068.87807 4068.08033 4068.00866 4067.36138 4067.21119 4067.21142
xp (pixels) −19.5567 −19.3128 −19.3223 −19.3638 −20.6114 −20.7009
yp (pixels) 33.0412 33.2878 33.3547 11.1559 10.0832 10.0046

k1 −0.065801 −0.0658264 −0.0658341 −0.0658597 −0.0659561 −0.0659577
k2 0.0875099 0.0874178 0.0874218 0.090855 0.0910229 0.0910422
k3 0.0104374 0.0104204 0.0104062 0.00545872 0.00526018 0.0052374

p1 (10−3) −0.374962 −0.364741 −0.365756 −0.581976 −0.65487 −0.661701

Table 4. IOPs of aerial (UAV) images and terrestrial images after the BA of the Stadthaus dataset
using different SC strategies.

IOPs
Aerial (UAV) Terrestrial

FA_FT & FA_RT RA_RT RA_FT FA_FT & RA_FT RA_RT FA_RT

f (pixels) 4068.23085 4068.30545 4068.30622 4771.20366 4771.37552 4771.37324
xp (pixels) −18.2148 −18.2052 −18.2064 25.5432 25.0831 25.0884
yp (pixels) 32.6839 32.6683 32.6662 5.61209 6.22631 6.2269

k1 −0.0674332 −0.0673206 −0.0673213 −0.0980488 −0.0981193 −0.0981196
k2 0.0917847 0.0914299 0.0914315 0.101131 0.101545 0.101546
k3 0.00715928 0.00748223 0.00748108 −0.0294874 −0.0301175 −0.0301188

p1 (10−3) −0.285357 −0.276588 −0.276665 0.161089 0.13874 0.138956

Table 5. IOPs of aerial (UAV) and terrestrial images after the BA of the Pferdestall dataset using
different SC strategies.

IOPs
Aerial (UAV) Terrestrial

FA_FT & FA_RT RA_RT RA_FT FA_FT & RA_FT RA_RT FA_RT

f (pixels) 4067.14882 4066.88138 4066.84198 4063.41961 4064.35911 4064.43471
xp (pixels) −17.8754 −18.788 −18.8207 −27.1081 −30.1829 −30.3601
yp (pixels) 33.7612 33.809 33.8791 23.0151 22.4765 22.3341

k1 −0.0632268 −0.0634589 −0.0634678 −0.0631941 −0.0631213 −0.0630996
k2 0.0852705 0.0857281 0.0857319 0.082288 0.0828569 0.0828302
k3 0.0116867 0.0111896 0.0111769 0.0117249 0.0110463 0.0110572

p1 (10−3) −0.294877 −0.334246 −0.336489 −0.712583 −0.871517 −0.88116

Table 6. IOPs of aerial (UAV) and terrestrial images after the BA of the Verwaltung dataset using
different SC strategies.

IOPs
Aerial (UAV) Terrestrial

FA_FT & FA_RT RA_RT RA_FT FA_FT & RA_FT RA_RT FA_RT

f (pixels) 4066.96303 4066.85896 4066.78135 4771.08311 4771.73777 4771.75601
xp (pixels) −17.6385 −18.7535 −18.9217 39.2519 40.2749 40.3715
yp (pixels) 32.9631 32.9664 32.9728 15.5072 18.9996 19.3648

k1 −0.0630105 −0.0630302 −0.0630428 −0.0972711 −0.097242 −0.0972324
k2 0.0855557 0.0855932 0.085621 0.0991191 0.0994272 0.0994101
k3 0.0110263 0.0109472 0.0109034 −0.0268749 −0.0275584 −0.027555

p1 (10−3) −0.318407 −0.397235 −0.408668 0.209112 0.247171 0.249551
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Table 7. IOPs of aerial (UAV) and terrestrial images after the BA of the Lohnhalle dataset using
different SC strategies.

IOPs
Aerial (UAV) Terrestrial

FA_FT & FA_RT RA_RT RA_FT FA_FT & RA_FT RA_RT FA_RT

f (pixels) 4066.36477 4066.67647 4066.63846 4771.68997 4771.64815 4771.59545
xp (pixels) −15.4462 −17.2505 −17.2227 36.5568 36.7277 37.4373
yp (pixels) 32.7025 33.2739 33.3615 9.8315 9.11882 8.9211

k1 −0.0629404 −0.0632259 −0.0632351 −0.097497 −0.0972915 −0.0973073
k2 0.0841735 0.0848282 0.084834 0.0999886 0.0987108 0.0987518
k3 0.0124227 0.0119863 0.0119737 −0.0284858 −0.0259536 −0.0260674

p1 (10−3) −0.195024 −0.273688 −0.273387 0.16963 0.208466 0.229709

Table 8. IOPs of aerial (UAV) and terrestrial images after the BA of the SWJTU-LIB dataset using
different SC strategies.

IOPs
Aerial (UAV) Terrestrial

FA_FT & FA_RT RA_RT RA_FT FA_FT & RA_FT RA_RT FA_RT

f (pixels) 10,237.6675 10,237.9058 10,237.9642 4941.57027 4942.06517 4942.13066
xp (pixels) 42.6596 42.6941 42.6453 −0.888504 −1.40598 −1.26491
yp (pixels) −40.7954 −40.9146 −40.946 −6.8541 −7.5046 −7.93967

k1 0.0635718 0.0635644 0.0635714 −0.0965242 −0.0966374 −0.0966099
k2 −0.0209569 −0.0199052 −0.0198847 0.12534 0.125812 0.125739
k3 −0.251215 −0.258173 −0.258564 −0.0311879 −0.0314217 −0.0313546

p1 (10−3) 0.0387311 0.0397392 0.0377901 0.662126 0.626801 0.63709

Table 9. IOPs of aerial (UAV) and terrestrial images after the BA of the SZU-YPS dataset using
different SC strategies.

IOPs
Aerial (UAV) Terrestrial

FA_FT & FA_RT RA_RT RA_FT FA_FT & RA_FT RA_RT FA_RT

f (pixels) 3695.45203 3695.44054 3695.44076 3694.52433 3694.80362 3694.80258
xp (pixels) −6.99241 −6.95527 −6.95292 −3.48738 −4.06529 −4.06683
yp (pixels) −13.3504 −13.3379 −13.3402 −14.6709 −14.0835 −14.0841

k1 −0.0146416 −0.014608 −0.0146078 −0.0130628 −0.013033 −0.0130332
k2 0.00491831 0.00485732 0.00485649 9.75272 × 10−5 8.4753 × 10−5 8.48471 × 10−5

k3 0.00461913 0.00465268 0.00465336 0.00915655 0.00924262 0.00924254
p1 (10−3) −0.852657 −0.850009 −0.849824 −0.545586 −0.583879 −0.584001

The adjusted values of RA_FT and RA_RT for the aerial images were closer to each
other than they were to the original values that were only adjusted in the previous SCBA.
Consequently, the optimized IOPs of FA_RT and RA_RT for the terrestrial images were
closer to each other than they were to the optimized IOPs of FA_FT&RA_FT. As given in
Table 1, the UAV images and terrestrial images in Rathaus and Pferdestall were obtained
using the same cameras. However, the obtained IOPs were closer to one another in the
Rathaus dataset than in the Pferdestall dataset (Tables 3 and 5).

To verify the performance of co-registration between aerial and terrestrial images
processed using the four compared BA strategies, the triangulated 3D positions of some
checkpoints that were visible in both the aerial and terrestrial images were compared.
Figure 4 illustrates some samples of checkpoints measured in the tested datasets. These
points are measured on targets which are intentionally put by the data collectors, and the
other CPs are measured on distinct corners in the scenes. For each checkpoint, at least four
observations were measured in images captured by one platform, and the maximum back
projection errors for checkpoints are limited to one pixel. Eleven to seventeen checkpoints
were extracted in each of the seven tested datasets. Most of the checkpoints are distributed
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on vertical walls because those are the major common visible areas for aerial and terrestrial
views. To reach even distribution as fair as possible in both planar and vertical directions,
there are also some checkpoints measured on the roof corners and the ground. However, the
absolute 3D position for checkpoints has not been measured by any topographic support
since this study focuses on the relative cross-platform co-registration accuracy.
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Figure 4. Samples of checkpoints measured in the tested datasets. In each subgraph, the left is
measured in aerial (UAV) image while the right is measured in terrestrial image. (a,b), checkpoints
measured on targets; (c,d), checkpoints measured on distinct corners.

The statistics of 3D errors at checkpoints are listed in Table 10. For the seven tested
areas, the RMSEs in the X, Y, and Z directions ranged from 4.448 to 202.729 mm. The mini-
max RMSE values occurred in the Verwaltung dataset, and the maximum values occurred
in the SWJTU_LIB dataset. This was possibly due to the occurrence of different image
GSDs and image numbers (Table 1). Comparison of the results of different BA strategies
revealed that the FA_FT and FA_RT methods exhibited the minimum RMSE values. In
Rathaus, Stadthaus, Pferdestall, SWJTU-LIB, and SZU-YPS, the FA_FT method obtained
the minimum 3D RMSE values and the minimax deviation values, which corresponded to
the highest co-registration accuracies between aerial and terrestrial images.

To qualitatively reveal the relative co-registration accuracies of the different BA strate-
gies, the relative RMSE (rRMSE) was calculated using Equation (4).

rRMSEi =
RMSEi

1
n

n
∑

j=1
RMSEj

∗100 (4)

In Equation (4), RMSEi denotes the calculated absolute RMSE value of the current
method; n denotes the total number of compared methods. The lower the rRMSE value, the
higher the relative co-registration accuracy. Moreover, the mean rRMSE value remained
100 in one test area. The calculated rRMSEs of the seven tested areas calculated using
this equation are shown in Figure 5. For the seven tested areas, the rRMSEs obtained
using the FA_FT method were less than the mean values. For the Stadthaus and SZU-YPS
datasets, the rRMSEs obtained using the FA_FT method were remarkably greater than
those obtained using the other three methods. For all datasets except SWJTU-LIB, the
rRMSEs obtained using the FA_RT and RA_RT methods were similar. The lowest rRMSEs
obtained through FA_RT belonged to the Verwaltung and Lohnhalle datasets, and the
RA_RT method obtained unstable results for the SWJTU-LIB dataset. The RA_FT method
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obtained the largest rRMSEs for four test areas, namely Rathaus, Stadthaus, Verwaltung,
and Lohnhalle. For the Lohnhalle dataset, the rRMSE values of the four methods were
the closest.

Table 10. Statistics of checkpoints. No. CPs: number of checkpoints. RMSE: root mean square error.
The values in bold indicate the minimal values in the compared four methods.

Dataset No. CPs Method X RMSE
(mm)

Y RMSE
(mm)

Z RMSE
(mm)

RMSE
(mm)

Maximum
(mm)

Rathaus 15

FA_FT 43.397 10.201 13.236 46.503 123.952
FA_RT 43.574 10.990 13.035 46.791 125.882
RA_RT 43.522 11.082 12.950 46.741 125.408
RA_FT 43.682 10.750 13.377 46.932 124.326

Stadthaus 15

FA_FT 32.977 7.701 21.708 40.224 78.887
FA_RT 32.866 7.337 24.767 41.802 83.446
RA_RT 32.828 7.310 24.773 41.771 83.240
RA_FT 32.545 7.988 25.741 42.256 85.076

Pferdestall 13

FA_FT 17.963 23.083 22.517 36.912 85.580
FA_RT 15.362 25.831 22.761 37.700 91.189
RA_RT 15.110 25.989 22.787 37.722 91.718
RA_FT 17.988 23.220 22.474 36.984 85.799

Verwaltung 19

FA_FT 4.455 2.315 4.586 6.800 18.916
FA_RT 4.448 2.434 4.445 6.743 18.488
RA_RT 4.536 2.388 4.450 6.788 19.376
RA_FT 4.572 2.270 4.598 6.870 20.166

Lohnhalle 17

FA_FT 9.090 7.920 36.324 38.272 148.034
FA_RT 9.157 7.877 36.244 38.203 147.707
RA_RT 9.127 7.887 36.346 38.296 148.038
RA_FT 9.173 7.972 36.376 38.353 148.229

SWJTU-LIB 11

FA_FT 120.657 200.995 57.237 241.316 417.162
FA_RT 120.999 201.168 57.379 241.664 419.108
RA_RT 116.547 202.729 118.976 262.369 414.491
RA_FT 120.019 201.469 57.030 241.343 417.530

SZU-YPS 14

FA_FT 10.776 10.059 14.005 20.333 39.278
FA_RT 13.299 9.548 14.179 21.659 46.281
RA_RT 13.293 9.558 14.141 21.634 46.215
RA_FT 12.601 9.998 14.388 21.582 47.669

4.2. Experimental Analysis

To further investigate the BA results of aerial and terrestrial images for different SC
strategies, the tie point distribution in the image space was plotted and analyzed. Because
an even tie point distribution is favorable to the SC process, the uniformities of both aerial
and terrestrial tie points were qualitatively and quantitatively evaluated. The image space
was equally divided into 100 parts in both the horizontal and vertical directions, and
10,000 grids were created. The number of tie points that belonged to each grid was obtained
from the image coordinates of tie points.

These numbers were plotted using heatmaps to visually reveal the tie point distribu-
tion for aerial and terrestrial images. The mean values, standard deviations, and normalized
standard deviations of the numbers are presented in Table 11. To compare the distribution
between different image platforms and datasets, the normalized number of tie points
(norNTP) was calculated using Equation (5).

norNTPi =
NTPi

1
n

n
∑

j=1
NTPj

∗10, 000 (5)
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where NTPi denotes the number of tie points in a certain grid, and norNTPi is the normal-
ized value. Thus, the mean value of the normalized number of tie points in each grid was 1.
The tie point distributions are illustrated in Figures 6–12 using heatmaps generated from
the norNTP values and histograms.
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Figure 5. The rRMSEs of the four compared BA strategies used for the seven tested areas. Different
colors indicate different BA methods; black: FA_FT; red: FA_RT; blue: RA_RT; green: RA_FT.

Table 11. Mean values (MVs), standard deviations (STDs), and normalized standard deviations
(NSTDs) of the number of points in equant grids.

Datasets
MVs STDs NSTDs

Aerial Terrestrial Aerial Terrestrial Aerial Terrestrial

Rathaus 43.655 51.902 11.280 21.967 0.258 0.423
Stadthaus 60.061 68.535 16.972 25.363 0.283 0.370
Pferdestall 36.058 40.351 9.566 27.497 0.265 0.681
Verwaltung 184.195 100.603 38.425 43.800 0.209 0.435
Lohnhalle 72.219 40.932 15.342 14.088 0.212 0.344

SWJTU-LIB 41.325 11.851 10.286 8.665 0.249 0.731
SZU-YPS 38.710 11.930 13.881 7.671 0.359 0.643

The mean values, standard deviations, and NSTDs of the number of points in equant
grids for the tested datasets are given in Table 11. Comparison of the NSTDs between dif-
ferent platforms revealed that in the seven tested datasets, the NSTDs for the aerial images
were considerably smaller than those for terrestrial images, indicating that the tie point
distribution in the aerial platforms was more uniform than that in the terrestrial platforms.

The NSTD values are consistent with the visual expression of the results in Figures 6–12.
As illustrated in Figures 6a, 7a, 8a, 9a, 10a, 11a and 12a, the tie points in the aerial images
were mostly distributed around the expected mean value (1.0). However, the correspond-
ing terrestrial images (Figures 6b, 7b, 8b, 9b, 10b, 11b and 12b) featured blue areas, which
indicate fewer tie points or even the absence of tie point spread in the margin of one
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side or a corner of the images. Moreover, owing to the differences in scene content, the
images for the Pferdestall, SWJIT-LIB, and SZU-YPS datasets also featured large red areas
(Figures 8b, 11b and 12b), which indicates that the tie points of the terrestrial images of the
datasets had distinct focus points.
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In an image space with perfectly distributed tie points, the histograms of NSTDs will
have large values of bands approximately 1.0, and low values (or even zero) at other bands,
particularly the minimum and maximum bands. In the histograms (Figures 6c, 7c, 8c, 9c,
10c, 11c and 12c), the peaks for aerial images were all at 1.0 and 1.1 for the seven tested
areas, while the peaks for terrestrial images varied. For the Verwaltung and the Lohnhalle
datasets, the histogram peaks for aerial images were as large as 2000, and the norNTPs
for more than 7000 grids were between 0.9 and 1.2, which represents a favorable tie point
distribution for SCBA. Meanwhile, the histograms for terrestrial images were rather mild.
The histogram peaks for terrestrial images of the Rathaus, Stadthaus, Verwaltung, and
Lohnhalle datasets were between 1.1 and 1.4. For the other three datasets, the histograms
featured high values of columns for the minimum and the maximum bands for terrestrial
images, which suggests extremely uneven tie point distribution. In the Pferdestall and
SWJIT-LIB datasets, the norNTPs of approximately 1800 grid points were less than 0.1,
implying that no tie points fell in approximately 18% of the image space. Furthermore,
except for the Stadthaus dataset, the norNTPs for aerial images between 0.0 to 0.1 were
near-zero, suggesting that the tie points almost covered the whole images. Moreover, for the
Stadthaus, Verwaltung, and Lohnhalle datasets, the norNTPs for terrestrial images between
0.0 and 0.1 were also small, which means that the tie points were rather comprehensively
distributed in the image space.

5. Discussion

According to the experimental results and statistical analysis, Table 12 summarizes
the network stability, tie point distribution uniformity, and best SC strategies for the seven
tested datasets.

Table 12. Summary of the network stability (NS), distribution uniformity of tie points (DUTPs), and
best self-calibration strategy (BSCS) in the BA of aerial–terrestrial images for the seven datasets.

Datasets
NS DUTPs BSCS

Aerial Terrestrial Aerial Terrestrial Aerial Terrestrial

Rathaus Yes Yes Good Fair Fix Fix
Stadthaus No No Fair Fair Fix Fix
Pferdestall Yes No Good Bad Fix Fix
Verwaltung Yes Yes Good Fair Fix Refine
Lohnhalle Yes No Good Fair Fix Refine

SWJTU-LIB Yes No Good Bad Fix Fix
SZU-YPS Yes No Fair Bad Fix Fix

Because the tie point distribution in aerial images is fairly even, the BA of aerial and
terrestrial images may not require a second round of SC for aerial cameras. Moreover,
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fixing the IOPs of aerial cameras (which have already been refined) during the BA could
reduce the number of unknown parameters.

However, this is not the case for terrestrial cameras. Owing to the different shooting
conditions, the tie point coverage in terrestrial images is insufficient to regain the physical
distortion parameters through theoretical lens calibration. Thus, herein, the IOPs obtained
in the first round of the SCBA of terrestrial images inadequately represented the real IOPs
of the terrestrial cameras. Hence, the IOPs of terrestrial images can be refined in the second-
round BA that combines both aerial and terrestrial images if the tie points have relatively
even distribution and large format coverage.

Considering this assumption, the FA_RT method will provide the best co-registration
results for the Stadthaus, Verwaltung, and Lohnhalle datasets. However, the minimum
rRMSE values acquired through the FA_FT strategy belonged to the Stadthaus dataset,
presumably because the networks of aerial images in the Stadthaus dataset were not stable.
Therefore, refining the IOPs of terrestrial cameras may degrade the EOPs of aerial images
and result in suboptimal cross-platform co-registration accuracy.

According to the experimental results and above analysis, some suggestions regarding
the SC strategies in the BA of aerial and terrestrial image blocks are offered. First, for
aerial images, with better tie point distribution than terrestrial images, it is better to fix the
IOPs in the cross-platform BA. Second, for most cases, fixing the IOPs of terrestrial images
in the second-round BA will improve the co-registration accuracy. Third, if the tie point
distribution in terrestrial images is relatively even and comprehensive and the networks of
aerial images are reasonably stable, refining the IOPs of terrestrial cameras in the BA may
yield the best results.

Future tests will investigate the effect of SC strategies on mathematical lens distortion
parameters such as the Fourier SC additional parameters [34] in cross-platform image BA.
Moreover, automatic optimal SC strategy selection methods related to cross-platform image
orientation should be developed and investigated, to build unified precision 3D mapping
references for multi-platform photogrammetry.
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