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Abstract: Earth observation satellite (EOS) systems often encounter emergency observation tasks
oriented to sudden disasters (e.g., earthquake, tsunami, and mud-rock flow). However, EOS systems
may not be able to provide feasible coverage time windows for emergencies, which requires that an
appropriately selected satellite transfers its orbit for better observation. In this context, we investigate
the orbit maneuver optimization problem. First, by analyzing the orbit coverage and dynamics,
we construct three models for describing the orbit maneuver optimization problem. These models,
respectively, consider the response time, ground resolution, and fuel consumption as optimization
objectives to satisfy diverse user requirements. Second, we employ an adaptive differential evolution
(DE) integrating ant colony optimization (ACO) to solve the optimization models, which is named
ACODE. In ACODE, key components (i.e., genetic operations and control parameters) of DE are
formed into a directed acyclic graph and an ACO is appropriately embedded into an algorithm
framework to find reasonable combinations of the components from the graph. Third, we conduct
extensive experimental studies to show the superiority of ACODE. Compared with three existing
algorithms (i.e., EPSDE, CSO, and SLPSO), ACODE can achieve the best performances in terms of
response time, ground resolution, and fuel consumption, respectively.

Keywords: orbit maneuver; orbit coverage analysis; earth observation satellite (EOS); differential
evolution algorithm; ant colony optimization

1. Introduction

Earth observation satellite (EOS) systems can acquire images of the Earth’s surface via
their remote sensing instruments. Due to the advantages such as large-scale observation
coverage and high observation frequency, EOSs have been widely implemented to monitor
and observe disasters such as earthquakes, floods, landslides, and debris flow [1–3]. Al-
though the number of EOSs is continuously increasing, there are still several limitations
to satisfy all kinds of user requirements. For example, when an earthquake occurs, EOSs
are required to take ground images urgently to provide timely support for rescue opera-
tions. However, EOSs in their regular orbits may not be able to observe the earthquake
area timely or clearly. Thus, an appropriately selected satellite needs to be transferred to
a new orbit to provide better coverage properties, which is termed the orbit maneuver
optimization problem.

Generally, the orbit maneuver optimization problem can be treated as a kind of or-
bit design problem [4–6]. Numerous studies have been carried out to investigate the
orbit design problem. For example, Graham et al. [7] studied a minimum-time Earth-
orbit transfers optimization problem using low-thrust propulsion with eclipsing. They
developed an initial guess generation method to construct a useful guess and analyzed
the approximate place where the spacecraft enters and exits the Earth’s shadow. A sim-
ilar problem was addressed by Wang et al. [8], who adopted a convex optimization
method. Zhang et al. [9] investigated a minimum-fuel optimization problem using low-
thrust in the circular restricted three-body scenario. By considering actuation uncertainties,
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Mohammadi et al. [10] proposed a robust optimization approach for the impulsive orbit
transfers optimization problem. In their study, the genetic algorithm, Monte-Carlo sam-
pling, and surrogate model are combined to balance the optimization accuracy and time.
Cheng et al. [11] developed a real-time optimal control approach based on multiscale deep
neural networks for the orbit transfer problem of the solar sail spacecraft. In a recent study,
Morante et al. [12] proposed a multi-objective optimization approach for an orbit-raising
optimization problem, in which chemical, electrical, and hybrid trajectories are considered.

However, most of the orbit design problems aim to find an optimal orbit for improving
orbit performance (e.g., coverage time and fuel consumption) [4,5,13]. Those studies
assume that the satellite flies along a fixed orbit without orbit maneuvers and consider
orbit elements as decision variables. For the cases in which orbit maneuvers are considered,
there are few existing studies that mainly focus on reconfiguration problems of satellite
constellations [14–16]. For example, McGrath et al. [17] presented a satellite constellation
reconfiguration problem, in which a restricted low-thrust Lambert rendezvous scenario
was included. Soleymani et al. [18] investigated an optimal mission planning problem
of the reconfiguration process of satellite constellations. They applied a combination of
particle swarm optimization and genetic algorithm to find the optimal departure and
arrival positions of each satellite. He et al. [19] developed a physical programming
method together with a genetic algorithm, to solve a multi-objective satellite constellation
reconfiguration problem for disaster monitoring purposes. Wang et al. [20] proposed a
hybrid-resampling particle swarm optimization method for an agile satellite constellation
design problem, in which different types of sensors, the attitude maneuver of sensors,
and different coverage performance indices are considered. To satisfy the requirements
of emergency observation, a recent study proposed by Hu et al. [21] carried out a multi-
objective optimization framework for the satellite constellation optimization problem.

It can be concluded that although many relevant studies have been published, the
orbit maneuver optimization problem that optimizes maneuvers of a satellite is still a minor
branch of orbit design problems and is rarely investigated. Hence, in this study, we make
effort to address the orbit maneuver optimization problem from a scheduling perspective.
Specifically, since a satellite can transfer its orbit by conducting an impulsive maneuver at a
specific time instance and the maneuver result would affect the orbit performance, it would
be crucial to determine the reasonable magnitude and direction of the impulse, as well as
the maneuver moment. Different from most of the previous studies that aim to determine
the promising position (i.e., orbit elements) of a satellite, our study optimizes the orbit
maneuver in terms of velocity increments for an impulsive maneuver and the maneuver
moment. Meanwhile, our study considers multiple satellites and the most suitable satellite
would be selected to execute the task according to scheduling results.

On the other hand, to improve the service quality, diverse user requirements are being
considered in the orbit maneuver optimization in recent years. For instance, since the fuel
capacity is limited and the remaining fuel affects the lifetime of a satellite, some users may
require a low fuel consumption solution. In case of some emergency tasks that need to
be accomplished at all costs, the users may want the satellite to respond to observation
requests as quickly as possible. Further, in some rescue operations, the orbit altitude is the
optimization objective since an appropriate orbit altitude that can provide higher ground
resolution is crucial. Therefore, we build three models that, respectively, optimize three
objectives, including response time, ground resolution, and fuel consumption to satisfy
diverse user requirements. Meanwhile, since we focus on EOS, specific constraints such as
the resolution constraint are included in models.

Since the studied problem considers orbit maneuvers at every second as decision
variables, the search space would be very large. Meanwhile, specific constraints of EOS
would increase the difficulties of solving the problem. All of the above reasons propose
challenges for solving the problem. In this regard, evolutionary algorithms would be
a promising solution method owing to their powerful and effective search capabilities.
Previously, evolutionary algorithms have been widely employed to address the orbit design
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problem. The algorithms used mainly include particle swarm optimization [20,22,23],
genetic algorithms [16,21,24], and hybrid algorithms [5,25]. For example, Shirazi [25]
applied a hybridization of the genetic algorithm and simulated annealing to a multi-
objective orbit maneuver optimization problem. Based on the particle swarm optimization
(PSO) algorithm, Pontani et al. [22] solved four kinds of impulsive orbital transfer problems,
focusing on the optimization of impulsive transfers between two coplanar and non-coplanar,
circular and elliptic orbits, respectively. Yao et al. [26] investigated the application of an
improved DE algorithm on an orbit design problem by adding self-adaption and stochastic
mechanisms. To optimize coverage-related metrics, as well as the number and semi-major
axes of satellites in multiple constellations, Hitomi et al. [27] proposed a variable-length
chromosome-based evolutionary algorithm.

Particularly, our studied problem can be treated as a continuous optimization problem.
As a simple and efficient evolutionary algorithm, especially for continuous optimization,
differential evolution (DE) which has rarely been implemented by previous related stud-
ies would be a promising candidate for addressing our problem. However, due to the
well-known no-free-lunch theorem [28], the same optimization algorithm with the same
configurations may have different performances on different problems. We have three
models with different constraints and different optimization objectives, which propose
challenges for optimizers. Moreover, DE highly depends on the configuration of genetic
strategies and control parameters [29]. It would be time-consuming to find effective combi-
nations of configurations to obtain high-quality solutions on different optimization models
by using the same algorithm. Previously, many techniques have been developed to relieve
this issue, such as ensemble and adaption techniques [28,30,31]. In this study, we implement
the adaption technique to DE. Specifically, we form the genetic strategies and parameters
of DE into a directed acyclic graph, in which each path indicates a combination of the
genetic strategies and parameters. As the pheromone trails and property always enable the
ant colony to find a reasonable path from the graph, an ant colony optimization (ACO) is
adopted to search for effective combinations during the evolution. The hybridization of
ACO and DE exhibits the effective search capability of DE that has been proved in previous
studies [4,26,32]. Furthermore, it can dynamically optimize the algorithm configurations to
improve the adaptive capability of DE, such that higher-quality solutions can be obtained
for all three optimization models.

In summary, this paper has the following contributions.
(i) We investigate the orbit maneuver optimization problem considering diverse user

requirements. In the problem, a satellite is selected from a set of satellites and transferred
to a new orbit based on appropriate maneuvers (i.e., the velocity increment and maneuver
moment) to respond to an emergency observation request. By analyzing orbit coverage
and dynamics, we build three optimization models that optimize response time, ground
resolution, and fuel consumption, respectively, to satisfy different user requirements.

(ii) To solve the proposed optimization models, we implement an adaptive differ-
ential evolution based on graph search. In the algorithm, key algorithm components
(i.e., crossover strategies, mutation strategies, and control parameters) are formed into a
directed acyclic graph and an ACO is adopted to find reasonable combinations of config-
urations during the evolution. The implemented algorithm is a hybrid of ACO and DE,
therefore it is named ACODE.

(iii) We conduct simulation experiments to verify the efficiency of ACODE. The
ACODE is compared with three representative algorithms including EPSDE [33], CSO [34],
and SLPSO [35] in simulation scenarios where multiple EOSs are requested to observe a
ground target. The simulation results show the superiority of ACODE.

This paper is organized as follows. Section 2 details the orbit coverage and dynamics
analysis, as well as three optimization models. Sections 3 and 4 introduce the solution
method and simulation experiments, respectively. Finally, the conclusions are remarked by
Section 5.
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2. Problem Description

In this section, we elaborate on the orbit maneuver optimization problem based on
orbit coverage and dynamics calculations, followed by three optimization models with
different optimization objectives (i.e., response time, fuel consumption, and ground resolu-
tion). As a part of the satellite system design, orbit maneuver optimization is associated
with many complicated environmental factors. Therefore, some reasonable assumptions
are adopted to simplify the problem.

(i) There are some perturbations (e.g., atmospheric drag, solar radiation pressure, and
third body effects) that have negative impacts on the operation of the satellite. We only
consider J2 perturbation of Earth oblateness in the model, which is a common assumption
in existing studies on orbit design problems [6,32,36].

(ii) Assume that the sensor equipped on each satellite is visible to the ground target
when the satellite flies in the sunshine and the sunshine time is from 6:00 to 18:00 local
time. Further, the other factors that may affect the imaging such as clouds and weather
conditions, as well as the altitude of ground targets are assumed to be negligible.

(iii) Each satellite is assumed to be independent. Therefore, the orbit maneuver of a
satellite does not affect the flying of another satellite.

(iv) The time required by the satellite to process task information and start the rocket
engine is assumed to be negligible.

(v) The ground target is assumed to be a point target. Hence, the ground target can be
imaged by the satellite once the satellite passes over it.

Main notations used in this section are displayed in Table 1.

Table 1. Notations.

Notations Description

λ, λh, λmax, and λmin Actual, horizon-, maximum, and minimum Earth’s angular radius
η, ηc, ηh, ηmax, and ηmin Actual, center, horizon-, maximum, and minimum boresight angle of the sensor

RE Earth’s radius
rsat Distance between the Earth’s center and the satellite
γ Intermediate angle

[lats, lons] Latitude and longitude of a subsatellite point
a Semimajor axis
e Eccentricity
i Inclination

Ω and Ω̇ Longitude of ascending node and its time variation
ω and ω̇ Argument of perigee and its time variation

θ, M, and E True, mean, and eccentric anomaly
P Period for an orbit
µ Earth’s gravitational parameter
t0 Time since perigee at the initial epoch
h Angular momentum of the satellite

rO and rI Position vectors of the satellite in PQW and ECI frames
vO Velocity vector of the satellite in PQW frame

Dimag Satellite altitude over the ground target
Hnew Orbital altitude of the satellite after maneuvering

∆v and ∆vmax Velocity increment and the allowed maximum velocity increment for maneuvering
tm Maneuver moment
tt Time when the satellite receives the observation task
Tr Response time

[ts, te] Sunshine time window of a ground target
T Maximum response time required by users
R Minimum ground resolution required by users
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2.1. Orbit Coverage Analysis

The visibility between a satellite and a ground target depends on many factors, such
as the location of the ground target (i.e., longitude and latitude), the orbit elements, and the
field of view (FOV) of the satellite. To conduct the orbit coverage analysis, we assume that
the Earth is a round body, the orbit is approximately circular, and the FOV on the ground is
rectangular as in [32,37]. The ground target is visible to the satellite when it lies in the FOV,
which can be determined by calculating the longitudes and latitudes of four vertices. A
typical satellite coverage on the Earth is shown in Figure 1.
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h

h

Subsatellite point

Satellite

Ground target
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Earth

ER
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h

h

h

Subsatellite point

Satellite

Ground target

Figure 1. Satellite coverage on the Earth.

As Figure 1 shows, the Earth’s angular radius λh defines the half-ground range that
may visible to the satellite, which can be expressed by

cos λh =
RE
rsat

, (1)

where RE is the Earth’s radius, and rsat is the distance between the Earth’s center and the
satellite. The slant range to the horizon, ρh, can be written as

ρh =

√
rsat2 − RE

2. (2)

However, in practical applications, due to some limitations such as the imaging angle
of the sensor and sunshine conditions, the actual half ground range would be smaller than
λh. Hence, a general expression for the slant range to any point, ρ, can be expressed by [38]

ρ = RE cos γ + rsat cos η, (3)

sin γ =
rsat sin η

RE
, (4)

where γ is the intermediate angle and η is the boresight angle of the satellite (i.e., half of
the sensor angle). Afterward, the half-ground range from the subsatellite point can be
calculated by

sin λ =
ρ sin η

RE
. (5)

For the satellite equipped with a scanning sensor, the geometry of the FOV is no
longer symmetrical about the subsatellite point, requiring more processing to obtain the
ground range angle. Given the center boresight angle ηc of the satellite, the maximum and
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minimum ground-range angles from the subsatellite point can be obtained. Specifically, the
maximum and minimum boresight angles can be written as [38]

ηmax = ηc + η, (6)

ηmin = ηc − η. (7)

Then, the maximum and minimum Earth’s angular radiuses (i.e., λmax and λmin)
can be obtained according to Equations (5)–(7). Since the sensor of the satellite can be
rotated on multiple axes, in this study we assume that the sensor half-angle equals ηmax
and the Earth’s angular radius equals λmax for convenience. Define the latitude and
longitude of the subsatellite point as [lats, lons], the latitudes and longitudes of the four ver-
tices of the FOV can be calculated by [lats + λmax, lons + λmax], [lats + λmax, lons − λmax],
[lats − λmax, lons + λmax], and [lats − λmax, lons − λmax], respectively.

According to the latitude and longitude information of the FOV, the latitude and
longitude information of the ground target, the positions of the satellite at each moment, as
well as the right ascension of Greenwich at the initial moment, we can obtain the key orbit
performance indices of a satellite [39], such as the response time [32,40]. The response time
is defined as the time required from when a request is received to observe a ground target
until the satellite can observe it. The method that assesses whether the target lies in the
FOV at moment t, as well as the response time timag can be found in [32]. Moreover, the
calculation method of the latitude and longitude of the subsatellite point at each moment is
introduced in the next section.

2.2. Orbit Dynamics Model

The position of a satellite in its orbit can be obtained by using six orbit elements,
including semimajor axis a, eccentricity e, inclination i, longitude of ascending node Ω,
argument of perigee ω, and true anomaly θ, as Figure 2 shows. By using the orbit elements,
we can calculate the position of the satellite, as well as the latitude and longitude of each
subsatellite point at each moment. In this section, we briefly introduce the calculation
methods, and more detailed derivation steps can be found in [41].

North Celestial Pole

a

Perigee

x

y

z



i





Satellite

Equatorial plane

Orbit

Figure 2. Geocentric equatorial frame and the orbital elements.
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Given a satellite flying around the Earth, it is well-known that the period P for an orbit
of the satellite is calculated by

P =
2π
√

µ
a3/2, (8)

where µ is the Earth’s gravitational parameter. Then, the time t0 since perigee at the initial
epoch can be calculated as

t0 =
M
2π

P, (9)

where M is the initial mean anomaly. According to Kepler’s equation, M can be calcu-
lated by

M = E− e sin E, (10)

where E is the eccentric anomaly, which yields the relation with true anomaly θ as

tan
E
2
=

√
1− e
1 + e

tan
θ

2
. (11)

Given a time change ∆t, the longitude of ascending node Ω, argument of perigee ω at
the moment t = t0 + ∆t can be expressed by

Ω = Ω + Ω̇∆t, (12)

ω = ω + ω̇∆t, (13)

where Ω̇ and ω̇ are time variations of Ω and ω, which are determined by J2 perturbation of
Earth oblateness. The expressions of Ω̇ and ω̇ are written as

Ω̇ =

[
3
2

√
µJ2R2

E

(1− e2)
2a7/2

]
cos i, (14)

ω̇ = Ω̇
5/2 sin2 i− 2

cos i
, (15)

where J2 = 1.083× 10−3. The orbit elements are updated by repeating Equations (9)–(13) at
each moment t. Meanwhile, the newly found true anomaly θ at the moment t can be used
to calculate the state vector of the satellite in the perifocal coordinate coordinate system
(PQW). The satellite position vector rO and velocity vector vO in the PQW frame can be
expressed by

rO =
h2

µ

1
1 + e cos θ


cos θ
sin θ

0

, (16)

vO =
µ

h


− sin θ

e + cos θ
0

, (17)

where h is the angular momentum of the satellite, yielding a relation with the semimajor
axis a as below

a =
h2

µ

1
1− e2 . (18)

Particularly, the position vectors rO can be transformed to the Earth-centered inertial
(ECI) frame through the transformation matrix RI/O (C ≡ cos and S ≡ sin) written as

RI/O =CωCΩ − CiSωSΩ −SωCΩ − CiSΩCω SiSΩ
CωSΩ + CiSωCΩ −SωSΩ + CiCΩCω −SiCΩ

SωSi CωSi Ci

,
(19)
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by
rI = RI/OrO, (20)

where rI is the satellite position in the ECI frame. Meanwhile, rI can be expressed in the
Rotating Earth-fixed frame by [4]

rI′ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

rI , (21)

which can be written in vector notation

rI′ = XÎ + YĴ + ZK̂. (22)

Define a notation r =
√

X2 + Y2 + Z2, the latitude and longitude of the subsatellite
point can be calculated by

lats = sin−1 (Z/r), (23)

lons =

cos−1
(

X
r cos lats

)
, Y

r > 0

360◦ − cos−1
(

X
r cos lats

)
, otherwise

. (24)

Based on the above equations, the position of the satellite, as well as the latitude and
longitude of each subsatellite point at each moment can be obtained.

Furthermore, in this study, the orbit maneuver focuses on how to move a satellite
in the same plane, which can be treated as a co-orbital rendezvous problem [42]. In the
co-orbital rendezvous problem, two satellites are assumed to be located in the same orbit
and one satellite maneuvers its orbit by two-impulse Hohmann transfer to catch up with the
other one. Therefore, a velocity increment ∆v at the moment tm is considered to calculate
the orbit elements before and after maneuvering based on orbit equations.

2.3. Formulation of the Optimization Problem

As mentioned above, the optimization problem aims to find appropriate velocity
increment ∆v and maneuver moment tm to obtain a reasonable scheduling scheme for
transferring the satellite. Hence, ∆v and tm can be considered as decision variables of the
optimization problem, and they are constrained by

− ∆vmax ≤ ∆vs. ≤ ∆vmax, (25)

0 < tm < tt + T. (26)

Since ∆v is associated with the capacity of fuel, which is the key parameter of the
satellite remained lifetime, constraint (25) ensures that the velocity increment is limited to a
reasonable range. Here ∆vmax represents the maximum allowed velocity increment and
the negative value indicates the velocity in the reverse direction. Constraint (26) defines
the range of a feasible maneuver moment (when the satellite starts its rocket engine).
Furthermore, there are other constraints introduced in the following.

Dimag/106 ≤ R, (27)

250× 103 ≤ Hnew ≤ 1300× 103, (28)

ts ≤ tt + Tr ≤ te, (29)

Tr ≤ T. (30)

To obtain sufficient information from a single observation result, constraint (27) guar-
antees that the ground resolution is smaller than the required resolution, in which the
ground resolution is associated with the satellite altitude over the ground target divided by
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the horizontal number of pixels. When the satellite is transferring its orbit, the change of
orbit altitude should be limited to a reasonable range to ensure the stable operation of the
satellite. As the satellite altitude is typically between 250 and 1300 km [43], constraint (28)
is carried out to limit the satellite altitude after maneuvering. Constraint (29) is used to
ensure that the observation moment lies in the sunshine time window. Furthermore, as
timeliness is crucial for emergency observation tasks, we use constraint (30) to limit the
maximum response time of the satellite.

In practical applications, users require different solutions depending upon the purpose.
To satisfy diverse user requirements, we build three models considering response time,
ground resolution, and fuel consumption as objectives, respectively, which are written as

f3 = min Tr,

s.t. Constraints (25)–(29).
(31)

f2 = min
(

Dimag/106
)

,

s.t. Constraints (25)–(26), (28)–(30).
(32)

f1 = min ∆v,

s.t. Constraints (26)–(30).
(33)

The calculation processes of objectives are as follows. During the optimization process,
appropriate decision variables (i.e., velocity vector increment ∆v and maneuver moment tm)
will be searched by the algorithm under the constraints mentioned in Equations (31)–(33).
Since the satellite conducts an impulsive maneuver whose direction and magnitude are
determined by ∆v at moment tm to transfer its orbit, the new state velocity vector at
moment tm can be determined by decision variables. Then, the state velocity vector of the
satellite can be transformed into the position vector represented by orbit elements by using
Equations (19)–(20). As the satellite flies around the Earth, the position vector of the satellite
changes with time. The changes in position vector can be tracked by Kepler’s equation
coupled with orbit equations mentioned in Equations (8)–(18). Meanwhile, according
to the position vector, the subsatellite point at the same moment can be obtained by
Equations (21)–(24). The FOV of the satellite is determined by the subsatellite point at the
same moment according to Equations (1)–(7) introduced in the orbit coverage analysis.
When a FOV covers the target point, it indicates that the satellite can observe this target
point. Thus, the first objective f1 is calculated by the difference between the maneuver time
tm and the time instance when the satellite can observe the target. In the second objective
f2, the satellite altitude is the distance between the satellite and the subsatellite point when
the satellite can observe the target. As to the third objective f3, it is determined by the
decision variable ∆v directly.

3. Adaptive Differential Evolution Algorithm Based on Graph Search

Differential evolution (DE) is an efficient population-based stochastic optimization
approach for solving optimization problems over continuous space, and many variants
of DE have been implemented in engineering fields [30,44,45]. In this study, we conduct
problem-specific modifications on the framework of an adaptive DE, named ACODE, first
proposed in [31] that concerned data clustering problems, to solve the orbit maneuver
optimization problem. The ACODE can be treated as a hybridization of DE and ACO,
which will be detailed in this section after a brief introduction to the classical DE.

3.1. Classical DE Algorithm

Typically, the DE includes four basic steps [46]: Initialization, mutation, crossover,
and selection.

(i) Initialization. This step randomly creates an initial population consisting of N
individuals. When the iteration number G = 0, the i-th individual is initialized in the
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search space constrained by the minimum bound Xmin = {x1
min, x2

min, . . . , xD
min} and the

maximum bound Xmax = {x1
min, x2

min, . . . , xD
min}, according to the following method

xj
i,0 = xj

min + rand(0, 1)× (xj
max − xj

min),

j ∈ {1, 2, . . . , D},
(34)

where rand(0, 1) is a uniformly distributed number within [0, 1] and D is the number
of dimensions.

(ii) Mutation. The mutation operation perturbs a target vector Xi,G from the current
generation to obtain a donor vector Vi,G, which can be written as

Vi,G = Xri
1,G + F · (Xri

2,G − Xri
3,G), (35)

where F is the scaling factor, which is a positive control parameter for scaling the difference
vectors. The indices ri

1, ri
2, and ri

3 are mutually exclusive integers randomly chosen from
the range [1, N] and they are different from the base vector index i.

(iii) Crossover. The crossover operation can improve the diversity of the population by
exchanging the components of the donor vector Vi,G with the target vector Xi,G to form the

trial vector Ui,G =
{

u1
i,G, u2

i,G, . . . , uD
i,G

}
. There are two kinds of commonly used crossover

strategies, including exponential (i.e., two-point modulo) and binomial (i.e., uniform). The
exponential crossover makes the trial vector contains a sequence of consecutive components
taken from the parent vector. The structure of the trial vector can be expressed by

uj
i,G =

{
vj

i,G, if j ∈ {k, 〈k + 1〉n, . . . , 〈k + L− 1〉n},
xj

i,G, for all other j ∈ [1, D].
(36)

where 〈j〉n is a modulo function with modules D, k and L are two integers randomly chosen
from [1, D]. On the other hand, the binomial strategy can be outlined as

uj
i,G =

{
vj

i,G, if (randj[0, 1] ≤ CR or j = jrand),

xj
i,G, otherwise.

(37)

where CR is the crossover rate and jrand is a randomly chosen index lying in the inter-
val [1, D].

(iv) Selection. The selection operation determines whether the target or the trial vector
survives to the next generation according to the objective function, which is described as

Xi,G+1 =

{
Ui,G, if f (Ui,G) ≤ f (Xi,G),
Xi,G, otherwise.

(38)

Once an initial population is created, the mutation, crossover, and selection strategies
are repeated until a stopping criterion is satisfied to obtain promising solutions. It should
be noted that different mutation strategies demarcate a DE scheme from other schemes.
Except for the mutation strategy introduced above, there are some other well-known
mutation strategies, such as “DE/best/1”, “DE/best/2”, “DE/rand/2”, “DE/rand-to-
best/1”, “DE/current-to-pbest/1”, “DE/current-to-rand/1”, etc. [46].

3.2. ACODE Algorithm

The performance of DE highly depends on four key components, i.e., mutation strat-
egy, crossover strategy, scaling factor F, and crossover rate CR [31]. We transform these
components into a directed acyclic graph and implement an ant colony optimization-based
adaptive DE algorithm to conduct the optimization process.
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3.2.1. Directed Acyclic Graph Formed by Configurations

An example of the directed acyclic graph formed by configurations is shown in
Figure 3. The graph includes five levels, of which a virtual point lies in the first level to
gather all ants and the remaining four levels represent four key components (i.e., mutation
strategy, crossover strategy, scaling factor F, and crossover rate CR), respectively. Every
node in each level indicates a candidate configuration, and the nodes of two adjacent levels
are fully connected. A path that starts from the first level and terminates at the fifth level can
be treated as a combination of four candidate configurations, as the blue path in Figure 3
shows. Mathematically, the directed acrylic graph can be described by Φ = {V, E}, where
V is the set of nodes and E ⊆ V ×V indicates directed arcs. The pheromone trail on the
arcs connecting v ∈ V to adjacent nodes in the next level is recorded by pheromone vector
Bv. Hence, the length of Bv depends on the number of nodes in the next level. According to
empirical considerations [31,33,46], the candidate configurations we used in this paper are
summarized in Table 2.

Virtual point

Mutation 

strategies

Scaling factor F

Crossover 

strategies

Crossover rate CR

Virtual point

Mutation 

strategies

Scaling factor F

Crossover 

strategies

Crossover rate CR

Figure 3. An example of the directed acyclic graph formed by key components of DE.

Table 2. Candidate configurations.

Components Candidate Values or Strategies

Mutation strategy “DE/rand/1”, “DE/current-to-pbest/1”,
and “DE/current-to-rand/1”

Crossover strategy binomial and exponential
Scaling factor F 0.4, 0.5, 0.6, 0.8, 0.9, and 1.1

Crossover rate CR 0.1, 0.4, 0.6, 0.9, and 0.99

3.2.2. Framework of ACODE

The framework of ACODE is displayed in Algorithm 1. The algorithm starts with
the initialization of a population P with size N, configuration matrix M, iteration counter
g, and pheromone matrix Bg (line 1). Particularly, the number of individuals in P equals
the number of ants. Then, the algorithm runs until the stopping criterion is satisfied
(lines 2–11). Every ant at each iteration is utilized to find a reasonable combination of
configurations from the graph, and the combination is recorded in M (line 4). Mi indicates
the configuration combination of the i-th individual and it is implemented to evolve
individual xi,g (line 5). The offspring ui,g is compared with xi,g to determine which solution
is preserved into the next generation (lines 6-9). Finally, the pheromone matrix Bg+1 that
would be used in the next generation is updated according to the fitness information in
line 10.

3.2.3. Solution Representation and Initialization

As above-mentioned, we consider the velocity increment ∆v and maneuver moment
tm as decision variables. During the optimization process, the decision variables are
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used to calculate the positions of the satellite expressed by orbit elements, while the
objectives are determined by position vectors, as introduced in Section 2. The velocity
increment ∆v is the magnitude of the change in the velocity vector, which can be represented
by three velocities (i.e., ∆vx, ∆vy, and ∆vz) on three axes of the Cartesian coordinate
system. Here the X axis is directed to the eccentricity vector, Z axis is in the direction
of the satellite’s angular momentum which lies perpendicular to the orbital plane, and
the Y axis completes the right-hand set of co-ordinate axis. Therefore, a chromosome
should be composed of velocity increments in three dimensions and the moment when
the maneuver occurs. Figure 4 shows the representation of a chromosome, where xi is the
expression vector while tm, ∆vx, ∆vy, and ∆vz are decision variables. Since the satellite
conducts a coplanar maneuver, the velocity increment ∆vz always equals 0. Nevertheless,
we still include ∆vz in the chromosome for computation convenience. In addition, we
generate the initial population randomly and the boundaries of decision variables are
determined by constraints (25) and (26). Since the search space of each variable is large
and the performance of DE algorithm is seriously influenced by the diversity of the initial
population, the initial population should be uniformly distributed in the search space. We
use the Latin hypercube sampling (LHS) to generate the initial population. The LHS is a
statistical method that can generate a quasi-random sampling distribution, which has been
widely applied in other studies to obtain a high-quality initial population [47].

Algorithm 1: Framework of ACODE.
Input: Population size N, evaporation rate ρ, and directed acyclic graph Φ
Output: Final population P

1 Initialization: initial population P← {x1, x2, . . . , xN}, configuration matrix
M← ∅, g← 0, pheromone matrix Bg ← ∅,

2 while stopping criterion is not satisfied do
3 for i ∈ N do
4 Mi ← ParameterAdaption(Φ, Bg)
5 ui,g ← GeneticOperation(Mi, xi,g)

6 if f (ui,g) < f (xi,g) then
7 xi,g+1 ← ui,g
8 end
9 else

10 xi,g+1 ← xi,g
11 end
12 end
13 Bg+1 ← UpdatePheromone(Bg, ρ, P)
14 g← g + 1
15 end

ix xv yv
zvmt

Decision variablesExpression vector

Figure 4. An illustration of the chromosome representation.



Remote Sens. 2022, 14, 1966 13 of 21

3.2.4. Parameters Adaption Based on ACO

Based on the directed acyclic graph, we conduct the parameter adaption by utilizing
an ACO method. Specifically, each ant searches for a reasonable combination (i.e., path) for
configuring an individual according to the pheromone trail on each arc in the graph. Given
a node v from which an ant departs, there would be h candidate arcs that can be chosen.
The probability pj for picking arc j is written as

pj =
Bg

v,j

∑h
j=1 Bg

v,j

, (39)

where Bg
v,j is the pheromone trail on arc j with the starting node v at the g-th iteration.

The process of parameter adaption is shown in Algorithm 2. In the algorithm, an ant
departs from the virtual node v1 and travels through four nodes in the remaining four
levels. At the l-th level, all probabilities for choosing arcs connecting starting node vl
with all nodes in the next level are calculated based on Equation (39) and recorded in Pl
(line 3). Then, roulette wheel selection (i.e., RouletteWheel()) is adopted to choose an arc
j that determines the node vl+1 (i.e., end node of arc j) at the (l + 1)-th level (lines 4–5).
The roulette wheel selection is a well-known stochastic selection method, in which the
probability for the selection of an arc is proportional to the pheromone trails on it. The
above steps are repeated until a path consisting of four arcs is obtained. This algorithm is
embedded into Algorithm 1 by executing once for each individual.

Algorithm 2: ParameterAdoption().
Input: Directed acyclic graph Φ and pheromone matrix Bg

Output: configuration combination Mi
1 Initialization: Mi ← ∅, virtual node v1
2 for l ∈ [1, 4] do
3 Pl ←Calculate probabilities of h arcs with Equation (39)
4 j← RouletteWheel(Pl)
5 Obtain node vl+1 according to arc j
6 Mi ← Mi ∪ vl+1
7 end

3.2.5. Pheromone Update

In Algorithm 1, the pheromone trails of the whole graph at the generation g is recorded
by a pheromone matrix Bg. The pheromone trail on each arc is updated at the end of each
iteration by the following method

∆τ
g
v,j =

∑xt∈Pg
j
| f (xt,g+1)− f (xt,g)|

∑N
i=1 | f (xt,g+1)− f (xt,g)|

, (40)

Bg+1
v,j = (1− ρ) · Bg

v,j + ∆τ
g
v,j, (41)

where ∆τ
g
v,j is the pheromone increment on arc j with starting node v at the g-th iteration,

Pg
j is the set of individuals who use the configurations corresponding to arc j at the g-

the iteration, and ρ is the evaporation rate. Equation (40) indicates that the pheromone
increment on an arc is determined by accumulated fitness improvements of individuals
who passed this arc divided by that of all individuals. The pheromone trail Bg+1

v,j on arc j

with starting node v at the (g + 1)-th iteration is updated by pheromone increment ∆τ
g
v,j

and pheromone trail Bg
v,j at the g-the iteration, as well as evaporation rate ρ in Equation (41).

Further, to avoid premature convergence, the Max–Min ant system [48] is implemented in
this study to limit the pheromone level on each arc within a range [0.1, 0.9] .
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4. Computational Experiments

To demonstrate the efficiency of ACODE on the proposed problem, simulation experi-
ments are conducted in this section. All algorithms are coded in Matlab and run on a 64-bit
Windows OS with Intel Core(TM) i5-8265U, 1.6 GHz, and 8 GB RAM.

4.1. Scenario Settings

We assume a set of scenarios in which three satellites are requested to observe four
ground targets within 12 h (from 1 December 2020 14:00:00 to 2 December 2020 02:00:00,
Beijing time). At the initial moment (i.e., 1 December 2020 14:00:00), each ground target
is invisible to each satellite. Once an observation task is received, an appropriate satellite
would be selected from these satellites to undertake orbital maneuvers to accomplish the
task according to users’ requirements. The initial orbital elements are displayed in Table 3,
where the first column is the satellite ID and the other columns indicate semimajor axis a,
inclination i, right ascension of the ascending node Ω, eccentricity e, argument of perigee
ω, and mean anomaly M. The four ground targets are randomly located in low-latitude,
mid-latitude, high-latitude, and higher-latitude areas, and their geographical information is
summarized in Table 4. The maximum scanning angle of the satellite, maximum response
time, minimum ground resolution, and maximum velocity increment predefined by users
are set to 45◦, 12 h, 2 m, and 300 m/s, respectively. Moreover, the maximum number of
fitness evaluations (FEs) of the algorithm is set to 50,000 and the evaporation rate ρ is set to
0.8 according to pre-experiments.

Table 3. Initial orbital elements of satellites.

ID a (m) e i (rad) Ω (rad) ω (rad) M (rad)

1 6,878,140 3.59426 × 10−16 97.0346 250.884 0 0
2 6,878,140 4.55556 × 10−18 97.0346 10.8840 0 2.61014 × 10−16

3 6,878,140 1.79873 × 10−16 97.0346 130.884 0 5.08063 × 10−15

Table 4. Geographical information of ground targets.

Target ID Latitude Longitude

1 0◦ 62◦W
2 41◦N 70◦E
3 50◦S 146◦W
4 45◦N 116◦E

4.2. Simulation Results

The ACODE is implemented to solve the three optimization models with different
optimization objectives based on the generated scenarios. The experiment results are
summarized in Table 5, in which the columns indicate scenarios, satellites selected to
accomplish observation tasks, maneuver moment tm, velocity increments (∆vx and ∆vy),
and objective values ( f1, f2, and f3) of the three optimization models. Particularly, the
scenario index is composed of the ground target ID and optimization objective. For instance,
T1O1 means in this scenario the satellites are requested to observe ground target 1 and the
optimization objective is f1 involved by the first optimization model. Here f1, f2, and f3
are response time, ground resolution, and fuel consumption, respectively. Note that the
minimum fuel consumption is represented by minimum velocity increment, as discussed
in Section 2. Although only one objective is considered in each scenario, we provide the
values of the other two objectives corresponding to the optimal solution of the scenario.
The value of the optimized objective considered in each scenario is in boldface.

The results in Table 5 indicate that all scenarios can be well-addressed by ACODE.
Furthermore, it can be observed that huge differences in objective values can be obtained if
we execute the same observation task based on different optimization models. For example,
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T1O1, T1O2, and T1O3 are three scenarios in which the satellites are requested to observe
ground target 1 with three different optimization objectives, respectively. The solution of
T1O1 selects satellite 3 to execute the task and earns the minimum response time while
yielding the poorest ground resolution compared with solutions of T1O2 and T1O3. More
specifically, the solution of T1O1 decreases the response time by up to 84.44% and increases
the ground resolution by up to 200.12% compared with the solutions of T1O2 and T1O3.
Meanwhile, its fuel consumption is a little less than the solution of T1O2 that optimizes the
ground resolution and much more than the solution of T1O3 that aims to find the minimum
fuel consumption.

Table 5. Simulation results.

Scenario Selected Satellite ID tm ∆vx (m/s) ∆vy (m/s) f1 (s) f2 (m) f3 (m/s)

T1O1 3 2020-12-1 14:49 −81.744079 288.2563 5682 1 1.34 299.62
T1O2 1 2020-12-1 14:10 286.203453 89.93099 36507 0.43 300.00
T1O3 1 2020-12-1 14:45 −65.113285 −9.637086 36507 1.08 65.82

T2O1 1 2020-12-1 14:59 123.578258 272.2139 6301 1.35 298.95
T2O2 3 2020-12-1 14:46 −155.259419 −256.6993 20440 0.44 300.00
T2O3 3 2020-12-1 14:00 3.676842 0.506845 19243 0.74 3.71

T3O1 2 2020-12-1 14:44 −224.161983 198.8964 4833 1.41 299.68
T3O2 2 2020-12-1 15:10 −252.270809 162.3559 40115 0.44 300.00
T3O3 1 2020-12-1 14:11 15.541757 −15.38881 9401 0.85 21.87

T4O1 3 2020-12-1 15:14 293.379811 −56.7 7705 1.01 298.81
T4O2 1 2020-12-1 14:45 −137.707437 −266.5268 38606 0.43 300.00
T4O3 1 2020-12-1 15:20 24.506321 31.81572 7859 0.95 40.16

1 The values in boldface are optimized objectives in each scenario.

4.3. Algorithm Comparisons

To further demonstrate the superiority of ACODE, we compare it with three well-
known evolutionary algorithms in existing studies, i.e., EPSDE [33], CSO [34], and SLPSO [35].
Particularly, EPSDE is an ensemble-based DE algorithm, in which a pool of mutation
strategies along with a pool of corresponding control parameters compete to produce
offspring individuals. CSO is a competitive swarm optimizer inspired by particle swarm
optimization. In CSO, a pairwise competition mechanism is used to update the position of
the particle that loses the competition by learning from the winner. Similarly, SLPSO adopts
social learning mechanisms for particle swarm optimization. Meanwhile, a dimension-
dependent parameter control method is embedded into the SLPSO to ease the burden of
parameter settings.

The comparison results are summarized in Table 6, in which the last four columns
are best, worst, mean, and standard deviation values of three optimization objectives over
10 runs obtained by all algorithms. Note that the fuel consumption is represented by the
value of velocity increment. For each scenario, the best results are in boldface. Wilcoxon
rank-sum tests with a significance level of 0.05 are used for the significance tests. It can
be found that ACODE significantly outperforms EPSDE, CSO, and SLPSO in almost all
scenarios, in terms of response time, ground resolution, and fuel consumption. Especially,
the superiority of ACODE is more significant when it optimizes orbital maneuvers for
observing ground target 1 in terms of response time (scenario T1O1) and ground target 2 in
terms of fuel consumption (scenario T2O3).
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Table 6. Algorithm comparison results.

Scenario Algorithm Best Worst Mean Std.

T1O1

ACODE 5682 1 5682 5682 0
EPSDE 5689 5721 5701.8 9.71

CSO 5689 19,935 7124.8 4270.07
SLPSO 5693 19,909 7194.9 4239.05

T1O2

ACODE 0.43 0.43 0.43 0
EPSDE 0.43 0.47 0.45 0.01

CSO 0.48 0.64 0.56 0.06
SLPSO 0.49 0.63 0.55 0.04

T1O3

ACODE 65.82 65.82 65.82 0
EPSDE 68.18 76.5 71.68 3.15

CSO 67.34 80.74 74.85 3.6
SLPSO 76.98 120.14 97.47 12.66

T2O1

ACODE 6301 6301 6301 0
EPSDE 6308 6341 6324.5 10.76

CSO 6311 6339 6322.5 9.11
SLPSO 6355 19,146 10,222 5834.61

T2O2

ACODE 0.44 0.44 0.44 0
EPSDE 0.45 0.47 0.46 0.01

CSO 0.47 0.55 0.51 0.03
SLPSO 0.44 0.58 0.5 0.04

T2O3

ACODE 3.71 3.81 3.72 0.03
EPSDE 6.31 10.06 8.28 1.3

CSO 4.78 11.89 6.95 2.24
SLPSO 9.4 72.13 29.45 18.07

T3O1

ACODE 4833 4833 4833 0
EPSDE 4848 4882 4858.4 9.77

CSO 4888 5129 4944.3 66.58
SLPSO 4843 9332 6236.6 2006.62

T3O2

ACODE 0.44 0.44 0.44 0
EPSDE 0.45 0.51 0.47 0.02

CSO 0.49 0.54 0.51 0.01
SLPSO 0.46 0.58 0.5 0.04

T3O3

ACODE 21.87 21.87 21.87 0
EPSDE 22.83 32.5 29.11 3.43

CSO 23.93 29.52 27.11 1.68
SLPSO 34.74 64.22 45.18 8.49

T4O1

ACODE 7705 7705 7705 0
EPSDE 7723 7746 7732.7 7.4

CSO 7726 7754 7738 8.06
SLPSO 7769 7846 7804.1 24.92

T4O2

ACODE 0.43 0.44 0.43 0
EPSDE 0.45 0.48 0.46 0.01

CSO 0.47 0.6 0.51 0.04
SLPSO 0.48 0.55 0.52 0.02

T4O3

ACODE 40.16 40.16 40.16 0
EPSDE 42.91 46.58 45.07 1.16

CSO 41.05 48.92 43.91 2.58
SLPSO 45.07 74.64 60.88 9.85

1 The values in boldface are the best results in each scenario.
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It should be noted that EPSDE is similar to ACODE, as EPSDE ensembles a set of
mutation strategies and corresponding control parameters in DE. Hence, EPSDE shows
similar performance compared with ACODE for observing ground target 1 in terms of
ground resolution (scenario T1O2). Nevertheless, ACODE is superior to EPSDE in other
scenarios. The reasons can be twofold. First, EPSDE only ensembles mutation strate-
gies and corresponding control parameters, while crossover strategies and corresponding
control parameters that also can affect algorithm performance are not involved. On the
contrary, ACODE considers both mutation strategies, crossover strategies, and their control
parameters. Second, each component of EPSDE conducts the adaption independently
while ACODE configures all components in a holistic manner, which is also the difference
between ACODE and ensemble-based algorithms.

4.4. Experiments with Insufficient Satellite Resources

In the above sections, we calculate the solution of every satellite and select the most
appropriate satellite out of three satellites to observe the ground target. The simulation re-
sults are obtained by the algorithm with sufficient satellite resources. However, since some
satellites may be occupied by other tasks that cannot be interrupted when emergencies
occur (i.e., some satellites may be infeasible for executing the observation task), it is inter-
esting to investigate the impact of insufficient satellite resources on the orbital maneuver
scheme and algorithm performance. Hence, this section analyzes the experiment results
with different numbers of satellites based on the scenarios generated by removing satellites
from the scenarios introduced in Section 4.1. Specifically, the one-satellite scenarios in this
section preserve satellite 1, the two-satellite scenarios preserve satellite 1 and satellite 2,
and the three-satellite scenarios are the same as before.

The simulation results are presented in Figure 5. Each figure indicates the simulation
results for observing the same ground target, and the same color means the simulation
results in the scenarios that consider the same optimization model. Moreover, to understand
the trade-off among three objectives, we normalize all results into [0, 1], and a smaller value
indicates a better solution in a direction. Since we generate the scenarios by removing
satellites from the scenarios that already have solutions in Section 4.2, some scenarios would
have the same solution as before. For example, the solution schemes of three scenarios
that observe target 1 while optimizing the ground resolution with different numbers of
satellites select satellite 1 to execute the task. Hence, the results of scenarios T1O2-one-
satellite, T1O2-two-satellite, and T1O2-three-satellite are the same, as Figure 5a shows. On
the other hand, other solutions indicate that the number of satellites significantly affects
the algorithm results. For example, scenarios T1O1-one-satellite, T1O1-two-satellite, and
T1O1-three-satellite select three different satellites to execute the task, respectively. To
observe ground target 1 with the aim of optimizing response time, satellite 2 is selected in
the two-satellite scenario and the response time is increased by 249.93% compared with the
solution of the three-satellite scenario, as Figure 5a shows.

Furthermore, it can be found that with the increase in the number of satellites, the
value of the optimization objective that corresponds to each optimization model can be
significantly improved. However, the trade-off results among the three objectives show
that the improvement on one objective may not always promote the improvement of other
objectives. For example, the ground resolution for observing ground target 2 is significantly
improved as the number of satellites increases from 1 to 3, while the fuel consumption is
still very high and the response time is even increased, as Figure 5b shows.
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Figure 5. Simulation results by varying the number of satellite. (a) Ground target 1, (b) ground
target 2, (c) ground target 3, (d) ground target 4.

5. Conclusions

In this paper, we investigate the orbital maneuver optimization problem of Earth
observation satellites oriented to emergency tasks. Based on the analysis of orbit coverage
and dynamics, we propose three kinds of optimization models that aim to, respectively,
optimize response time, ground resolution, and fuel consumption, to satisfy diverse user
requirements. Meanwhile, we implement an adaptive differential evolution algorithm
based on graph search to solve the proposed optimization problems, which is named
ACODE. The main feature of ACODE is to form the key components of DE into a directed
acyclic graph and adopt an ACO method to search for combinations of these components
from the graph, thereby adaptively configuring reasonable components for DE. The key
components considered in this paper include mutation strategies, crossover strategies, as
well as their corresponding control parameters, both of which can affect the performance
of DE.

Finally, computational experiments are conducted to verify the proposed three opti-
mization models and ACODE. The simulation results show that all simulation scenarios
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that consider different optimization objectives can be well-addressed by ACODE. Com-
parison experiments are also carried out to demonstrate the superiority of ACODE on
the proposed problem. The comparison results indicate that ACODE is superior to three
well-known algorithms (i.e., EPSDE, CSO, and SLPSO). Further, we find that insufficient
satellite resources would affect the efficiency of the orbital maneuver scheme and algorithm.

In future studies, we would like to investigate the multi-objective optimization algo-
rithm that can optimize the three optimization objectives simultaneously for better decision
making operations.
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