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Abstract: It is common to estimate underground mining-induced subsidence from interferometric
synthetic aperture radar (InSAR) displacement observations by Neglecting hOrizontal moVements
(NOV). Such a strategy would cause large errors in the NOV-estimated subsidence. This issue was
proven and the theoretical equation of the resulting errors has been deduced before. However, the
systematic analysis of the error pattern (e.g., spatial distribution) and its relationship between some
critical influence factors (e.g., lithology of overlying rock strata) is lacking to date. To circumvent this,
a method was first presented to assess the errors of the NOV-estimated mining subsidence in this
study. Then, the error pattern and the influence factors of the NOV-estimated mining subsidence
were discussed. The results suggest that the errors of the NOV-estimated mining subsidence spatially
follow a “peak-to-valley” shape, with an absolute “peak-to-valley angle” of 5–15◦. In addition,
for the same underground mining geometry, the error magnitudes of the NOV-estimated mining
subsidence under hard lithology of overlying rock strata are smaller than those under soft lithology,
and vice versa. These results would be beneficial to guide the scientific use of the NOV method
for understanding the deformation mechanism and controlling the geohazards associated with
underground mining and other similar anthropogenic activities.

Keywords: InSAR; mining subsidence; error analysis; horizontal movement contribution;
subsidence mechanism

1. Introduction

Reasonably using coal mine subsidence zones (e.g., install photovoltaic station) be-
comes emerging demand for improving mining environment. Since mining subsidence
possibly impose damage to infrastructures located in subsidence zones, it is essential to
monitoring surface subsidence for assessing the potential mining-induced damage. Inter-
ferometric synthetic aperture radar (InSAR) is a useful remote sensing technique to monitor
ground surface displacements associated with underground mining activities [1–6]. How-
ever, InSAR observation is a projection of the real mining-induced deformation vector
onto the radar line-of-sight (LOS) direction [7]. Hence, it is challenging to reveal the
complex spatio-temporal evolution of mining-induced displacements from InSAR one-
dimensional observations of LOS displacements. In the past two decades, some algorithms
have been proposed to reconstruct the complete three-dimensional (3D) components of
the real deformation vector in the vertical, west–east, and north–south directions from
InSAR observations [8–15]. These algorithms, to some extent, can overcome the limitation
of InSAR LOS displacements in practical uses. Nevertheless, some of the prerequisites
required by these algorithms (e.g., requiring three or more independent InSAR observa-
tions, or knowledge of the constraint parameters) usually hinder their practical applications
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(see [16] for more details). As a consequence, only a few cases of successfully estimating
3D mining displacements from InSAR observations have been reported to date.

When the complete 3D components of mining deformation are hard to be estimated
from InSAR, it is a common strategy to resolve the vertical component from InSAR 1D
observations by Neglecting hOrizontal moVements (NOV) in both the east–west and
north–south directions. For simplification, we referred to the strategy as NOV (see a brief
overview of it in Section 2.1). The NOV-estimated mining subsidence is practically used in
mining engineering, e.g., to delimitate subsidence boundary [17,18], assess mining-related
building damage [19,20], and analyze the spatial-temporal evolution analysis of mining
subsidence [21,22] or mining-induced shocks [23]. Theoretically, the NOV method holds
well under the assumption that mining-induced horizontal movements are negligible.
In fact, besides subsidence, considerable horizontal movements are also induced due
to underground mining, and the magnitude of the induced horizontal movements can
reach up to 40~50% of the vertical component [24,25]. This implies that large errors
can possibly result from NOV-estimated subsidence, due to neglecting the considerable
horizontal movements.

The issue that neglecting horizontal movements would cause errors in the estimated
subsidence from InSAR observations was recognized, and some attempts were made
to analyze the resulting errors. For instance, Samieie-Esfahany et al. [26] deduced the
theoretical error equation of the subsidence due to neglecting horizontal movements in
the year 2009. Based on the deduced theoretical equation, Fuhrmann and Garthwaite [27]
found that the errors due to neglecting horizontal movements primarily depend on the
incidence angle of the SAR sensors and the magnitudes of horizontal movements. In
addition, the case study in the Sydney Region, Australia, showed that the resulting error
can reach up to 67% of the maximum subsidence [27]. These studies primarily focused on
the deduction analysis of theoretical errors of the estimated subsidence, but, to the best
of our knowledge, rarely focused on assessing the resulting errors and further analyzing
the error pattern in specific deformation cases (e.g., associated with underground mining
characterized by considerable horizontal movements).

In this paper, we first presented a pixel-wise method for assessing the error of the
NOV-estimated mining subsidence in Section 2. The presented method was then tested
with real datasets in Section 3. In Section 4 the pattern and some influence factors (e.g.,
SAR imaging view, interferometric coherence, and the lithology of overlying rock strata) of
the NOV-estimated subsidence errors were discussed. Finally, a conclusion was drawn in
Section 5.

2. Methods
2.1. Overview of the NOV Method and Its Theoretical Errors

InSAR-measured LOS displacement, namely dlos, is a projection of the real deformation
vector onto the radar LOS direction by [28]

dlos = cos θ · du − sin α · de + sin θ sin α · dn (1)

where [du, de, dn] are the vertical, west–east, and north–south components of the real
deformation vector; θ stands for the incidence angle of the resolution cell; α denotes the
flight angle of the selected SAR sensor. The NOV method estimates subsidence (vertical
component of mining displacements) from InSAR observations based on two steps. Firstly,
it assumes that mining-induced 2D horizontal movements are both equal to zeros (i.e.,
de ≡ 0 and dn ≡ 0), and yields

− sin θ cos α · de + sin θ sin α · dn = 0 (2)

Then, it estimates the subsidence (namely d̂u) by substituting Equation (2) into (1), i.e.,

d̂u = d̂los/cos θ (3)
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where d̂los = dlos + δlos denotes InSAR observation of LOS displacement, with δlos being the
observation error (caused by noise, orbital error, atmospheric delay, unwrapping error, etc.).

According to Equation (1), subsidence can be rigorously expressed in math as

du = dlos/cos θ + tan θ[sin α · dn − cos α · de] (4)

By comparing Equations (3) and (4), the theoretical error of the NOV-estimated subsidence
(denoted by δu) can be written as

δu = δL + δH (5)

with
δL = δlos/cos θ (6)

δH = − tan θ cos α · de + tan θ sin α · dn (7)

Equation (5) suggests that the theoretical error structure of the NOV-estimated mining sub-
sidence consists of two parts: (i) the error term due to the InSAR observation uncertainties
of LOS displacements, namely δL, and (ii) the error term caused by neglecting horizontal
movement components, namely δH.

It can be observed from Equation (5) that the error of the NOV-estimated mining
subsidence theoretically depends on three factors: (i) uncertainty of InSAR observations
(δlos), (ii) SAR imaging view (θ and α), and (iii) mining-induced 2D horizontal movements
(de and dn) [27], in which, except for the parameters of SAR imaging view (that can readily
be obtained from SAR head files), the remaining two factors are difficult to be accurately
determined from a single InSAR observation. Therefore, it is challenging to assess the errors
of the NOV-estimated mining subsidence in a pixel-wise manner based on Equation (5).
Considering the error assessment is an indispensable step for the error analyses of the
NOV-estimated mining subsidence, especially for real datasets, we presented a pixel-wise
method for assessing the errors in Section 2.2.

2.2. Pixel-Wise Method for Assessing the Errors of the NOV-Estimated Mining Subsidence
2.2.1. Generating a Reference Subsidence Assisted by a Prior Constraint

The core idea of the presented pixel-wise method is firstly offering a reference sub-
sidence field based on a method named SIP (single InSAR pair). The SIP method, which
was originally developed by Li et al. [29], can decompose subsidence from a single InSAR
pair assisted by a prior deformation model with an acceptable accuracy level. More specifi-
cally, the prior deformation model is described as that there exists a linearly proportional
relationship between surface horizontal movement components and the corresponding
gradients of vertical subsidence components for extracting underground horizontal or
nearly horizontal mineral seams [30]. Based on this prior model, horizontal movements in
the east and north directions (namely de and dn) at a pixel (i, j) can be expressed as two
formulas relating to vertical subsidence, i.e.,{

de(i, j) = Ce · Ge(i, j)
dn(i, j) = Cn · Gn(i, j)

(8)

where Ce denotes the proportional coefficient between the horizontal movement component
and the gradient of vertical subsidence in the east direction (namely Ge); Cn and Gn
represent the same things as the Ce and Ge but in the north direction, in which, the
parameters Ce and Cn can be determined by three in situ parameters, i.e., mining depth,
the tangent of major influence angle, and the constant of horizontal movement.

By substituting Equation (8) into Equation (1), reference subsidence (denoted by d̂u_ref
can then be solved on the basis of pixel-by-pixel using

d̂u_ref(i, j) = d̂los(i, j)/ cos θ + tan θ[sin α·Cn·Gn(i, j)− cos α·Ce·Ge(i, j)] (9)

In Equation (9) the gradients of subsidence at pixel (i,j) in the east and north directions
have involved the subsidence at the pixels (i + 1, j) and (i, j + 1). Therefore, the reference
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subsidence of the whole subsidence basin will be solved with a back-substitution strategy.
Please refer to [29] for more details.

2.2.2. Assessing the Errors of NOV-Estimated Mining Subsidence

Having obtained the reference subsidence, the error of the NOV-estimated mining
subsidence d̂u(i, j) at a pixel (i, j) (namely δu(i, j)) can then be estimated by

δu(i, j) = d̂u(i, j)− d̂u_ref(i, j) (10)

where d̂u_ref(i, j) denotes the SIP-retrieved subsidence at the pixel (i, j). The relative error
of the NOV-estimated subsidence d̂u(i, j) to the maximum subsidence (a very common
error indicator in mining engineering) can be calculated by

δu(i, j)

max
(

d̂u_ref

) × 100% (11)

where d̂u_ref is a vector of the SIP-retrieved reference subsidence in the concerned mining area.
It should be pointed out that three model parameters involved in the SIP method are

needed to be in situ collected for solving the reference subsidence in this study. Once these
three model parameters are unknown in practice, the SIP-assisted method for the error
assessment cannot be performed (see Li, et al. [29] for more details). Since the main aim of
this paper is to analyze the errors of the NOV-estimated subsidence, however, we tested
the presented pixel-wise method and analyzed the error patterns of the NOV-estimated
mining subsidence over those areas where the involved model parameters are known in
the following sections.

3. Results

The presented method for error assessment was tested over the Huaibei coalfield,
China, in which, two Phased Array type L-band Synthetic Aperture Radar (PALSAR)
images, acquired on 13 January and 28 February 2010, respectively, were firstly collected
to form a single InSAR pair. Figure 1a presents the InSAR-measured LOS displacements
caused by an active working panel over the Huaibei coalfield. Note that it is challenging to
obtain the LOS displacements over low-coherent areas [31], thus we interpolated them by
inverse distance weighting interpolation for the sake of the following SIP-based subsidence
estimation. Figure 1b–d show the NOV-estimated mining subsidence from the InSAR-
measured LOS displacements, the SIP-solved reference subsidence, and the assessed errors
using the SIP-assisted method, respectively, in which, three model parameters involved in
the SIP method, i.e., mining depth, the tangent of major influence angle, and the constant
of horizontal movements, were given by 620 m, 1.7, and 0.32. As is seen in Figure 1,
significant errors ranging from −0.18 m to 0.23 m were contained in the NOV-estimated
mining subsidence, indicating the relative errors to the solved maximum subsidence (about
0.5 m) from −35% to 45%. This result further proves that neglecting horizontal movements
in the NOV method could cause large errors in the mining subsidence estimation.

The right panel in Figure 2 shows a scatter plot between the “real” and the assessed
errors of the NOV-estimated mining subsidence at 34 field points (i.e., along the profile
AB, marked by black crosses in Figure 1d). The “real” errors were obtained by comparing
the precise levelling observations of mining subsidence at these 34 field points with the
NOV-estimated subsidence there (see the left panel in Figure 2). As is shown, the assessed
errors nearly well agree with the “real” ones, with a standard deviation (STD) of the
differences between them of about 0.011 m. This result indicates that the assessed errors of
the NOV-estimated mining subsidence are reliable.
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Figure 1. (a) InSAR-derived LOS displacements over the Qianyingzi coal-mining area after interpola-
tion over low-coherent areas; (b) NOV-estimated mining subsidence; (c) Reference subsidence solved
by the SIP method; (d) Assessed errors of the NOV-estimated mining subsidence using the presented
pixel-wise method. The black crosses in (d) denote the geographic locations of in situ observation
points for the following accuracy validation. The background map is the optical image over the
region of interest.
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Figure 2. Left: Comparison between the SIP- and NOV-estimated subsidence with precise leveling
observations of subsidence along the profile AB (34 points, marked by black crosses in Figure 1d).
Right: Scatter plot between the “real” (x-axis) and the assessed errors (y-axis) of the NOV-estimated
mining subsidence at 34 field points. The black dash line implies the perfect scenario in which both
errors are equal. The magenta dashed lines denote two times the STD of the assessed errors with
respect to the “real” ones.

4. Discussions
4.1. Error Pattern Analyses of the NOV-Estimated Mining Subsidence
4.1.1. Histogram Analysis of the Errors

The error pattern of the NOV-estimated mining subsidence was firstly analyzed us-
ing histogram statistics with simulated datasets. Specifically, we first simulated the 3D
displacements (see Figure 3) caused by six simulated working panels using the proba-
bility integral method (PIM, a widely-used mathematical model in mining subsidence
engineering) [32,33]. The mining width, length, thickness, and depth of the six simulated
working panels are the same (i.e., 200 m, 300 m, 2 m, and 500 m, respectively). However,
the mining directions (the angle between the mining direction and the north direction,
which is denoted by ϕ) of the six simulated working panels were 0◦, 30◦, 60◦, 90◦, 120◦,
and 150◦, respectively (marked by black arrows in Figure 3). Then, the simulated 3D dis-
placements were projected onto the ascending (i.e., θ = 38◦ and α = 190◦) and descending
(i.e., θ = 38◦ and α = 350◦) LOS directions of the PALSAR-1 sensor (in StripMap mode).
Finally, the NOV method was utilized to estimate mining subsidence from the simulated
LOS displacements and the presented pixel-wise method was applied to assess the errors
of the NOV-estimated mining subsidence (see Figure 4).

Figure 5 plots the histograms of the errors of the NOV-estimated mining subsidence,
with respect to the varied mining directions and the flight angles (ascending or descend-
ing). As is observed from Figure 5, the errors of the NOV-estimated mining subsidence
approximately follow a normal distribution with a mean of zero (marked by the red solid
lines) and the STDs from 0.10 m to 0.12 m, with respect to the varied mining directions
or flight angles. This fact was validated using the Z-test, which is a statistical test for
the null hypothesis that the tested samples come from a normal distribution [34]. This
result indicates that the errors of the NOV-estimated mining subsidence are not spatially
heterogeneous; that is, nearly half of the NOV-estimated subsidence in the subsidence
region would be under-estimated and the remaining half would be over-estimated.
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Figure 6 shows the histogram of the assessed relative errors of the NOV-estimated
mining subsidence (using Equation (11)) over the region of interest over the Huaibei
coalfield. The areas where the subsidence was less than 0.03 m (i.e., three times the STD
of the differences between the “real” and assessed errors) were masked out before the
histogram statistics were performed. The red curve in Figure 6 shows the fitted frequency
of a normal distribution, which does not show a good agreement with the real frequency.
The possible reason for this is likely due to the more complex error components (e.g.,
uncertainties of LOS displacements and the error assessment method) and displacement
patterns in the real cases compared to the simulated ones.

4.1.2. Spatial Pattern of the Errors

As can be visually observed from the error maps of NOV-estimated mining subsidence
(e.g., see Figures 1d and 4), the errors are spatially auto-correlated. This is expected due
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to the following factors. As stated in Section 2.2, the errors of NOV-estimated mining
subsidence depend on the geometry of SAR imaging, uncertainties of InSAR LOS displace-
ments, and 3D mining displacements. Consequently, for a certain mining area where SAR
image series and InSAR processing methods are selected, the errors of NOV-estimated
mining subsidence should theoretically be auto-correlated in space because of the spatial
correlation of 3D mining displacements.
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4.1.2. Spatial Pattern of the Errors 

Figure 6. Histogram of the assessed relative errors of the NOV-estimated mining subsidence in the
Qianyingzi coal mining area (see Figure 1d). The red line denotes the fitted frequency of the normal
distribution.

As is shown in Figures 1d and 4, there were two areas where mining subsidence
is under-estimated (positive values) and over-estimated (negative values) by the NOV
method, respectively. For an LEO descending SAR imaging view (α ≈ 190◦), the under-
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estimated and over-estimated errors of the NOV-estimated subsidence are primarily dis-
tributed in the northwest “peak” (positive values) and the southeast “valley” (negative val-
ues), respectively. On the other hand, for an LEO ascending SAR imaging view (α ≈ 350◦),
the under-estimated and over-estimated errors of the NOV-estimated subsidence are pri-
marily distributed in the northeast “peak” and the southwest “valley”, respectively. In
summary, the errors of the NOV-estimated mining subsidence approximately follow a
“peak-to-valley” shape.

It is also can be found in Figure 4 that there exist two extrema (i.e., the highest and
lowest errors), and their geolocations were changed with respect to underground mining
directions. For the sake of the following analysis, we refer to the angle between the line of
the peak summit to the valley bottom and the east direction (positive clockwise, and vice
versa) as the “peak-to-valley angle”. Figure 7 plots the peak-to-valley angles of the NOV-
estimated subsidence errors with respect to the changes in underground mining directions
from 0◦ to 180◦ (i.e., ϕ = 0◦ ∼ 180◦). As is seen, the absolute values of the peak-to-valley
angles varied in the ranges of 5◦ to 15◦ for the LEO ascending (clockwise from the east)
and descending (anti-clockwise from the east) SAR orbits, when the underground mining
direction changes from 0◦ to 180◦. In summary, the errors of the NOV-estimated mining
subsidence spatially follow a “peak-to-valley” shape with peak-to-valley angles from 5◦ to
15◦ (for LEO ascending view) and −5◦ to −15◦ (for LEO descending view).
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4.2. Impact Factors on the NOV-Estimated Subsidence Errors 

Figure 7. Peak-to-valley angles of the NOV-estimated subsidence errors with respect to the changes
of underground mining directions from 0◦ to 180◦ for the LEO ascending and descending imaging
views, respectively.

4.2. Impact Factors on the NOV-Estimated Subsidence Errors

In this section, the factors on the error magnitudes of the NOV-estimated mining
subsidence were qualitatively discussed. As analyzed in Section 2.2, the errors of the NOV-
estimated subsidence theoretically depend on the InSAR parameters (i.e., SAR imaging
view and the uncertainty of InSAR-measured LOS displacements) and the 2D horizontal
movements de and dn from which, the parameters of SAR imaging views (i.e., θ and α) can
be readily obtained from the head files of SAR images. Meanwhile, the uncertainties of
InSAR LOS displacements can be empirically assessed by interferometric coherence [7].
According to Peng [35], for the same underground mining geometry, surface 2D horizontal
movements in the west–east and north–south directions are mainly related to the lithology
of rock strata overlying underground mining. Hence, we discussed the influence of SAR
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imaging views, interferometric coherence, and the lithology of overlying rock strata on the
errors of the NOV-estimated mining subsidence.

4.2.1. Influence of Interferometric Coherence

The standard deviation of InSAR LOS displacement (namely δlos) can be empirically
expressed as [36,37]

δlos ≈
λ

4πγ

√
1− |γ|2

2N
(12)

if other error components of InSAR (e.g., due to orbital inaccuracy, atmospheric phase
screen, and phase unwrapping) were reasonably mitigated, where γ denotes interferometric
coherence, N is the number of independent pixels, and λ represents the wavelength of the
SAR sensor. Figure 8 shows the relationship of the error of the NOV-estimated subsidence
with respect to interferometric coherence (i.e., using δlos · sec θ based on Equation (12)),
where the involved parameters were designated as γ = 0.1 ∼ 1.0, θ = 20◦ ∼ 55◦,
λ = 0.056 m (C band) and N = 6. Note that, the 2D horizontal movements were assumed
to be zeros (i.e., de = 0 m and dn = 0 m) for the analysis of the influence of interferometric
coherence only.
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As can be observed from Figure 8, for a fixed incidence angle, the error of the NOV-
estimated subsidence exponentially climbs to the peak of about 2.3 cm, with a linear
decrease of interferometric coherence from 1 to 0.1. This is expected because of the fact that
the relationship between the uncertainties of InSAR LOS displacements and interferometric
coherence is a monotone decreasing function (see Equation (12)); that is, the larger the
coherence is, the smaller the uncertainty is, and vice versa.

4.2.2. Influence of SAR Imaging Views

The current LEO SAR satellites usually fly along near-polar orbits with a fixed flight
angle of α ≈ 350◦ for ascending and α ≈ 190◦ for descending configurations. In addition,
the incidence angles of the current LEO SAR sensors are usually variable in the range
of θ = 20 ∼ 55◦. Figure 9 plots an example of the errors of the NOV-estimated subsi-
dence with respect to the imaging view configuration of the current SAR sensors (i.e.,
α ≈ 350◦ or 190◦ and θ = 20 ∼ 55◦) using Equation (5). In which, the error of InSAR
LOS displacements was given by δlos = 0.01 m, and the 2D horizontal movements were
designated as de = 0.2 m and dn = 0.2 m, respectively.

As is seen in Figure 9, the absolute error of the NOV-estimated subsidence nonlinearly
increases from 0.07 m to the maximum of 0.31 m, with the increase of the incidence angles
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from 20◦ to 55◦. This is expected because of the following reason. As can be seen from
Equations (5)–(7), the two error sources of the NOV-estimated mining subsidence, i.e.,
δL = δlos sec θ and δH = tan θ(− cos α · de + sin α · dn), are all related to the incidence angle,
in which, the incidence angle-related propagation coefficients of these two error sources
(i.e., sec θ and tan θ) are all monotonically increasing in the common range of the incidence
angles from 20◦ to 55◦. This result suggests that, for the same error level of InSAR LOS
displacements and the same 2D horizontal movements, the larger the incidence angles of
SAR sensors are, the larger the error of the NOV-estimated subsidence is, and vice versa.
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Figure 9. An example of the resulting errors of the NOV-estimated subsidence with respect to the
varied incidence angles (i.e., θ = 20− 55◦ )under the current LEO SAR flight angles (α ≈ 350◦ or
α ≈ 190◦. The error of InSAR LOS displacements was given by δlos = 0.01 m. The 2D horizontal
movements were designated as de = 0.2 m and dn = 0.2 m, respectively.

4.2.3. Influence of the Lithology of Overlying Rock Strata

Besides the uncertainties of InSAR LOS displacements and SAR imaging views, 2D
horizontal movements have a significant influence on the error of the NOV-estimated min-
ing subsidence. In theory, ground surface displacements caused by underground mining
primarily depend on the mining geometry (e.g., mining size, depth, width, thickness) and
the lithology of overlying rock strata [38]. Since the mining geometry has a significant
difference, even in the same mining area, we did not discuss its influence on the error of
the NOV-estimated mining subsidence in this paper. Although the lithology of overlying
rock strata is also different in different mining areas, it can be roughly classified into three
categories, i.e., soft, medium, and hard. The composites of the classified three categories
of overlying rock strata can be found in the State Bureau of Coal Industry of China [39].
In addition, the main parameter ranges of the PIM relating to these three categories of
overlying rock strata (i.e., subsidence factor q and tangent of major influence angle tanβ) are
listed in Table 1 [39]. This allows us to analyze the influence of the lithology of overlying
rock strata on the error of the NOV-estimated mining subsidence.

Table 1. The common ranges of the subsidence factor (q) and tangent of major influence angle (tanβ)
for the hard, medium, and soft overlying rock strata.

Parameters of the PIM
Lithology of Overlying Rock Strata

Hard Medium Soft

q 0.27~0.54 0.55~0.85 0.86~1.0
tanβ 1.2~1.91 1.92~2.4 2.41~3.54

More specifically, we first took the means of the subsidence factor q and tangent
of major influence angle tanβ from their common ranges under the three categories of
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overlying rock strata; that is, q = 0.4 and tanβ = 1.5 for the hard rock, q = 0.7 and tanβ = 2.2
for the medium rock, and q = 0.9 and tanβ = 2.9 for the soft rock, respectively. The
error simulation and assessment procedure, described in Section 4.1.1, was performed to
assess the errors of the NOV-estimated mining subsidence under the different lithology of
overlying rock strata. Figure 10 shows an example of the assessed errors associated with an
underground working panel with an advancing direction of ϕ = 90◦(the same as the one
described in Section 4.1.1). Table 2 lists two indicators that are used to qualitatively analyze
the influence of the lithology of overlying rock strata on the errors of the NOV-estimated
mining subsidence in this case, in which, the influence area is defined as the area where
the errors of the NOV-estimated mining subsidence are larger than 0.01 m (the common
level of InSAR displacement uncertainties). The STDs denote the standard deviations of
the errors over the influence area.
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Figure 10. Examples of the errors of the NOV-estimated mining subsidence under hard (q = 0.4 and
tanβ = 1.5), medium (q = 0.7 and tanβ = 2.2), and soft (q = 0.9 and tanβ = 2.9) overlying rock strata,
respectively. In which, the ascending SAR imaging geometry was used (i.e., α = 350◦ and θ = 38◦).
Hard is (a), medium is (b), soft is (c).

Table 2. Standard deviations (STD) and the influence areas of the errors of the NOV-estimated mining
subsidence under different overlying rock strata.

Indicators
Lithology of Overlying Rock Strata

Hard Medium Soft

STD 0.05 m 0.11 m 0.17 m
Influence area 0.40 m2 0.33 m2 0.26 m2

It can be seen from Table 2 and Figure 10 that the influence areas of the errors of the
NOV-estimated mining subsidence gradually decrease when the lithology of overlying
rock strata changes from hard to soft (e.g., from 0.40 km2 to 0.26 km2 in this case). On the
other hand, the STDs of the NOV-estimated subsidence errors dramatically increase with
the changes from hard to soft (e.g., 0.05 m to 0.17 m in this case). This result implies that,
for the same mining geometry, larger errors distributed in a smaller area would result in
the NOV-estimated mining subsidence for the soft overlying rock strata, compared with
those under the hard overlying rock strata. Consequently, more attention should be paid to
scientifically using the NOV-estimated mining subsidence, especially in a mining area with
soft overlying rock strata, due to the resulting large errors.

4.3. Influence of the Error of the NOV-Estimated Mining Subsidence on Its Typical Uses
4.3.1. Influence on the Boundary Delimitation of Mining Subsidence

Delimitating the boundary of ground surface subsidence is a typical use of subsi-
dence observations [35]. To intuitively demonstrate the influence of the error of the NOV-
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estimated mining subsidence on the boundary delimitation, we projected the simulated
3D displacements caused by an underground working panel with ϕ = 90◦ (see Figure 3)
onto the descending (i.e., α = 190◦) and ascending (i.e., α = 350◦) SAR LOS directions
(θ = 38◦), respectively. The NOV method was then applied to estimate mining subsidence
from the projected ascending and descending LOS displacements, respectively. Finally, the
subsidence boundary (generally defined as the area where surface subsidence is larger than
0.01 m [30]) was delimitated from the ascending and descending NOV-estimated mining
subsidence estimates (see Figure 11).
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line) NOV-estimated subsidence. The black dashed line denotes the “real” subsidence boundary. The
base map is the contour of the simulated mining subsidence.

As is shown in Figure 11, compared with the “real” boundary (black dashed line), all
of the delimitated boundaries that are based on the ascending (red line) and descending
(blue line) NOV-estimated mining subsidence shrank (e.g., about 8% in this case). More
specifically, for the ascending SAR imaging view, the delimitated boundary shifted to
the west–south direction and insignificantly shrank in the east–north region, with respect
to the “real” boundary. This is mainly due to the “peak-to-valley” error pattern of the
NOV-estimated mining subsidence; that is, for the ascending SAR imaging view, the NOV-
retrieved subsidence is under- and over-estimated in the regions of the north–east and
south–west peaks, respectively. A similar shift and shrink phenomenon of the delimi-
tated boundary (but in different regions and different directions) can be observed for the
descending NOV-estimated mining subsidence.

4.3.2. Influence on the Assessment of Mining-Induced Building Damage Risk

Another typical application of mining subsidence observations is used to assess the
categories of mining-induced damage to buildings [40]. In this section, a simulation analysis
was conducted to intuitively show the influence of the error of the NOV-estimated mining
subsidence on the assessment of building damage risk, in which, the simulated 3D mining
displacements and the ascending NOV-estimated subsidence were the same as those in
Section 4.1.1. Then, we assumed that 660 buildings (marked by the circles in Figure 12a)
were randomly located in the simulated mining subsidence basin (the boundary is denoted
by a gray line in Figure 12). Finally, the damage categories of the assumed 660 buildings
caused by the simulated underground extraction (see black solid rectangle) were then
assessed on the basis of the ascending NOV-estimated mining subsidence. Readers can
refer to He, et al. [32] for more details about the assessment procedure. For the sake
of comparison, the “real” damage categories assessed by the simulated subsidence are
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presented in Figure 12b. Figure 12c plots the differences between the assessed and “real”
building damage categories.
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Figure 12. (a,b): Assessed and “real” damage categories of buildings (marked by circles) on the basis
of the NOV-estimated and the simulated subsidence, respectively. (c) Differences between (a,b). The
black ellipses in (a–c) denote the simulated subsidence boundary. The black rectangle denotes the
simulated working panel. The base map in (c) shows the errors of the NOV-estimated subsidence.

The results show that the damage categories of 72 and 28 buildings are overestimated
(i.e., +I in Figure 12a) and underestimated (i.e., −I in Figure 12a), respectively. In other
words, the damage risks of 100 buildings, representing 15.2% of all 660 buildings, are
inaccurately assessed due to the errors of the NOV-estimated subsidence. In fact, one can
observe from Figure 12c that those buildings with inaccurately assessed damage risks are
located in the error clustering peak and valley of the NOV-estimated mining subsidence
(marked by the blue and red ellipses in the base map in Figure 12c), respectively. This result
suggests that the NOV-estimated subsidence located in the error peak and valley should be
used prudently in practice.

5. Conclusions

In this paper, we systematically analyzed the error of NOV-estimated mining subsi-
dence from InSAR observations due to neglecting 2D horizontal movements with simulated
and real datasets. The results indicate that the errors can reach up to 45.1% of the maximum
subsidence in this study. In addition, two areas where mining subsidence was under-
estimated (“peak” errors) and over-estimated (“valley” errors), respectively, were observed
in the mining subsidence basin, and the absolute angles between the summit-to-bottom
line and the east direction usually vary from 5◦ to 15◦. For the same InSAR datasets and
underground mining geometry, the errors of the NOV-estimated subsidence primarily de-
pend on the lithology of overlying rock strata; that is, the harder the lithology is, the smaller
the error magnitude is but the wider the error area is, and vice versa. Therefore, prior to
the use of NOV-estimated mining subsidence, it is preferable to approximately assess the
errors due to neglecting 2D horizontal movements (e.g., using the presented method in this
study if possible), in order to scientifically guide the use of subsidence observations.

Note that the presented pixel-wise method for assessing the errors of the NOV-
estimated mining subsidence relies on three in situ parameters (e.g., mining depth, angle
of major influence, and constant of horizontal movement) [29]. This may limit the use of
the presented method if these three parameters are unavailable. In addition, the above-
analyzed patterns of the NOV-estimated mining subsidence generally hold well over those
mining areas where nearly horizontal mineral seams are extracted (very common cur-
rently), since the assisted SIP and PIM methods work well in this scenario. Nevertheless, as
suggested by Dai et al. [41] and Franks et al. [42], several special mining situations (e.g.,
extracting steep inclined mineral seams) or geological conditions (rugged surface terrain)
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would cause significant discrepancies with the error pattern analyzed based on the SIP and
PIM. Future research efforts should be devoted to address this issue.
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