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Abstract: Evaluating the spatial and temporal model performance of distributed hydrological models
is necessary to ensure that the simulated spatial and temporal patterns are meaningful. In recent years,
spatial and temporal remote sensing data have been increasingly used for model performance evalu-
ation. Previous studies, however, have focused on either the temporal or spatial model performance
evaluation. In addition, temporal (or spatial) model performance evaluation is often conducted in a
spatially (or temporally) lumped approach. Here, we evaluated (1) the temporal model performance
evaluation in a spatially distributed approach (spatiotemporal) and (2) the spatial model perfor-
mance in a temporally distributed approach (temporospatial). We further demonstrated that both
spatiotemporal and temporospatial model performance evaluations are necessary since they provide
different aspects of the model performance. For this, a case study was developed using the Soil and
Water Assessment Tool (SWAT) for the Upper Baitarani catchment in India, and the spatiotemporal
and temporospatial model performance was evaluated against three different remotely based actual
evapotranspiration (ETa) products (MOD16 A2, SSEBop, and TerraClimate). The results showed
that an increase in the spatiotemporal model performance would not necessarily lead to an increase
in the temporospatial model performance and vice versa, depending on the evaluation statistics.
Overall, this study has highlighted the necessity of a joint spatiotemporal and temporospatial model
performance evaluation to understand/improve spatial and temporal model behavior/performance.

Keywords: distributed hydrological models; model performance evaluation; spatiotemporal; tem-
porospatial; remote-sensing evapotranspiration

1. Introduction

Spatial heterogeneity in catchment characteristics (land use, soil type, and slope) and
spatial and temporal variations in hydrological forcing (rainfall, wind speed, and solar
radiation) are often observed in nature [1]. These factors cause spatial and temporal varia-
tions of hydrological processes/responses, e.g., soil moisture [2,3], evapotranspiration [4],
and groundwater recharge [5]. Spatially and temporally distributed hydrological models
(herein referred to as distributed models) have been proven as effective tools for mod-
eling spatial and temporal hydrological processes, e.g., the Soil and Water Assessment
Tool (SWAT) [6,7], the TOPography-based hydrological MODEL (TOPMODEL) [8], and
the Variable Infiltration Capacity (VIC) model [9], and the mesoscale Hydrologic Model
(mHM) [10,11].

In order to ensure that the distributed models provide meaningful spatial and temporal
patterns of the interested processes, the simulated spatial and temporal patterns should be
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evaluated against the reference spatiotemporal data. In recent years, remote-sensing data
of high spatial and temporal resolution have been increasingly used for model evaluation,
especially in data-scarce regions [12–23]. However, evaluating both the spatial and temporal
performance of distributed models using remote sensing data has not been well addressed
in the literature. The preceding studies have focused on evaluating either the temporal
or spatial model performance. The majority of the conducted studies have evaluated
the temporal model performance while the spatial evaluation is often performed using
a spatially lumped approach, e.g., at the basin or subbasin level [20,21,24]. Similarly, the
spatial model evaluation is often conducted using a temporally lumped approach, e.g.,
monthly, yearly, or the entire simulation time (e.g., Koch et al. [17]). Up to now, no study
has evaluated both (1) the temporal model performance in a spatially distributed approach
(hereinafter referred to as the spatiotemporal model performance evaluation) and (2) spatial
model performance in a temporally distributed approach (hereinafter referred to as the
temporospatial model performance evaluation).

Evaluating the spatiotemporal and temporospatial model performance are the two
different aspects of the model evaluation. In this study, we focus on the spatiotemporal
model performance evaluation approach which quantifies the temporal pattern matching
between the simulated and reference time-series data at each spatial unit (e.g., pixel) of
the model domain. This can be undertaken by using different temporal performance
indices, e.g., the Nash–Sutcliffe efficiency (NSE) [25], the Kling–Gupta efficiency (KGE) [26],
percentage bias (PBIAS), the root mean square error (RMSE), and the ratio of the RMSE
to the standard deviation of measured data (RSR). Spatiotemporal model performance
evaluation, therefore, provides information about the locations where the temporal model
performance is not good (spatial model issue).

In contrast, this study also assessed the temporospatial model performance evaluation
that quantifies the matching between the simulated and reference spatial patterns at each
model time step. It can be undertaken using different spatial performance indices. Some
of the temporal performance metrics could be used (e.g., RSR, BIAS). Some performance
metrics were specially developed for evaluating the spatial pattern matching, e.g., the
SPAtial Efficiency metric (SPAEF; Koch et al. [17]), fractions skill score [27], and others [28].
Among these spatial performance matrices, the SPAEF metric, which consists of three
equally weighted components (correlation, coefficient of variation, and histogram overlap)
was demonstrated as a robust statistical index for evaluating spatial pattern matching [17].
Temporospatial model performance evaluation provides information about the timing
when the spatial model performance is not good (temporal model issue). This topic has
been less explored in depth so far.

From the above discussion, it can be said that spatiotemporal and temporospatial
model evaluation (1) should be used together to detect both spatial and temporal model
issues, and (2) are the two different aspects of model evaluation. However, this statement
has not been validated by the research conducted in the past. Therefore, the main objective
of this study is to validate the two aforementioned statements. For these objectives, the
Soil and Water Assessment Tool (SWAT) [6] was set up for the Upper Baitarani catchment
located in a data-scare region in India. Satellite-derived actual evapotranspiration (ETa)
data from multiple sources [29–31] were used as reference spatiotemporal data for model
evaluation due to its global coverage and availability. Results from this study are also
expected to promote the use of remotely sensed data for the spatial and temporal evaluation
of distributed hydrological models.

2. Methodology
2.1. Study Area and Data

The Upper Baitarani catchment is in India with an area of about 1711 km2 (Figure 1).
The digital elevation model (DEM) from the Shuttle Radar Topography Mission shows
that the elevation of the catchment varies in a wide range, from 330 to 1120 m above
mean sea level (a.m.s.l). Despite the study area covering a relatively large area with high
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variation in topography, there is only one weather station located in the area. Observed
rainfall shows an average annual rainfall of 1165 mm with high temporal variation and
out of which more than 80% of the rainfall occurs between June and October. The average
monthly minimum and maximum temperature in the area are 11 ◦C and 34 ◦C, respectively.
The dominant land uses/land covers in the area are agricultural, forest, and range grass,
accounting for about 36%, 32%, and 25% of the study area, respectively. The dominant soil
type in the area is sandy clay loam with low water holding capacity [32]. The observed
weather data were procured from the India Meteorological Centre, Bhubaneswar, India.
Furthermore, sunshine hours were used for calculating the solar radiation data for the
considered catchment.
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Figure 1. Location of the Upper Baitarani catchment and the Digital Elevation Model (DEM).

2.2. Spatiotemporal and Temporospatial Model Performance Evaluation

Evaluation of the spatial and temporal performance is the assessment of the simulated
spatiotemporal data against the reference (or observed) spatiotemporal data. Here, the
model output data that need to be evaluated are time-series data at every pixel (with an
equal area) of the modeling domain (Figure 2).

In the spatiotemporal approach (Figure 2), the simulated time-series data at every
pixel (spatial index S) are first evaluated against the reference time-series data at the
corresponding pixel using a temporal performance index T (e.g., NSE, KGE, PBIAS, RMSE).
The spatial variation of the temporal index T provides information on the spatiotemporal
model performance. In the temporospatial approach (Figure 2), the simulated spatial
patterns are evaluated against the reference spatial patterns at every time step using
the spatial index S (e.g., SPAEF, RMSE). Information about the temporospatial model
performance could be obtained from the temporal variation of the spatial index S.
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2.3. Reference Spatiotemporal ETa

In this study, global satellite-based ETa products from the Moderate Resolution Imag-
ing Spectroradiometer (MOD16 A2) [29], the operational Simplified Surface Energy Balance
model (SSEBop) [30], and the TerraClimate [31] were used. ETa from these products was
estimated using different techniques and is available at different spatial and temporal
resolutions. For example, MOD16 A2 ETa was derived using the Penman–Monteith ap-
proach with daily meteorological reanalysis data (air pressure, temperature, humidity,
solar radiation) and 8-day remote-sensing vegetation indices (leaf area index, albedo, and
fraction of photosynthetically active radiation). MOD16 A2 ETa is available at 0.5-km
spatial resolution and 8-day interval. SSEBop ETa was calculated with the simplified energy
balance model [30]. This model combines the estimated ET fraction based on MODIS ther-
mal imagery and grass-reference potential ET. SSEBop ETa is available at 1-km resolution
and monthly timestep. TerraClimate ETa was estimated based on the one-dimensional
modified Thornthwaite–Mather climatic water-balance model with (1) monthly climate
data from the WorldClim [33,34], the Climate Research Unit [35], and the Japanese 55-year
Reanalysis [36], and (2) water storage capacity from the root zone storage capacity [37].
Global TerraClimate ETa is available at 4-km spatial resolution and monthly time step.

The differences in the absolute ETa between the three products are expected due
to the different techniques and input data used to estimate ETa. The annual average
ETa during the period 2003–2010 in the study area is 606 mm (MOD16 A2), 970 mm
(SSEBop), and 845 mm (TerraClimate). The spatial and monthly ETa patterns also show
their dissimilarities (Figure 3). However, there are some common spatial and temporal ETa
patterns among these products, e.g., low ETa near the catchment outlet, high ETa in the
western part of the study area, and high seasonal variation. Evaluating the accuracy of
these products is not within the scope of this study. Here, we instead provide the novel
techniques for spatiotemporal and temporospatial model evaluation. Future studies can
evaluate the validity of different remote-sensing products before applying our approach for
spatiotemporal and temporospatial model evaluations. In this study, the considered ETa
products were used as reference data for model evaluation to (1) explore the SWAT model
performance compared with different ETa products and (2) account for the uncertainty in
the estimated ETa from different ETa products.
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2.4. The SWAT Model

SWAT is a distributed hydrological used for evaluating the impacts of land use man-
agement practices on water, sediment, and nutrient yields [6]. SWAT has been widely used
and tested in various catchments worldwide [38]. In SWAT, a catchment is divided into
sub-catchments which are further sub-divided into hydrologic response units (HRUs). An
HRU is a fraction of land with a unique combination of land use, soil type, and slope within
a sub-catchment. SWAT simulates two phases of the hydrological cycle, the land phase and
the routing phase. The land phase includes HRU-related processes (e.g., evapotranspiration,
surface runoff, infiltration, lateral flow, groundwater recharge, and based flow). The routing
phase simulates flow in water bodies (e.g., river, reservoir, and pond). SWAT provided
outputs at different spatial levels, e.g., HRU, sub-catchment, or catchment. Outputs at the
HRU level could be mapped to the HRU raster file, which contains the spatial information
of HRUs, created during the model setup with ArcSWAT (e.g., Kim et al. [39]; Nguyen &
Dietrich [40]).

2.5. Model Setup, Parameter Variation, and Model Evaluation for ETa
2.5.1. Model Setup

Based on the land use, soil type, and slope, the study area is divided into 45 catchments,
which are further sub-divided into 875 hydrologic response units (HRUs). The model was
set up to simulate for ten years at the daily time step with two years of warm-up (2001–2002)
and eight years of model evaluation (2003–2010). In SWAT, ETa is calculated after potential
evapotranspiration (ETp). There are several methods available for calculating ETp [6,41],
for example, the Penman–Monteith [42–44], Priestly–Taylor [45], and Hargreaves [46]. Here,
we selected the Penman–Monteith method as it was one of the widely used methods for
evapotranspiration quantification [47]. Daily ETp is calculated as follows [6,42–44]:

ETp =
∆·(Rn − G) + ρa·cp·(eo

z − ez)/ra

λ·(∆ + γ·(1 + rc/ra))
, (1)
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where ∆ is the slope of the saturated vapor pressure curve (kPa ◦C−1), Rn is the net radiation
(MJ m−2, d−1), G is the heat flux to the soil (MJ m−2 d−1), ρa is the air density (kg m−3),
cp is the specific heat at constant pressure (MJ kg−1 ◦C−1), eo

z and ez are the saturated and
the actual vapor pressure at height z (kPa), respectively, ra is the bulk surface aerodynamic
resistance for water vapor (s m−1), λ is the latent heat of vaporization (MJ kg−1), γ is the
psychrometric constant (kPa ◦C−1), and rc is the canopy surface resistance (s m−1).

Daily simulated ETa from SWAT was aggregated to an 8-day interval for comparison
with MOD16 A2 ETa and to a monthly interval for comparison with SSEBop and TerraCli-
mate ETa. The aggregated ETa was then mapped to the HRU raster map of 90 m resolution
that was created during the model setup using ArcSWAT (e.g., Kim et al. [39]; Nguyen &
Dietrich [40]). ETa products from MOD16 A2, SSEBop and TerraClimate were spatially
disaggregated to the same spatial resolution of SWAT ETa (90 m resolution) for comparison.

2.5.2. Parameter Variation and Model Performance Evaluation Scenarios

The objectives of parameter variation are to (1) search for a global optimal solution,
and (2) find a relationship between spatiotemporal and temporospatial model performance
in different model simulations. The model parameters (Table 1) were selected based on the
literature review of the most common parameters for ETa calibration [19,20,23,48,49]. These
parameters affect evaporation/evapotranspiration in different model compartments. For
example, the soil evaporation compensation factor (ESCO) controls the maximum allowable
soil evaporation with depth. Higher plant uptake compensation factors (EPCO) mean that
plants can take water from deeper soil layers, resulting higher evapotranspiration. Higher
groundwater “revap” coefficients mean that more water from the shallow aquifer could
be moved up to the root zone for evaporation. The maximum canopy storage (CANMX)
affects the amount of precipitation that can be held by plant canopy; therefore, it affects
evapotranspiration. The effect of other parameters (Table 1) on evapotranspiration is not
straightforward to interpret. In this study, some of the parameters were changed in a spatial
approach according to land use and soil type (Table 1). Latin Hypercube Sampling (LHS)
was used to generate 2000 parameter sets in a search for a global optimum solution. LHS
has been demonstrated as an efficient sampling approach for searching for a global optimal
solution for high-dimensional problems [23].

Table 1. List of model parameters and their ranges for parameter optimization.

Nr. Parameters Description Parameter Range
Min Max

1 r_CN2FRSD SCS runoff curve number of forest (FRSD),
agriculture (AGRL), and range grass

(RNGE) lands

−0.2 0.2
2 r_CN2AGRL −0.2 0.2
3 r_CN2RNGE −0.2 0.2
4 v_ESCOFRSD

Soil evaporation compensation factor of
forest agriculture, and range grass lands

0 1
5 v_ESCOAGRL 0 1
6 v_ESCORNGE 0 1
7 v_EPCOFRSD

Plant uptake compensation factor of forest
agriculture, and range grass lands

0 1
8 v_EPCOAGRL 0 1
9 v_EPCORNGE 0 1

10 v_GWQMN Groundwater baseflow thereshold (mm) 0 2000
11 v_GW_REVAP Groundwater “revap” coefficient 0.02 0.2
12 v_REVAPMN Groundwater “revap” threshold (mm) 0 500
13 r_SOL_AWCSOIL1 Soil available water content of soil classes 1

and 2
−0.2 0.2

14 r_SOL_AWCSOIL2 −0.2 0.2
15 r_SOL_KSOIL1 Soil hydraulic conductivity of soil classes 1

and 2 (mm/h)
−0.2 0.2

16 r_SOL_KSOIL2 −0.2 0.2
17 v_CANMX Maximum canopy storage (mm) 0 5

The prefixes “v” and “r” indicate “replace” and “relative” change compared to the original values.
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In this study, the optimal solution achieved from 2000 model runs was used as an
example for demonstrating (1) how spatiotemporal and temporospatial model performance
evaluation could be conducted, and (2) the benefits of conducting both spatiotemporal and
temporospatial model evaluation (Section 3.1). The following multi-objective function (OF)
was used for selecting the optimal solution:

OF = minimize(TS + ST), (2)

ST =
∑

ntimesteps
k=1 Tk

ETa
ntimesteps

, (3)

TS =
∑

npixels
j=1 Sj

ETa

npixels
, (4)

where TS and ST are the spatiotemporal and temporospatial model performance indices,
respectively, T j

ETa and Sk
ETa are the statistical indices for temporal and spatial model perfor-

mance, respectively, for actual evapotranspiration (ETa) at the pixel j and time step k, npixels
is the number of pixels, and k is the number of evaluation time steps. For this analysis, we
selected a MOD16 A2 ETa product as reference data with SETa is SPAEF (Equation (6)) and
TETa is NSE (Equation (7)) as an example in this case (Section 3.1).

To evaluate the relation between spatiotemporal and temporospatial model perfor-
mance, we used different spatiotemporal (ST) and temporospatial (TS) performance indices
(Table 2). For this evaluation, different ETa products (MOD16 A2, SEEBop, and TerraCli-
mate) were used to draw reliable conclusions. The relation between spatiotemporal and
temporospatial model performance was analyzed based on 2000 model runs (Section 3.2).

Table 2. List of spatial and temporal model performance statistics used in this study.

Spatiotemporal Statistic ST (Equation (3)) Temporospatial Statistic TS (Equation (4))
Notation Range and Ideal Value Notation Range and Ideal Value

S-NSE [−1, ∞) T-SPAEF [−1, ∞)
S-NSE [−1, ∞) T-NSE [−1, ∞)
SRMSE [0, ∞) TRMSE [0, ∞)
SRSR [0, ∞) TRSR [0, ∞)

SaBIAS [0, ∞) TaBIAS [0, ∞)
Numbers in bold indicate the ideal value.

The spatiotemporal (ST) and temporospatial (TS) performance statistics (Table 2) are
calculated using Equations (3) and (4), respectively, while the temporal T (e.g., SPAEF,
NSE, RMSE, RSE, absolute bias aBIAS) and spatial S (e.g., KGE, NSE, RMSE, RSR, aBIAS)
performance are calculated as follows:

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2, (5)

SPAEF = 1−
√
(r− 1)2 + (α/β− 1)2 + (γ− 1)2, (6)

NSE = 1−
∑n

i=1

(
xsim

i − xobs
i

)2

∑n
i=1

(
xobs

i − xobs
)2 , (7)

RMSE =

√
∑n

i=1
(
xsim

i − xobs
i
)2

n
, (8)
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RSR =

√
∑n

i=1
(
xsim

i − xobs
i
)2√

∑n
i=1

(
xobs

i − xobs
)2

, (9)

aBIAS = |BIAS| =
∣∣∣∣∣1− ∑n

i=1 xsim
i

∑n
i=1 xobs

i

∣∣∣∣∣, (10)

with:

r =
∑n

i=1

(
xobs

i − xobs
)
·
(

xsim
i − xsim

)
√

∑n
i=1

(
xobs

i − xobs
)2
·∑n

i=1

(
xsim

i − xsim
)2

, (11)

α =

√
∑n

i=1

(
xsim

i − xsim
)2

√
∑n

i=1

(
xobs

i − xobs
)2

, (12)

β =
xsim

xobs , (13)

γ =
∑m

j=1 min
(
Kj, Lj

)
∑m

j=1 Kj
, (14)

where r is the linear correlation between observed and simulated values (which in this
study are the simulated and satellite-derived ETa), α is the variability measure, β is the bias
term, γ is the histogram intersection, xsim

j and xobs
j are the simulated and observed values,

xobs is the mean of observed x, K and L are the histograms of observed and simulated
variables, respectively, m is the number of bins, and | | is the absolute sign.

3. Results and Discussion
3.1. Spatiotemporal and Temporospatial Model Performance

Figure 4 shows the best spatiotemporal and temporospatial model performance for
ETa (with MOD16 A2 ETa as the reference dataset). It is seen that the spatial distribution of
the NSE is far from homogeneous (Figure 4a), which could not be seen in a spatially lumped
approach. From the spatial distribution of NSE, the areas with a relatively poor temporal
model performance compared to others could be easily identified. This information could
be used to (1) further improve the model performance and (2) detect the reason for poor
temporal model performance in these areas. The histogram and cumulative plots provide
useful statistical information about the temporal model performance (Figure 4b,c). The
histogram (or cumulative) plot shows the fraction of the study area that has the NSE within
a specific range (or below a specific value). The histogram plot is seen to be highly skewed
toward the optimal NSE value (optimal NSE = 1). This is the desired model performance, in
other words, a higher skewness of the NSE distribution toward the optimal point indicates
a better model performance.

Despite the NSE being a temporal performance index, it does not provide information
about the time when the model poorly performs. However, this can only be seen in the
temporal variation of the SPAEF index (Figure 3d). For example, during April 2004 and
April–May 2007, the simulated patterns are poorly matched with the reference data while
in other periods the match is far better. The distribution of SPAEF indices is also highly
skewed toward the optimal value as about 40% of the time step of the SPAEF indices are
less than −1 (Figure 4e,f).
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SPAEF is 1.

3.2. The Relation between Spatiotemporal and Temporospatial Model Performance

Figure 5 shows that the relation between spatiotemporal (ST) and temporospatial
(TS) model performance varies depending on the reference ETa data and the statistical
indices used for evaluation. For example, when KGE and SPAEF were used to derive the
spatiotemporal (S-KGE) and temporospatial (T-SPAEF) mode of performance statistics, S-KGE
and T-SPAEF could be highly positively correlated (Figure 5a), highly negatively correlated
(Figure 5b), or uncorrelated (Figure 5c). A high positive correlation between S-KGE and
T-SPAEF indicates that an increase in the spatiotemporal model performance will likely
lead to an increase in temporospatial model performance. However, a high negative
correlation between S-KGE and T-SPAEF means that an increase in spatiotemporal model
performance will likely result in a decrease in temporospatial model performance and
vice versa. An uncorrelated S-KGE and T-SPAEF indicates that the spatiotemporal model
performance cannot be inferred from the temporospatial model performance and vice
versa. The results show that even if the same statistical index was used for spatiotemporal
and temporospatial model evaluation (e.g., S-NSE and T-NSE, Figure 5a) it does not always
guarantee that an increase in the spatiotemporal model performance will lead to an increase
in the temporospatial model performance (Figure 5a–c). Overall, the results show that both
spatiotemporal and temporospatial model performance evaluation is needed.
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plots, the points located closer to the lower-left corner indicate a better model performance.

4. Conclusions

Distributed hydrological models have long been used for understanding the spatial
and temporal hydrological responses of a catchment. To ensure that the model can provide
meaningful spatial and temporal information, the simulated spatiotemporal data from
these models should be evaluated against the reference data. However, studies have either
focused on temporal or spatial model evaluation. In addition, temporal (or spatial) model
evaluation is often conducted in a spatially (or temporally) lumped approach. The terms
“spatiotemporal” and “temporospatial” model performance evaluations introduced in
this study refer to the evaluation of (1) the temporal model performance in a spatially
distributed approach and (2) the spatial model performance in a temporally distributed
approach, respectively. Here, we demonstrated that both spatiotemporal and temporospa-
tial model performance evaluations are needed. They are indeed two different aspects
of model evaluation. The results showed that spatiotemporal (or temporospatial) model
performance evaluation could help in detecting the locations (or the time) where (or when)
the temporal (or spatial) patterns are poorly represented by the model. Additionally, an
increase in the spatiotemporal model performance will not necessarily lead to an increase
in the temporospatial model performance and vice versa. This further suggests that both
spatiotemporal and temporospatial model performance evaluations are needed to achieve
a reliable model performance. Overall, the proposed approach provides graphical and sta-
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tistical indicators for a better understanding of spatiotemporal and temporospatial model
behavior which will further help in improving the model performance.

Author Contributions: Conceptualization, T.V.N.; methodology, T.V.N., B.U. and D.A.T.; software,
T.V.N.; formal analysis, T.V.N., D.A.T. and B.U.; writing—original draft preparation, T.V.N., D.A.T.,
T.B.T.P. and B.U.; writing—review and editing, T.V.N., D.A.T., B.U. and T.B.T.P.; visualization, T.V.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The MOD16 A2, SSEbop, TerraClimate data used for model evaluation
are freely available at https://modis.gsfc.nasa.gov/data/dataprod/mod16.php (accessed 15 January
2022), and https://earlywarning.usgs.gov/fews/product/460 (accessed 15 January 2022), and http://
www.climatologylab.org/terraclimate.html (accessed 15 January 2022), respectively. The R code and
SWAT model used in this study are available upon request via contacting the corresponding author.

Acknowledgments: We thank the three anonymous reviewers for their constructive comments that
helped to considerably improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klingler, C.; Schulz, K.; Herrnegger, M. Large-Sample Data for Hydrology and Environmental Sciences for Central Europe. Earth

Sci. Data 2021, 13, 4529–4565. [CrossRef]
2. Brocca, L.; Tullo, T.; Melone, F.; Moramarco, T.; Morbidelli, R. Catchment Scale Soil Moisture Spatial-Temporal Variability. J.

Hydrol. 2012, 422–423, 63–75. [CrossRef]
3. Wilson, D.J.; Western, A.W.; Grayson, R.B. Identifying and Quantifying Sources of Variability in Temporal and Spatial Soil

Moisture Observations. Water Resour. Res. 2004, 40, W02507. [CrossRef]
4. Thomas, A. Spatial and Temporal Characteristics of Potential Evapotranspiration Trends over China. Int. J. Climatol. 2000, 20,

381–396. [CrossRef]
5. Edmunds, W.M.; Fellman, E.; Goni, I.B.; Prudhomme, C. Spatial and Temporal Distribution of Groundwater Recharge in Northern

Nigeria. Hydrogeol. J. 2002, 10, 205–215. [CrossRef]
6. Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water

Resources Institute: College Station, TX, USA, 2011. Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf
(accessed on 17 April 2022).

7. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model
Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

8. Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24,
43–69. [CrossRef]

9. Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A Simple Hydrologically Based Model of Land Surface Water and Energy
Fluxes for General Circulation Models. J. Geophys. Res. 1994, 99, 14415–14428. [CrossRef]

10. Kumar, R.; Samaniego, L.; Attinger, S. Implications of Distributed Hydrologic Model Parameterization on Water Fluxes at
Multiple Scales and Locations. Water Resour. Res. 2013, 49, 360–379. [CrossRef]

11. Samaniego, L.; Kumar, R.; Attinger, S. Multiscale Parameter Regionalization of a Grid-Based Hydrologic Model at the Mesoscale.
Water Resour. Res. 2010, 46, W05523. [CrossRef]

12. Campo, L.; Caparrini, F.; Castelli, F. Use of Multi-Platform, Multi-Temporal Remote-Sensing Data for Calibration of a Distributed
Hydrological Model: An Application in the Arno Basin, Italy. Hydrol. Process. 2006, 20, 2693–2712. [CrossRef]

13. Dembélé, M.; Ceperley, N.; Zwart, S.J.; Salvadore, E.; Mariethoz, G.; Schaefli, B. Potential of Satellite and Reanalysis Evaporation
Datasets for Hydrological Modelling under Various Model Calibration Strategies. Adv. Water Resour. 2020, 143, 103667. [CrossRef]

14. Herman, M.R.; Nejadhashemi, A.P.; Abouali, M.; Hernandez-Suarez, J.S.; Daneshvar, F.; Zhang, Z.; Anderson, M.C.; Sadeghi,
A.M.; Hain, C.R.; Sharifi, A. Evaluating the Role of Evapotranspiration Remote Sensing Data in Improving Hydrological Modeling
Predictability. J. Hydrol. 2018, 556, 39–49. [CrossRef]

15. Immerzeel, W.W.; Droogers, P. Calibration of a Distributed Hydrological Model Based on Satellite Evapotranspiration. J. Hydrol.
2008, 349, 411–424. [CrossRef]

16. Jiang, L.; Wu, H.; Tao, J.; Kimball, J.S.; Alfieri, L.; Chen, X. Satellite-Based Evapotranspiration in Hydrological Model Calibration.
Remote Sens. 2020, 12, 428. [CrossRef]

17. Koch, J.; Demirel, M.C.; Stisen, S. The SPAtial EFficiency Metric (SPAEF): Multiple-Component Evaluation of Spatial Patterns for
Optimization of Hydrological Models. Geosci. Model Dev. 2018, 11, 1873–1886. [CrossRef]

18. Mendiguren, G.; Koch, J.; Stisen, S. Spatial Pattern Evaluation of a Calibrated National Hydrological Model—A Remote-Sensing-
Based Diagnostic Approach. Hydrol. Earth Syst. Sci. 2017, 21, 5987–6005. [CrossRef]

https://modis.gsfc.nasa.gov/data/dataprod/mod16.php
https://earlywarning.usgs.gov/fews/product/460
http://www.climatologylab.org/terraclimate.html
http://www.climatologylab.org/terraclimate.html
http://doi.org/10.5194/essd-13-4529-2021
http://doi.org/10.1016/j.jhydrol.2011.12.039
http://doi.org/10.1029/2003WR002306
http://doi.org/10.1002/(SICI)1097-0088(20000330)20:4&lt;381::AID-JOC477&gt;3.0.CO;2-K
http://doi.org/10.1007/s10040-001-0179-z
https://swat.tamu.edu/media/99192/swat2009-theory.pdf
http://doi.org/10.1111/j.1752-1688.1998.tb05961.x
http://doi.org/10.1080/02626667909491834
http://doi.org/10.1029/94JD00483
http://doi.org/10.1029/2012WR012195
http://doi.org/10.1029/2008WR007327
http://doi.org/10.1002/hyp.6061
http://doi.org/10.1016/j.advwatres.2020.103667
http://doi.org/10.1016/j.jhydrol.2017.11.009
http://doi.org/10.1016/j.jhydrol.2007.11.017
http://doi.org/10.3390/rs12030428
http://doi.org/10.5194/gmd-11-1873-2018
http://doi.org/10.5194/hess-21-5987-2017


Remote Sens. 2022, 14, 1959 12 of 13

19. Odusanya, A.E.; Mehdi, B.; Schürz, C.; Oke, A.O.; Awokola, O.S.; Awomeso, J.A.; Adejuwon, J.O.; Schulz, K. Multi-Site Calibration
and Validation of SWAT with Satellite-Based Evapotranspiration in a Data-Sparse Catchment in Southwestern Nigeria. Hydrol.
Earth Syst. Sci. 2019, 23, 1113–1144. [CrossRef]

20. Rajib, A.; Evenson, G.R.; Golden, H.E.; Lane, C.R. Hydrologic Model Predictability Improves with Spatially Explicit Calibration
Using Remotely Sensed Evapotranspiration and Biophysical Parameters. J. Hydrol. 2018, 567, 668–683. [CrossRef]

21. Rientjes, T.H.M.; Muthuwatta, L.P.; Bos, M.G.; Booij, M.J.; Bhatti, H.A. Multi-Variable Calibration of a Semi-Distributed Hydrolog-
ical Model Using Streamflow Data and Satellite-Based Evapotranspiration. J. Hydrol. 2013, 505, 276–290. [CrossRef]

22. Stisen, S.; Koch, J.; Sonnenborg, T.O.; Refsgaard, J.C.; Bircher, S.; Ringgaard, R.; Jensen, K.H. Moving beyond Run-off Calibration—
Multivariable Optimization of a Surface–Subsurface–Atmosphere Model. Hydrol. Process. 2018, 32, 2654–2668. [CrossRef]

23. Nguyen, V.T.; Dietrich, J.; Uniyal, B. Modeling Interbasin Groundwater Flow in Karst Areas: Model Development, Application,
and Calibration Strategy. Environ. Model. Softw. 2020, 124, 104606. [CrossRef]

24. Nguyen, T.V.; Kumar, R.; Lutz, S.R.; Musolff, A.; Yang, J.; Fleckenstein, J.H. Modeling Nitrate Export From a Mesoscale Catchment
Using StorAge Selection Functions. Water Resour. Res. 2021, 57, e2020WR028490. [CrossRef]

25. Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970,
10, 282–290. [CrossRef]

26. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria:
Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [CrossRef]

27. Roberts, N.M.; Lean, H.W. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective
Events. Mon. Weather Rev. 2008, 136, 78–97. [CrossRef]

28. Koch, J.; Jensen, K.H.; Stisen, S. Toward a True Spatial Model Evaluation in Distributed Hydrological Modeling: Kappa Statistics,
Fuzzy Theory, and EOF-Analysis Benchmarked by the Human Perception and Evaluated against a Modeling Case Study. Water
Resour. Res. 2015, 51, 1225–1246. [CrossRef]

29. Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (MOD16A2/A3); Algorithm
Theoretical Basis Document Collection 5. 2013; 66p. Available online: https://modis-land.gsfc.nasa.gov/pdf/MOD16ATBD.pdf
(accessed on 17 April 2022).

30. Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping
Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. J. Am. Water Resour. Assoc. 2013,
49, 577–591. [CrossRef]

31. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly
Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [CrossRef]

32. Uniyal, B.; Dietrich, J.; Vu, N.Q.; Jha, M.K.; Arumí, J.L. Simulation of Regional Irrigation Requirement with SWAT in Different
Agro-Climatic Zones Driven by Observed Climate and Two Reanalysis Datasets. Sci. Total Environ. 2019, 649, 846–865. [CrossRef]

33. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017,
37, 4302–4315. [CrossRef]

34. Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global
Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [CrossRef]

35. Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated High-Resolution Grids of Monthly Climatic Observations—The CRU
TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [CrossRef]

36. Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The
JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [CrossRef]

37. Wang-Erlandsson, L.; Bastiaanssen, W.G.M.; Gao, H.; Jägermeyr, J.; Senay, G.B.; Van Dijk, A.I.J.M.; Guerschman, J.P.; Keys, P.W.;
Gordon, L.J.; Savenije, H.H.G. Global Root Zone Storage Capacity from Satellite-Based Evaporation. Hydrol. Earth Syst. Sci. 2016,
20, 1459–1481. [CrossRef]

38. Arnold, J.G.; Fohrer, N. SWAT2000: Current Capabilities and Research Opportunities in Applied Watershed Modelling. Hydrol.
Process. 2005, 19, 563–572. [CrossRef]

39. Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and Application of the Integrated SWAT-MODFLOW Model. J.
Hydrol. 2008, 356, 1–16. [CrossRef]

40. Nguyen, V.T.; Dietrich, J. Modification of the SWAT Model to Simulate Regional Groundwater Flow Using a Multicell Aquifer.
Hydrol. Process. 2018, 32, 939–953. [CrossRef]

41. Rafiei, V.; Ghahramani, A.; An-Vo, D.A.; Mushtaq, S. Modelling Hydrological Processes and Identifying Soil Erosion Sources in a
Tropical Catchment of the Great Barrier Reef Using SWAT. Water 2020, 12, 2179. [CrossRef]

42. Monteith, J.L. Evaporation and Environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234.
43. Allen, R.G. A Penman for All Seasons. J. Irrig. Drain. Eng. 1986, 112, 348–368. [CrossRef]
44. Allen, R.G.; Jensen, M.E.; Wright, J.L.; Burman, R.D. Operational Estimates of Reference Evapotranspiration. Agron. J. 1989, 81,

650–662. [CrossRef]
45. Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon.

Weather Rev. 1972, 100, 81–92. [CrossRef]
46. Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [CrossRef]
47. Howell, T.; Evett, S.R. The Penman-Monteith Method; USDA Agricultural Research Service: Bushland, TX, USA, 2001.

http://doi.org/10.5194/hess-23-1113-2019
http://doi.org/10.1016/j.jhydrol.2018.10.024
http://doi.org/10.1016/j.jhydrol.2013.10.006
http://doi.org/10.1002/hyp.13177
http://doi.org/10.1016/j.envsoft.2019.104606
http://doi.org/10.1029/2020WR028490
http://doi.org/10.1016/0022-1694(70)90255-6
http://doi.org/10.1016/j.jhydrol.2009.08.003
http://doi.org/10.1175/2007MWR2123.1
http://doi.org/10.1002/2014WR016607
https://modis-land.gsfc.nasa.gov/pdf/MOD16ATBD.pdf
http://doi.org/10.1111/jawr.12057
http://doi.org/10.1038/sdata.2017.191
http://doi.org/10.1016/j.scitotenv.2018.08.248
http://doi.org/10.1002/joc.5086
http://doi.org/10.1002/joc.1276
http://doi.org/10.1002/joc.3711
http://doi.org/10.2151/jmsj.2015-001
http://doi.org/10.5194/hess-20-1459-2016
http://doi.org/10.1002/hyp.5611
http://doi.org/10.1016/j.jhydrol.2008.02.024
http://doi.org/10.1002/hyp.11466
http://doi.org/10.3390/w12082179
http://doi.org/10.1061/(ASCE)0733-9437(1986)112:4(348)
http://doi.org/10.2134/agronj1989.00021962008100040019x
http://doi.org/10.1175/1520-0493(1972)100&lt;0081:OTAOSH&gt;2.3.CO;2
http://doi.org/10.13031/2013.26773


Remote Sens. 2022, 14, 1959 13 of 13

48. Abiodun, O.O.; Guan, H.; Post, V.E.A.; Batelaan, O. Comparison of MODIS and SWAT Evapotranspiration over a Complex
Terrain at Different Spatial Scales. Hydrol. Earth Syst. Sci. 2018, 22, 2775–2794. [CrossRef]

49. Kannan, N.; White, S.M.; Worrall, F.; Whelan, M.J. Sensitivity Analysis and Identification of the Best Evapotranspiration and
Runoff Options for Hydrological Modelling in SWAT-2000. J. Hydrol. 2007, 332, 456–466. [CrossRef]

http://doi.org/10.5194/hess-22-2775-2018
http://doi.org/10.1016/j.jhydrol.2006.08.001

	Introduction 
	Methodology 
	Study Area and Data 
	Spatiotemporal and Temporospatial Model Performance Evaluation 
	Reference Spatiotemporal ETa 
	The SWAT Model 
	Model Setup, Parameter Variation, and Model Evaluation for ETa 
	Model Setup 
	Parameter Variation and Model Performance Evaluation Scenarios 


	Results and Discussion 
	Spatiotemporal and Temporospatial Model Performance 
	The Relation between Spatiotemporal and Temporospatial Model Performance 

	Conclusions 
	References

