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Abstract: This study investigated the capability of the Weather Research and Forecasting (WRF) 

model to simulate seven different heavy precipitation (PRE) events that occurred across East Africa 

in the summer of 2020. The WRF model outputs were evaluated against high-resolution satellite-

based observations, which were obtained from prior evaluations of several satellite observations 

with 30 stations’ data. The synoptic conditions accompanying the events were also investigated to 

determine the conditions that are conducive to heavy PRE. The verification of the WRF output was 

carried out using the area-related root mean square error (RMSE)-based fuzzy method. This method 

quantifies the similarity of PRE intensity distribution between forecast and observation at different 

spatial scales. The results showed that the WRF model reproduced the heavy PRE with PRE mag-

nitudes ranging from 6 to >30 mm/day. The spatial pattern from the Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks-Cloud Classification-Climate Data 

Record (PERSIANN-CCS-CDR) was close to that of the WRF output. The area-related RMSE with 

respect to observation showed that the error in the model tended to reduce as the spatial scale in-

creased for all the events. The WRF and high-resolution satellite data had an obvious advantage 

when validating the heavy PRE events in 2020. This study demonstrated that WRF may be used for 

forecasting heavy PRE events over East Africa when high resolutions and subsequent simulation 

setups are used. 

Keywords: synoptic analysis; WRF; GPM IMERG; PERSIANN-CCS-CDR; CHIRPS; TAMSAT; ex-

treme precipitation events; fuzzy method 

 

1. Introduction 

Globally, extreme precipitation (PRE) has increased with the changing nature of the 

climate. This has led to increasing incidence of flash floods [1]. As a natural disaster, flash 

floods have devastating impacts on different sectors of society. An example is the socio-

economic damage caused by flash floods due to heavy PRE events in Germany (2021), the 

USA (2021), France (2021), China (2021), and Africa (2019, 2020, and 2021) [2,3]. A flash 

flood is defined as a sudden and rapid response to a heavy PRE event [1]. Typically, flash 
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flood events are regional or local, and the most vulnerable communities are those with a 

heavy concentration of buildings and people [1] and weak coping strategies for disasters 

[1,4–6]. 

Urban flash flooding is a major natural disaster in African countries [7]. A recent re-

view revealed that increased flood risk may persist due to global warming [8]. This indi-

cates that to improve resilience and adaptation to climate uncertainties and provide real-

time climate and weather information, a better understanding of the weather system and 

its drivers is crucial [9]. However, hydrometeorology information on the weather forecast 

and subsequent flash flood forecasting is poor and inadequate in nearly 80% of African 

countries [9]. 

PRE is a challenging weather or climate variable to forecast [10]. However, advances 

in numerical weather prediction (NWP) have improved our weather forecasting ability, 

largely due to higher computing power and progress in our understanding of the model 

dynamics and physics [11,12]. Thus, the ability of the numerical model to correctly repre-

sent synoptic conditions and/or simulate specific meteorological episodes strongly de-

pends on the performance of parameterization schemes, as well as lateral and initial 

boundary conditions [11]. There are many studies that have used WRF in different parts 

of the world, including Africa. Most of them, however, have focused on seasonal or annual 

time scales. What is relevant to highlight is that there are not many studies that have con-

ducted high-resolution simulations of heavy rainfall events fully representing small-scale 

forcings and atmospheric processes (such as convection) [13,14]. Conventionally, numer-

ical model outputs are validated against station measurements [15]. This is widely recom-

mended as the best practice and the benchmark for many model validation studies [11,16]. 

Denser weather station networks produce robust validation results (assuming the data 

records are consistently updated) [9,16]. Studies of such a nature are predominantly con-

ducted in developed countries where budgetary allocation for research and development 

is high [16,17]. The case is completely different for developing countries due to the lack of 

access to weather station records [17–20]. This, among other factors (see Nicholson [21]), 

has become a disincentive for academic research capabilities in the region, thus widening 

the scientific research gap between African and developed countries. 

To address these challenges, satellite PRE products have been proposed as useful 

proxies for gauged observations [19]. In recent times, policymakers, Earth observation sci-

entists, and engineers from the National Aeronautics and Space Administration (NASA) 

and European Space Agency (ESA) have advised that the untapped potential of space may 

provide a breakthrough in how we address climate change threats and challenges [1,22]. 

As a result, numerous dedicated satellites have been launched into space in the past few 

decades to serve this purpose [22,23]. 

Numerous Earth observations are available at different scales. They have been used 

to monitor, understand, model, and predict climate change-related disasters (see [24,25]). 

For example, high-resolution satellites can capture at a finer scale local climate infor-

mation to help us explain and understand climate events [22,23]. 

Due to the lack of access to weather station records in many African countries, the 

question on the minds of researchers is whether high-resolution satellite PRE products 

can be used as proxies to validate numerical model outputs [10]. If so, could the recent 

multiple heavy PRE episodes and subsequent flash floods that engulfed parts of African 

countries in the summer of 2020 be used as case studies to explore and understand these 

products? 

High-resolution satellite observations, such as the Tropical Applications of Meteor-

ology using Satellite and Ground-based Observations (TAMSAT, [26]), Precipitation Esti-

mation from Remotely Sensed Information using Artificial Neural Networks-Cloud Clas-

sification-Climate Data Record (PERSIANN-CCS-CDR, [27]), Climate Hazards Group In-

frared Precipitation with Stations (CHIRPS) [28], and the Integrated Multi-satellitE Re-

trievals for the Global Precipitation Measurement Mission (GPM IMERG) [29], are pub-

licly available for such research purposes. Many satellite datasets have been validated 
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against gauge observations across Africa at different spatio-temporal scales. For example, 

validation studies show that these satellite PRE products are consistent with gauge esti-

mates in the Congo [17,30], Kenya [31,32], Ghana [33], and Burkina Faso [34]. 

Another way to understand heavy PRE events is to investigate the physical mecha-

nisms accompanying them. Many studies have used observational data or numerical 

modeling [35–37]. Established modeling centers, such as the European Centre for Me-

dium-Range Weather Forecasts (ECMWF) [38] or the National Centers for Environmental 

Prediction (NCEP) [39], provide reanalyses of atmospheric parameters for this purpose 

[35–37,40]. To achieve this, forecasters or modelers use atmospheric parameters as evi-

dence to indicate favorable conditions for a heavy PRE. Local weather conditions are com-

plex, and our understanding of the synoptic conditions over a region of interest (ROI) is 

incomplete in the literature and teaching. Thus, this approach is helpful and serves as an 

alternative tool to increase confidence in model simulations or detect discrepancies be-

tween simulated and observed estimations. Moreover, this approach can provide more 

insights into the atmospheric conditions that led to the devastating heavy PRE events in 

Africa in the summer of 2020. 

In the context of the ongoing global warming discussions and the subsequent gap in 

academic research across Africa, our understanding of routine weather forecasting and 

warnings is still an open question [22]. This study compared the WRF model outputs 

against good-performing high-resolution satellite estimates obtained through a prelimi-

nary gauge-based evaluation and explored the physical mechanisms accompanying 

heavy PRE. The outcome may contribute to building the confidence of multi-disciplinary 

users in the accuracy and reliability of existing tools and products. 

Heavy PRE affected East Africa, including Sudan, South Sudan, Ethiopia, Kenya, and 

Uganda, in the summer of 2020. These episodes are typical heavy PRE events caused by 

convective activities [2,3] and are common during June, July, August, and September [41]. 

These events caused flash flooding (with associated fatalities) in East Africa but received 

little attention from governments or aid agencies [42–44]. 

The main objectives of this study could be summarized as follows: (1) to examine the 

capability of the WRF model to simulate heavy PRE events; and (2) to investigate the syn-

optic conditions accompanying the heavy PRE events during the summer of 2020. 

The remainder of this paper is divided into four main sections. Section 2 briefly pre-

sents the study area, the observational datasets, the WRF model experiment, and the syn-

optic analysis of severe weather events. Section 3 presents the results, while Sections 4 and 

5 provide the discussions and conclusions, respectively. 

2. Materials and Methods 

2.1. Study Area, and Heavy PRE Event Selection and Verification 

In 2020, seven heavy summer PRE events over East Africa led to flash floods with 

associated fatalities [2,3]. We relied on two freely available databases to obtain flash flood 

event information: the Copernicus floodlist web portal [2] and the International Disaster 

Database (EM-DAT) [3]. Table 1 provides more information on the major events, includ-

ing the occurrence dates and affected countries. 
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Table 1. List of significant weather events and simulation period during the summer of 2020. 

Event Number Occurrence Date Different Events Simulations 

Case 1 8 June 2020 18:00 7 June 2020 to 23:00 8 June 2020 

Case 2 10 June 2020 18:00 9 June 2020 to 23:00 10 June 2020 

Case 3 18 June 2020 18:00 17 June 2020 to 23:00 18 June 2020 

Case 4 20 July 2020 18:00 19 July 2020 to 23:00 20 July 2020 

Case 5 27 August 2020 18:00 26 August 2020 to 23:00 27 August 2020 

Case 6 1 September 2020 18:00 31 August 2020 to 23:00 1 September 2020 

Case 7 6 September 2020 18:00 5 September 2020 to 23:00 6 September 2020 

Source: Floodlist [2] and EM-DAT [3]. 

This study focused on the PRE (June–July–August–September, JJAS) season, mainly 

in Sudan, South Sudan, Eritrea, Djibouti, and Somalia and extending to some parts of 

northwestern Ethiopia, eastern Kenya, and northwestern Uganda [8,45]. Most of the 

events occurred on the South Sudan–Ethiopia border; however, case event 5 affected a 

larger region, including Kenya, Uganda, and Sudan (Table 1). 

2.2. Observation and Model Data 

Four (4) high-resolution gridded satellite PRE products, namely TAMSAT [26,46], 

PERSIANN-CCS-CDR [27,47], CHIRPS [28], and GPM IMERG [29], were used in this 

study. The satellite PRE data were used as proxies for gauged observations due to data 

inaccessibility or low density of weather stations over the study region (Table 2). 

We first conducted an evaluation study of the four satellite datasets to assess their 

reliability over the region. The evaluation study used 4 years (2013–2016) of station data 

over Kenya. Kenya was chosen as the sample sub-area of the study domain because of its 

relatively good representativity of East Africa’s major climate features and drivers and 

data availability challenges over the region. The data were obtained from 30 gauge sta-

tions distributed over Kenya and sourced by the Kenya Meteorological Department 

(KMD) (Table S1). The data were screened, quality controlled, and deemed reliable for the 

validation study. The validation statistics were performed at daily and monthly time-

scales. It should be noted that the purpose of the evaluation was not to determine the best 

data but to demonstrate the good performance of the datasets for estimating heavy PRE 

due to their differences in spatial and temporal resolutions. Following Lockhoff et al. [48], 

this study considered standard percentile thresholds for extremes and defined extreme 

PRE events as daily totals exceeding 95th percentiles of the overall daily wet event distri-

bution, estimated from the 30 stations in the period 2013–2016. 

Since our primary focus was the 2020 flashfloods, we employed [49] the fuzzy 

method-based forecast verification. Given the known dependencies between extreme 

events and simulation resolution, we adopted the area-related root mean square error 

(RMSE) (Equation S1) method proposed by Rezacova et al. [50]. Each scale results in a 

fixed number of spatial windows for the forecast and observation. For each spatial win-

dow, the RMSE is computed between the sorted distribution of pixels within the spatial 

windows in the forecast and the corresponding sorted distribution of pixels within the 

same spatial windows in the observation. In this study, the averaged area-related RMSE 

was calculated for 5, 15, 30, 60, 75, 120, 150, and 240 km scales using the WRF output and 

PERSIANN-CCS-CDR observational data for all seven events. We considered a 1 mm 

threshold as a meaningful error and filtered the RMSE matrices before averaging the values. 

To investigate the physical mechanism, we used ERA5 atmospheric parameters (see 

Section 2.4 for details) from ECMWF [38,51] for synoptic analyses. We re-gridded the sat-

ellite data resolution to match the WRF inner domain resolution (0.045° × 0.045°) for com-

parison purposes using a bilinear interpolation technique. ERA5 data were used at a spa-

tial resolution of 0.25° × 0.25°. 
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Table 2. List of gridded precipitation datasets used in this study. 

Type of  

Dataset 
 Spatial Resolution 

Temporal 

Resolution 
Source Downloadable at 

Satellite 

PERSIANN-

CCS-CDR 
0.04°× 0.04° Daily  [52] [47] 

GPM IMERG 0.1°× 0.1° Daily [29] [53] 

CHIRPS 0.05°× 0.05° Daily [28] [54] 

TAMSAT 0.0375° × 0.0375° Daily [26] [46] 

WRF 

D01 

D02 

D03 

0.405° × 0.376° 

0.135° × 0.132° 

0.045° × 0.045° 

3-hourly [11]  [39] 

Reanalysis ERA5 0.25°× 0.25° 6-hourly [51]  [38] 

2.3. Model Description and Experimental Design 

The WRF model is a state-of-the-art mesoscale NWP system designed to serve opera-

tional forecasting and atmospheric research needs, and is widely applied in regional simula-

tions. We refer readers to Skamarock et al. [11] for a detailed description of the WRF model. 

To simulate the heavy PRE events during the summer of 2020, we used the WRF 

model version 4.2 [11] over Africa. Three nested domains were used with a horizontal 

resolution of 45 km (D01), 15 km (D02), and 5 km (D03) and 50 vertical levels (Figure 1). 

The outer domain covered the whole of Africa. The second and third domains were set 

over Eastern Africa since the events under consideration occurred in this area. Previous 

studies have used similar model configurations [55–58]. 

 

Figure 1. Study domain showing continental Africa’s topography (m) and the three WRF model 

nested domains; D01 (45 km; 25°W–55°E and 36°S–36°N); D02 (15 km; 18°–48°E and 6°S–21°N); and 

D03 (5 km; 22°–45°E and 2°–13°N). 

A 30 h simulation was conducted for each case event, with the first 6 h as the model 

spin-up time. An adaptive time-stepping was used for numerical stability. Table 1 pre-

sents the weather events and simulation period during the summer of 2020. 

For brevity, a summary of the physical parameterization used is given in Table 3. We 

selected the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) 

1 degree resolution and 6 hourly temporal sampling data to provide the initial and bound-

ary conditions for the WRF model simulations. The FNL data are available at [39]. 
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Table 3. The WRF model physical parameterizations used in this study. 

Model Settings Parameterization Scheme References 

Microphysics Lin et al. scheme [59] 

LW Radiation 
RRTMG 

[60] 

SW Radiation [61] 

Land Surface Unified Noah Land Surface Model [62] 

Planetary Boundary layer (PBL) Yonsei University Scheme (YSU) [63] 

Cumulus Parameterization Grell 3D Ensemble Scheme [64,65] 

Surface Layer MM5 similarity scheme [66–70] 

2.4. Synoptic Analysis of Severe Weather Events 

Modelers and forecasters rely on atmospheric parameters to understand and discuss 

the favorable synoptic conditions and physical mechanisms accompanying heavy PRE 

events. Synoptic analyses serve as a practical way to predict convection activity. The pre-

sent study used a quantitative evaluation method following [71]. Numerous studies have 

used these indices to reveal synoptic-scale features linked with heavy downpours [72,73]. 

A summary of the six key parameters used in the synoptic situation analysis is presented 

below. 

2.4.1. Wind Circulation 

To provide a synoptic view of the individual case events, we explored two key wind 

levels: (i) 850 hPa (to locate monsoon trough) and (ii) 700 hPa. This selection is consistent 

with past studies in East Africa and other regions [36,74]. 

2.4.2. Relative Humidity (RH) 

RH is the ratio of vapor pressure (e) to saturation vapor pressure (e�). The amount of 

moisture in the atmosphere indicates the likelihood of PRE. RH is expressed mathemati-

cally [75] below: 

� =
� ∗ ��
0.622

 (1)

�� = 611��� �
17.27��

237.3 + ��
� (2)

RH = �
���  (3)

where � is the vapor pressure, �� is the saturated vapor pressure, � is the specific hu-

midity, �� is the partial pressure (hPa), and �� is the atmospheric temperature (K). 

2.4.3. Precipitable Water (PW) 

PW reflects the amount of moisture in the atmosphere column and is a crucial indi-

cator for heavy PRE prediction [76]. A higher PW value is associated with higher areal 

PRE coverage [77]. A PW of >20 kg/m−2 in the ROIs is generally associated with high down-

pours and vice versa. PW is expressed as follows: 

PW =
1

g
�

0.622. P�
P − 0.378. P�

dp (4)

where g is gravity (9.81 m/s2), P� is the partial pressure of water vapor, dp is dew point 

temperature (K), and � is total atmospheric pressure (hPa). 

2.4.4. Convective Available Potential Energy (CAPE) 

CAPE is normally used to identify the atmospheric instability accompanying strong 

downpours. High CAPE values indicate greater instability (which indicates the potential 
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for increased convection) and subsequent heavy PRE. CAPE < 495 J/kg is “weak instabil-

ity”. CAPE of 1000–2500 J/kg is “moderate instability” and CAPE of >2500 J/kg indicates 

“strong instability” [71]. CAPE is expressed mathematically as follows: 

CAPE = g � �
T�� − T��

T��
�

���

����

dz (5)

where g is gravity (9.81 m/s2), T�� is the virtual temp of the parcel, T�� is the virtual tem-

perature of the environment, Z�� is the height of the equilibrium level, and Z��� is the 

free convection level. 

2.4.5. K-Index 

The K-index measures thunderstorm potential. That is, it assesses the probability of 

a heavy storm [75]. Table S1 shows the threshold values for determining the operational 

significance of the K-index. High K-index values accompanied by high PW can lead to a 

rapid burst of intense PRE. The mathematical expression is shown below: 

� = ���� − ���� + ����� − ���� + ����� (6)

where � is temperature and �� is the dew point temperature. 

2.4.6. Total of Totals Index (TTs) 

The total of totals (TTs), following [73], was used as an indicator to assess the strength 

of heavy PRE. The threshold values shown in Table S2 categorize the potential strength of 

the heavy PRE events. TTs is expressed mathematically as follows: 

TTs = t��� + t���� − 2���� (7)

where t and td denote air temperature and dew point temperature, respectively, and 850 

and 500 represent the pressure levels (hPa). 

3. Results 

3.1. Spatial and Temporal Validation of Satellites PRE Datasets against Station Data 

3.1.1. Mean Annual Cycle of PRE 

To assess how the satellite data perform in reproducing the temporal variations, we 

analyzed the mean annual cycle over selected stations in Kenya. Figure S1 compares esti-

mated monthly PRE annual cycles over Kenya at sampled stations by satellites and obser-

vations. Overall, the four satellite datasets captured the mean annual cycle pattern relative 

to the observed data throughout the year. However, the degree of estimation differed in 

wet and dry months. CHIRPS and PERSIANN-CCS-CDR overestimated PRE in wet 

months while TAMSAT overestimated PRE in dry months. GPM-IMERG products were 

underestimated in nearly all 30 stations used in Kenya. Generally, the temporal variations 

of the sampled stations showed that PRE varied from place to place. For example, many 

stations presented a bimodal PRE distribution (Figure S1) across the region in the overes-

timations of CHIRPS and PERSIANN-CCS-CDR. 

3.1.2. Performance of Satellite Data against Gauge Stations 

To investigate the ability of the satellite datasets to replicate daily scale PRE extremes 

and to effectively capture their variations, we considered two standard percentile thresh-

olds for extremes (i.e., the 95th and 99th percentiles—the results are presented in Figures 

2 and 3, respectively). Figures 2 and S2 present the spatial distributions of observation and 

satellite estimates of 95th percentile rainfall quantities estimated from the 30 stations be-

tween 2013 and 2016 over Kenya. 
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Figure 2. Observation and satellite estimate of 95th percentile PRE quantities over Kenya: (a) OB-

SERVATION, (b) CHIRPS, (c) GPM-IMERG, (d) PERSIANN-CCS-CDR, and (e) TAMSAT. 

Overall, the results revealed pronounced regional variations in the performance of 

the four satellite datasets. We observed larger differences in wet and mountainous regions 

compared with dry areas. Stations located in humid and mountainous regions in 34°–38°E 

and 2°S–2°N showed higher PRE values (29.03 mm/day) for the 95th percentile (Figures 2 

and S2) and 48.37 mm/day for the 99th percentile, respectively (Figures 3 and S3). Non-

humid and low-lying areas presented slightly lower values of <15 mm/day for the 95th 

and 99th percentile. Overall, PERSIANN-CCS-CDR and CHIRPS provided good spatial 

results for the extreme values that increased with the extreme threshold of 25 to 40 

mm/day. Similar results were shown in rainfall events exceeding 20 mm/day (R20 mm in 

Figure S4). The differences may be explained by the retrieval algorithms or sensors used 

to estimate PRE. PERSIANN-CCS-CDR and CHIRPS performed better than TAMSAT and 

GPM-IMERG. PERSIANN-CCS-CDR data are based on passive and active microwave 
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observations and CHIRPS is based on infrared cold cloud detection. The difference in their 

performance may be related to the retrieval algorithms or the type of data source used. 

 

Figure 3. Observation and satellite estimate of 99th percentile PRE quantities over Kenya: (a) OB-

SERVATION, (b) CHIRPS, (c) GPM-IMERG, (d) PERSIANN-CCS-CDR, and (e) TAMSAT. 

To assess the suitability of the four satellite products to detect extreme PRE, we com-

pared the standard percentile thresholds for extremes (i.e., from the 75th percentile and 

above) against the observed data. Figure 4 illustrates the performances of the four satellite 

data at the 75th, 95th, and 99th percentile values against gauge stations. The accumulated 

daily PRE from the sampled stations during the 2013–2016 period were categorized into 

quartiles to evaluate the accuracy of the satellite data relative to the observed data (Figure 

4). During the period 2013–2016, values of >10 mm/day and >20 mm/day for the 95th and 

99th percentiles were consistent and comparable across all stations for CHIRPS (blue 
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color) and PERSIANN-CCS-CDR (green color). Overall, the daily PRE of CHIRPS (blue 

color) and PERSIANN-CCS-CDR (green color) were close to the observed station PRE be-

fore the 90th percentile. However, they overestimated above the 95th percentile (Figure 

4). Similar results are shown for GPM-IMERG (yellow color) and TAMSAT (black color), 

but they tended to underestimate the data (Figure 5). The exceptions to the above patterns 

included stations such as Kissi and Eldoret (Figure 4), where PERSIANN-CCS-CDR over-

estimated between the 75th and 99th percentile. 

In summary, this study selected PERSIANN-CCS-CDR as the closest reference da-

taset based on validation with respect to rain gauge observations. 

 

Figure 4. Observed and satellite estimated PRE from the 75th to the 99th percentile over Kenya at 

sampled stations. 
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Figure 5. Distribution of simulated and observed precipitation (mm/day) on 8 June 2020 over East 

Africa. (a) WRF; (b) PERSIANN-CCS-CDR. 

3.2. Comparison of Heavy PRE from WRF and Satellite Estimates 

In this section, we examine the capability of WRF to accurately simulate the heavy 

PRE events (Table 1) that wreaked havoc on lives and property in the summer of 2020. 

The WRF outputs were evaluated against one high-resolution satellite’s PRE products 

(i.e., PERSIANN-CCS-CDR) to infer the satellite and model relative potential to capture 

the location and intensity of PRE during the case studies and to provide more details on 

the individual events as reported in the media [2,3]. The choice of PERSIANN-CCS-CDR 

as the reference satellite dataset was based on validation with respect to the rain gauge 

observations. The satellite estimates and simulated PRE were based on a 24 h accumulated 

PRE. Figures 5–9 show the spatial distribution of the simulated and observed PRE over 



Remote Sens. 2022, 14, 1964 12 of 29 
 

 

East Africa. Similar results in Figures S5 and S6 present heavy PRE events recorded on 1 

and 6 September 2020, respectively. 

3.2.1. Case 1 (8 June 2020) 

On 8 June, 2020, heavy PRE along the South Sudan (SS)–Ethiopia (ET) border region 

caused devastating flash flooding [2,3]. Figure 5 shows the spatial pattern of simulated 

and observed PRE on that day. 

The WRF model reproduced the PRE spatial distribution in the ROI well compared 

to satellite products (Figure 5a). The PRE event was also satisfactorily estimated in the 

PERSIANN-CCS-CDR data (Figure 2b) but with distinct patterns and intensities (WRF: 

26–30 mm/day; PERSIANN-CCS-CDR: 21–30 mm/day). 

3.2.2. Case 2 (10 June 2020) 

Two days later, on 10 June 2020, another heavy PRE event occurred along the SS–ET 

border. The media reported that this event destroyed school buildings, health facilities, 

roads, and farmlands in South Sudan [2,3]. The results are illustrated in Figure 6. Com-

paring the WRF output (Figure 6a) with the satellite data (Figure 6), the model reproduced 

this PRE event well. We observed several similarities between the PERSIANN-CCS-CDR 

(Figure 6b) and WRF PRE magnitude estimates. The PRE distribution from PERSIANN-

CCS-CDR (Figure 6b) exhibited a similar spatial pattern, but the spatial spread was more 

pronounced than the WRF outputs. 

 

Figure 6. Distribution of simulated and observed precipitation (mm/day) on 10 June 2020 over 

East Africa. (a) WRF; (b) PERSIANN-CCS-CDR. 
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3.2.3. Case 3 (18 June 2020) 

On 18 June 2020, a heavy storm occurred again in the same ROI (Figure 7). According 

to the media reports, this event aggravated relief efforts for the previous event (Case 2) by 

aid agencies as road infrastructure was still unavailable [2,3]. The spatial pattern of simu-

lated PRE shows that WRF (Figure 7a) reproduced the PRE event well, as was captured 

by the PERSIANN-CCS-CDR (Figure 7b). In brief, the results for Case 3 showed that the 

WRF model captured this heavy PRE event with estimates of >30 mm/day. The PER-

SIANN-CCS-CDR satellite product captured the event in terms of spatial patterns but 

with PRE magnitudes of 11–30 mm/day. 

 

Figure 7. Distribution of simulated and observed precipitation (mm/day) on 18 June 2020 over 

East Africa. (a) WRF; (b) PERSIANN-CCS-CDR. 
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3.2.4. Case 4 (20 July 2020) 

The heavy PRE on 20 July 2020 caused extensive flooding, displacing 300,000 people 

and destroying about 5000 homes [2,3]. We compared the spatial pattern and PRE magni-

tudes from WRF and PERSIANN-CCS-CDR (Figure 8). The WRF model captured this 

heavy PRE event in the interior of Ethiopia. 

The simulated PRE magnitude was >30 mm/day (Figure 8a). PERSIANN-CCS-CDR 

(Figure 8b) showed values of 11–26 mm/day and patches of >30 mm/day. Overall, the 

spatial patterns of the WRF output and PERSIANN-CCS-CDR were comparable but with 

major differences in the PRE estimates. 

 

Figure 8. Distribution of simulated and observed precipitation (mm/day) on 20 July 2020 over East 

Africa. (a) WRF; (b) PERSIANN-CCS-CDR. 
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3.2.5. Case 5 (27 August 2020) 

On 27 August 2020, heavy PRE occurred in Sudan, Uganda, and Kenya [2,3]. In Su-

dan, 381,770 people were affected and 84 died. In total, 37,000 homes were destroyed, and 

34 schools and 2671 health facilities were damaged. In Uganda, 8700 people were dis-

placed, one person died, and 800 homes were destroyed. In Kenya, 1000 families were 

displaced in the Lake Turkana region (northwestern Kenya) [2,3]. The PRE spatial pattern 

of this event is displayed in Figure 9. The ROI for this case included Sudan, South Sudan, 

Ethiopia, Uganda, and Kenya. 

 

Figure 9. Distribution of simulated and observed precipitation (mm/day) on 27 August 2020 over 

East Africa. (a) WRF; (b) PERSIANN-CCS-CDR. 
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The spatial pattern of the WRF output (Figure 9a) and the PERSIANN-CCS-CDR 

product (Figure 9) were comparable over Sudan, South Sudan, and Ethiopia. The spatial 

pattern and magnitude of PERSIANN-CCS-CDR (Figure 9b) were comparable to the WRF 

results. In particular, the WRF results were closer to the PERSIANN-CCS-CDR results 

over Ethiopia and Sudan, but the event was poorly reproduced over South Sudan, 

Uganda, and Kenya. The WRF output PRE magnitudes (>1 mm/day) were comparable to 

those of PERSIANN-CCS-CDR (Figure 5b). 

In summary, the WRF model output exceeded the observed PRE data most of the 

time. The reasons for this overestimation are unclear and are beyond the scope of this 

study. However, some factors that may influence WRF’s overestimation of the PRE in-

clude the numerical scheme used or the microphysics and planetary boundary layer 

schemes, which are consistent with past studies [14,77]. 

Overall, the WRF model reproduced the spatial pattern of the seven heavy PRE 

events well. Additionally, the spatial pattern of the heavy PRE was captured by the PER-

SIANN-CCS-CDR products (Figures 5–9, S6 and S7). 

We further investigated which scale was appropriate for capturing the PRE intensi-

ties. The WRF outputs were compared to those of PERSIANN-CCS-CDR based on the 

area-related root mean square error (RMSE) following Rezacova et al. [50]. The averaged 

area-related RMSE for each event was computed and plotted against the spatial scale (Fig-

ure 10). From these results, the RMSE variability was scale-dependent. Overall, the result 

indicated that as the peak PRE intensity in the model was displaced with respect to the 

observed, the RMSE tended to decrease at larger spatial scales. This provides additional 

value for weather forecasters and researchers to assess the applicability of WRF in opera-

tional forecasting or warning systems. 
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Figure 10. Spatial scale (km) against mean RMSE (mm) calculated from the mean precipitation ob-

tained from the WRF and PERSIANN-CCS-CDR data (mm/day). 

3.3. Synoptic Conditions during Heavy PRE Events 

We examined the wind circulation and RH flow patterns at 6 a.m. on the 8th, 10th, 

and 18th of June; 20th of July; and 27th of August 2020. Figures 11a–d–15a–d present the 

spatial distribution of the major observed features from ERA5. Wind and humidity are 

among the main parameters forecasters use to predict the likelihood areas of deep con-

vective activity initiation [26]. Figures 11a–d–15a–d present several major characteristics 

during the heavy PRE cases. 
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Figure 11. Synoptic analysis of ERA5 data at 6am (UTC) on 8 June 2020. (a) wind at 10 m (m/s; 

vectors) and relative humidity (%; shaded) at 850 hPa; (b) wind (m/s; vectors) and relative humidity 

(%, shaded) at 700 hPa; (c) precipitable water (kg/m2); (d) convective available potential energy 

(J/kg); (e) K-index; and (f) total of totals index. The red box denotes the ROI (South Sudan–Ethiopia 

border). 

In Case 1, the ERA5 data reasonably estimated strong (10 m/s) westerly winds at 850 

hPa over the entire 5–15°N area. A cyclonic circulation over the Guinea Coast and a north 

(northeasterly) wind prevailed over the region (Figures 11a–15a). However, there was 

high anticyclonic activity over the Southern Hemisphere in the Atlantic and Indian 

Oceans (Figures 11a–15a), resulting in stronger cold advection over the range of 5–15°N 

(Figures 11a–15a). Figures 10–13a (% shaded) present nearly 75% of RH in the equatorial 
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region (red box) at 850 hPa. Figures 11a–15a present a circulation pattern at 850 hPa char-

acterized by a monsoon trough (i.e., the flow convergence with high RH values of >80% 

was for identifying of vortices). The anticyclonic circulations over the Indian Ocean and 

westerly (southwesterly) winds prevailing over the range of 5–15°N illustrate a relatively 

shallow trough (Figures 11a–15a). Figures 11b–15b present 70–80% of RH in the ranges 5–

10°N and 25–35°E (red box). These features are consistent with the region’s climate and 

an important indicator for the development of convection. The observed maximum speed 

was 10–16 m/s over the ranges of 25–35°E and 10–15°N (Figures 11b–15b). The strong cy-

clonic circulation over the entire 10–15°N area was well captured in ERA5. We confirmed 

from the atmospheric instability indices that the conditions were favorable for convective 

activities (PW> 20 kg/m2; CAPE >750 J/kg; K-index > 35 °C; and TTs < 47; Figures 11c–f–

15c–f), which is consistent with the guidelines in [71]. 

Similarly, in other case events, we observed that the wind and RH fields simulated 

by ERA5 were southwesterly winds (Figures 11–13a), transporting moist air from the At-

lantic Ocean into the equatorial region (Figures 11a,b–15a,b). In Case 2, the event was 

identified as a cyclonic event at 700–850 hPa, in addition to the monsoon flow (Figure 

12a,b), with RH > 85%. The physical mechanism prevailing on this day (06:00) was con-

sistent with [71] conditions for heavy downpours; high PW (Figure 12c, >55 kg/m2), mod-

erate CAPE values (Figure 12d, >1300 kg/m2), high K-index (Figure 12e, >35 °C), and high 

TTs (Figure 12f, >45). 
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Figure 12. Synoptic analysis of ERA5 data at 6am (UTC) on 10 June 2020. (a) wind at 10 m (m/s; 

vectors) and relative humidity (%; shaded) at 850 hPa; (b) wind (m/s; vectors) and relative humid-

ity (%, shaded) at 700 hPa; (c) precipitable water (kg/m2); (d) convective available potential energy 

(J/kg); (e) K-index; and (f) total of totals index. The red box denotes the ROI (South Sudan–Ethio-

pia border). 
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In Case 3, the synoptic conditions on this day over the range 25–35°E and 5–10°N (red 

box) showed unique characteristics. A PW of >45 kg/m2 (40–50 kg/m2; Figure 13c), high 

CAPE values of >2100 J/kg (reaching a maximum of 2500 J/kg; Figure 13d), a K-index of 

>36 c (31–40 °C; Figure 13e), and TTs values of >49 (48–51; Figure 13f) were consistent with 

a heavy downpour. 

 

Figure 13. Synoptic analysis of ERA5 data at 6am (UTC) on 18 June 2020. (a) wind at 10 m (m/s; 

vectors) and relative humidity (%; shaded) at 850 hPa; (b) wind (m/s; vectors) and relative 
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humidity (%, shaded) at 700 hPa; (c) precipitable water (kg/m2); (d) convective available potential 

energy (J/kg); (e) K-index; and (f) total of totals index. The red box denotes the ROI (South Sudan–

Ethiopia border). 

The synoptic analysis (Figure 14a,b) and atmospheric instability as presented in Case 

4 provided evidence for convective activity; high PW of >20 kg/m2 (Figure 14c), CAPE of 

<750 J/kg (Figure 14d), K-index of >35 °C (Figure 14e), and TTs of <45 (Figure 14f). 

 

Figure 14. Synoptic analysis of ERA5 data at 6am (UTC) on 20 June 2020. (a) wind at 10 m (m/s; 

vectors) and relative humidity (%; shaded) at 850 hPa; (b) wind (m/s; vectors) and relative 
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humidity (%, shaded) at 700 hPa; (c) precipitable water (kg/m2); (d) convective available potential 

energy (J/kg); (e) K-index; and (f) total of totals index. The red box denotes the ROI (South Sudan–

Ethiopia border). 

Lastly, Case 5 revealed that the atmospheric instability (PW > 45 mm, CAPE < 900 

J/kg; K-index > 35 °C and TTs < 45 (Figure 15c–f, red box)) was favorable for convective 

activity on 27 August 2020 and this is consistent with the guidelines for heavy downpours 

[71]. Additionally, this result is consistent with the climatological behavior of the region 

as described by Nicholson [78–80]. 

 

Figure 15. Synoptic analysis of ERA5 data at 6 a.m. (UTC) on 27 June 2020. (a) wind at 10 m (m/s; 

vectors) and relative humidity (%; shaded) at 850 hPa; (b) wind (m/s; vectors) and relative humidity 
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(%, shaded) at 700 hPa; (c) precipitable water (kg/m2); (d) convective available potential energy 

(J/kg); (e) K-index; and (f) total of totals index. The red box denotes the ROI (Sudan, South Sudan, 

Ethiopia, Uganda, and northwestern Kenya). 

4. Discussions 

East Africa is a flood-prone region, and frequent flash flooding is a major disaster. In 

2020, multiple heavy PRE events caused by summer convective activities destroyed infra-

structure in the region, displaced thousands, and killed many [2,3]. In this study, we se-

lected seven case events using the database from EM-DAT and floodlist websites (Table 

1). Two main objectives were explored: (a) to investigate the capability of the WRF to sim-

ulate the heavy PRE events, and (b) to understand the synoptic conditions accompanying 

the summer 2020 heavy PRE events. The WRF model was used to simulate the heavy PRE 

events reported in these reliable databases [2,3]. The WRF experiments were configured 

over three nested domains. 

The reliability of satellite products depends on the region considered [25]. This study 

investigated the spatio-temporal performance of four high-resolution satellite datasets 

against gauge stations. Since the focus of this study was on flash floods, we based the 

verification study on standard percentile thresholds for extremes following [48] and de-

fined extreme PRE as daily PRE exceeding the 95th and 99th percentiles. Note that the 

objective of this part was the verification of the best-performing data for the study re-

gion(s) due to the four satellites’ differences in spatial and temporal resolutions. 

Overall, the results revealed pronounced regional variations in the performance of 

the four satellite data. We observed larger differences in wet and mountainous regions 

than in dry areas. Overall, PERSIANN-CCS-CDR provided good spatial results for the 

extreme values that increased with an increasing extreme threshold of >25–40 mm/day. 

GPM-IMERG products were underestimated in nearly all 30 stations used in Kenya. This 

result is interesting as this product performed well in East Africa according to Le Coz’ [25] 

review. Reasons such as the number and location of the rain gauges, the season, the re-

gion, and the evaluation statistics used may partly explain this phenomenon. Other rea-

sons may be related to the differences in the retrieval algorithms or sensors used to esti-

mate PRE [24,25]. These evaluation results showed that PERSIANN-CCS-CDR was closer 

to the gauge data than the rest, especially for the extreme events. This finding was not 

surprising as PERSIANN-CCS-CDR is designed for heavy PRE events [27]. Thus, we se-

lected these satellites to assess against the WRF model. The objective here was not to con-

firm the superiority of any satellite datasets (PERSIANN-CCS-CDR, GPM IMERG, 

CHIRPS, or TAMSAT), but rather to demonstrate their potential utilization in a local con-

text, particularly for heavy PRE in East Africa. 

We compared the WRF output against high-resolution PERSIANN-CCS-CDR prod-

ucts to infer their relative potential to capture heavy PRE events (Table 1). Satellite-based 

estimates serve as an indirect measure of PRE and are useful in regions with a low density 

of weather station networks. Additionally, satellite PRE products have the advantage of 

high spatial coverage. We focused on reported case events in East Africa. The WRF model 

reproduced the heavy PRE events well (Figures 5a–9a, S5 and S6a). The simulated heavy 

PRE in Sudan and South Sudan, extending to some parts of northwestern Ethiopia, eastern 

Kenya, and northwestern Uganda, are common from June to September. Similar results 

were reported in Nicholson [41]. Overall, the results are consistent with previous studies 

that used WRF for other case events [81,82]. Our results are consistent with Li et al.’s [8] 

assertion that five African countries prone to floods are located in East Africa. The mag-

nitude of the simulated PRE was then analyzed. The PRE magnitudes varied between 

individual events. The distinct spatial patterns showed the WRF model simulated > 30 

mm/day in all case events except for the 27 August event (Case 5), which was poorly re-

produced over Uganda and Kenya. Overall, the magnitude of PRE is somewhat consistent 

with Kimambo et al. [82] for the region. These findings indicated that, in a local context, 

the WRF model shows good performance in simulating spatial patterns and PRE 
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magnitudes. Hence, the WRF model can be a useful and valuable tool for sub-seasonal 

processes. We found that its applications could improve local and short-term forecasting, 

which is consistent with the literature [11,81]. Similarly, the WRF PRE magnitudes were 

noticeably closer to the PERSIANN-CCS-CDR PRE estimates and are consistent with 

Kimambo et al. [82]. The practical implication of these findings is that PERSIANN-CCS-

CDR presents a better potential for sub-seasonal applications over East Africa. 

From a meteorological perspective, heavy PRE events may be accompanied by large-

scale synoptic systems. The synoptic situation on a given day is complex and determined 

by a combination of factors [83]. ERA 5 reanalysis was used to verify the large-scale circu-

lation pattern, relative humidity fields, and other atmospheric instability patterns accom-

panying the heavy PRE. The synoptic patterns accompanying the events on the 8th, 10th, 

and 18th of June, 20th of July, and 27th of August were analyzed (Figures 11–15). The 

physical mechanisms accompanying the summer 2020 heavy PRE events were examined. 

The wind and relative humidity were analyzed and the results are illustrated in Figures 

11–15. Generally, the wind circulation and relative humidity climatology were a regime 

of large westerlies (southwesterlies) that transported moist air (RH) from the Atlantic 

Ocean into Africa, while northerlies and northeasterlies mostly formed the cyclones in the 

north. The two converged in the range of 5–15°N to form a monsoon trough. This is in 

agreement with [84]. We observed that individual cases showed distinct RH values. How-

ever, the values were all >70% (Figures 11–15, % shaded). Generally, the event was iden-

tified as a cyclonic event at 850 hPa and the monsoon flow (Figure 11a), with RH >75 % 

due to low-level moisture convergence, was a good indicator of convection. Our results 

are in line with [81,82,84]. We further analyzed other parameters to understand atmos-

pheric instability prior to these events. We selected PW, CAPE, K-index, and TTs to exam-

ine whether they provided conditions favorable for convective activities. Overall, differ-

ent case events presented distinct patterns of synoptic conditions. Figures 11–15 suggest 

favorable conditions for a heavy downpour. The wind circulation and moisture flow pat-

tern over the ROI were characterized by flow convergence that mirrored the climatologi-

cal behavior of the region. These findings are consistent with Kimambo et al. [82]. In other 

regions, these parameters have been used as good convection indicators. Similarly, the 

atmospheric instabilities indices (PW, CAPE, K-index, and TTs) were confirmed as good 

indicators of heavy PRE in the ROI and adjoining regions. The evidence of strong convec-

tive activity is consistent with the guidelines in [71]. 

From an early warning system perspective, this study provided vital climate and 

weather information that may help formulate preventive measures. This information is 

useful to forecasters because it provides case studies of severe weather. From the perspec-

tive of Earth observation scientists, space has untapped potential. The use of satellites to 

tackle the threats and challenges faced by humanity makes a big difference in the ongoing 

climate change debate. As satellites watch over Earth continuously, the recorded data can 

help us monitor, understand, model, and predict climate change and its related chal-

lenges. Further research on other case events would improve our confidence in adopting 

this type of analysis in developing countries where budget allocation for research is limited. 

5. Conclusions 

We demonstrated the location and extent of the summer 2020 heavy PRE in East Af-

rica by (1) carrying out a verification process that selected the best-performing satellite 

data over the region, (2) using satellite(s) data to evaluate the WRF simulation of seven 

case events that occurred in East Africa, and (3) examining the pattern of synoptic condi-

tions prior to these events. Based on our findings, the following conclusions were drawn: 

1. Based on the performance of the four individual high-resolution satellites against 

gauge stations, PERSIANN-CCS-CDR performed better in the 75th, 95th, and 99th 

percentile. 
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2. The PERSIANN-CCS-CDR product captured the spatial pattern of all case events in 

the region despite distinct differences in PRE distribution and magnitudes. The spa-

tial pattern of the WRF output was close to that of PERSIANN-CCS-CDR in all the 

cases, with the area-related RMSE decreasing obtained with increasing scale for all 

the events. 

3. Further analysis of other parameters to understand atmospheric instability prior to 

these events presented a distinct pattern of synoptic conditions. The results suggest 

that the wind circulation and moisture flow pattern over the ROI were characterized 

by a flow convergence that mirrored the climatological behavior of the region. The 

atmospheric instability indices (PW, CAPE, K-index, and TTs) were confirmed as 

good indicators of the heavy PRE that occurred in the summer of 2020 in East Africa. 
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