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Abstract: Traditional inventories require large investments of resources and a trained workforce to
measure tree sizes and characteristics that affect wood quality and value, such as the presence of
defects and damages. Handheld light detection and ranging (LiDAR) and photogrammetric point
clouds developed using Structure from Motion (SfM) algorithms achieved promising results in tree
detection and dimensional measurements. However, few studies have utilized handheld LiDAR
or SfM to assess tree defects or damages. We used a Samsung Galaxy S7 smartphone camera to
photograph trees and create digital models using SfM, and a handheld GeoSLAM Zeb Horizon to
create LiDAR point cloud models of some of the main tree species from the Pacific Northwest. We
compared measurements of damage count and damage length obtained from handheld LiDAR, SfM
photogrammetry, and traditional field methods using linear mixed-effects models. The field method
recorded nearly twice as many damages per tree as the handheld LiDAR and SfM methods, but
there was no evidence that damage length measurements varied between the three survey methods.
Lower damage counts derived from LiDAR and SfM were likely driven by the limited point cloud
reconstructions of the upper stems, as usable tree heights were achieved, on average, at 13.6 m for
LiDAR and 9.3 m for SfM, even though mean field-measured tree heights was 31.2 m. Our results
suggest that handheld LiDAR and SfM approaches show potential for detection and measurement of
tree damages, at least on the lower stem.

Keywords: tree defect; structure from motion; handheld LiDAR; photogrammetry; forest inventory

1. Introduction

Periodic resource assessments are routinely used to estimate timber volume and value,
tree growth rates, carbon storage, forest health status, species, coarse woody debris, fuel
loading, and more. Historically, qualified cruisers (i.e., trained forestry measurement
specialists) executed field forest inventories using specialized tools, manual measurements,
and visual estimation. Forest inventories are typically plot-based samples of a predefined
area and, in some cases, repeated on a 5- to 15-year basis.

Traditional inventories require a trained workforce and a substantial amount of time.
Additionally, sample-based inventories may not fully capture the diversity of a forest
stand. Typically, plots capture less than 20% of the forested area in a stand [1]. This can be
problematic for diverse, uneven-aged stands that are not homogenous. Additionally, field
measurements rely on the expertise of the practitioner and are prone to error [2,3].

Recent developments in the field of remote sensing are revolutionizing the way forest
inventory data are gathered and analyzed. Remote sensing involves the use of passive
or active sensors to capture reflected energy, which, in turn, can be used to describe or
measure attributes of the targeted object. The most prevalent platforms for collecting
tree data are satellites, airplanes, unmanned aerial systems (UASs), and ground-based
(terrestrial) sensors (i.e., automotive or hand-held).
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One of the most promising applications of remote sensing includes the use of light
detection and ranging (LiDAR). LiDAR is an active remote sensing technique that uses laser
pulses to scan the environment. Current LiDAR devices send thousands, even millions,
of laser pulses per second, which are reflected back by the forest ecosystem. The sensor
either records the time it takes for an individual pulse of light to be reflected back or the
phase shift between the sent and received pulse and, using a series of algorithms and angle
measurements, computes the location of the return.

An emerging application of terrestrial LiDAR is handheld LiDAR, which has achieved
promising results in tree detection and measuring diameter at breast height (DBH) and
height, while decreasing the amount of time, equipment, expertise, and cost to collect
remote sensing data [4–6]. Handheld LiDAR scanners have a maximum range of approxi-
mately 100 m and can emit upwards of 300,000 laser pulses per second [7]. Studies using
this new generation of mobile scanners were able to detect 77–96% of trees over 5-cm
DBH [5,6], with an RMSE for measuring DBH from 0.9–2.3 cm. Handheld laser scanners
can measure tree heights up to 7–33 m with an RMSE of 0.4–1.4 m [5,6].

Another remote sensing technology frequently applied to forest inventory is pho-
togrammetry [8,9]. Photogrammetry uses a camera (typically equipped with a red-green-
blue sensor) to capture solar light energy reflected off objects. Common platforms for
photogrammetry are satellites, aerial carriers (i.e., helicopter, fixed-wing aircraft, or UAS),
and terrestrial carriers (i.e., tripods, vehicles, or humans).

The last two decades saw the emergence of a new photogrammetric application,
namely Structure from Motion (SfM), which utilizes moving camera positions, overlapping
photo images, and computer-vision techniques to reconstruct 3D models of objects. Re-
cently, several studies employed terrestrial SfM to measure diameter at breast height (DBH),
tree position, height, and stem curve. The results suggested that DBH could be measured
within 0.9–6.8 cm RMSE, depending on the equipment and methods used [10–16], the
positions with 0.16–0.20 m RMSE [13], whereas the average total tree height varies from
4.3–20 m, depending on the estimated stem completeness [13,15]. Stem curves can be
estimated with sub-centimeter accuracy up to approximately 3 m above ground level [15].

In addition to the size and location of the trees, a forest inventory records the defects
present throughout the forest stand. Defects are tree damages caused by structural deformi-
ties, animal browse, mechanical damage, insects and disease activity, or weather events, to
list just a few. Including defect assessment in a forest inventory directly relates to quantify-
ing forest attributes, such as net timber volume and value, insect and disease activity, and
wildlife habitat. Traditionally, a tree defect is assessed in the field using hand-held forestry
tools and/or visual estimation. Typically, a cruiser identifies the presence or absence of
damage, records the source, and quantifies the amount of the tree stem affected by the
damage [17].

To date, very few, if any, studies have utilized handheld LiDAR or SfM to assess
tree defect. There are a small number of related studies conducted with terrestrial laser
scanning (TLS), which may serve as an analog for handheld LiDAR. Using TLS, small log
defects can be detected down to ~0.5 cm in size [18]. Additionally, some defects, such as
branch scars, can be measured with approximately 6–9 mm accuracy, compared to manual
measurements [19]. Studies focused on taper, lean, and sweep based on TLS reached
conflicting results for taper, whereas lean angle was measured within ~2◦, and sweep
with approximately 1–2 cm/m accuracy [20]. Since handheld LiDAR and TLS use similar
technologies, we expect handheld LiDAR to have utility in assessing tree defect. There
is not a functional analog for SfM photogrammetry; however, the technology has proven
useful in measuring DBH, tree position, height, and stem curve [10–16]. Therefore, we
expect SfM to have utility in assessing and quantifying tree damage.

Although handheld LiDAR and SfM can provide precise estimates of basic tree mea-
surements, there is no clear evidence that tree quality can be assessed using point clouds.
Therefore, the main objective of our study is to assess the ability of handheld LiDAR and
SfM photogrammetry to identify and estimate the magnitude of tree defects. We con-



Remote Sens. 2022, 14, 1938 3 of 14

sider a defect any damage that reduces the ability of a tree to thrive and produce quality
wood products, such as those caused by structural deformities, animal browse, mechanical
damage, insects and disease activity, weather events, etc. The necessity to estimate the
magnitude of the defects is based on the relationship between stem quality and many forest
management attributes, such as net timber volume and value, insect and disease activity,
and wildlife habitat. Consequently, the research questions guiding the present study are:

(1) Can SfM and handheld LiDAR accurately detect the tree damages?
(2) Can SfM and handheld LiDAR accurately determine the magnitude of tree damage?

2. Materials and Methods
2.1. Study Area

The study was conducted on the McDonald Research Forest, managed by Oregon
State University’s College of Forestry (Figure 1). The site is located north of Corvallis,
Oregon, and representative of inland Coast Range forests. The temperature ranges from
approximately 0.8–28.1 ◦C, with a mean annual temperature of 11.4 ◦C. Mean annual
precipitation for the region is 108.5 cm (NOAA National Climate Data Center, Asheville,
NC, USA). Elevation for the forest stand ranges from 215 to 400 m, and the research sites
face a southeasterly direction. The terrain ranges from 15 to 55% slope, with an average
slope of 15% within the research plots.

The forest stand is approximately 160 years old. The tree species composition consists
of second-growth Douglas-fir (Pseudotsuga menziesii) with minor components of bigleaf
maple (Acer macrophyllum), grand fir (Abies grandis), Oregon ash (Fraxinus latifolia), and
Oregon white oak (Quercus garryana). The mean diameter-at-breast-height across the study
area was 54.3 cm. The mean height was 31.7 m, with approximately 288 trees per hectare.

2.2. Data Collection
2.2.1. Field Inventory for Visual Assessment of Damages

We conducted field measurements in June and August of 2019. To ensure tree damages
were present, we selected a mature forest stand with a high frequency of tree defect for
sampling. We measured all live trees with diameter-at-breast-height (DBH) greater than
12.7 cm within three, 400 m2 (i.e., 11.3 m radius) plots within the stand. We recorded
species, DBH, total height, damage type, damage length, and damage location for each tree
(Table 1). We visually estimated the location of each incidence of damage on the stem by
dividing the total tree height into thirds to represent a bottom, middle, and top portion
of the stem. For each observed incidence of damage on the tree, we recorded a two-digit
damage code reflecting the type of damage and a one-digit location code reflecting the
position on the stem (Table 1). For example, a tree with a ‘spike knot’ would have a damage
code of ‘98’. If the spike knot occurred in the middle third of the tree stem, we recorded
a damage location of ‘2’. The length of the damage was visually estimated to the nearest
0.3 m. Finally, we summed the total number of damages per tree to create a damage count
variable. A total of 35 trees were measured across the three plots: 25 Douglas-fir, 7 bigleaf
maple, 1 grand fir, 1 Oregon ash, and 1 Oregon white oak.

2.2.2. Photogrammetric Imagery and Point Cloud Generation

In June and August of 2019, we acquired the images needed for the generation of
photogrammetric point clouds using SfM. To facilitate image capture and minimize occlu-
sion, understory shrubs and tree saplings were felled and removed from the three plots.
Some coarse woody debris remained but did not obscure the target trees. Photos were
captured with a Samsung Galaxy S7 (SM-G930V, Suwon-si, South Korea) smartphone. We
took handheld photos with vertical (portrait) orientation of the smartphone camera using
the following settings:

• Focal length: 4 mm;
• Maximum aperture: 153;
• 35 mm focal length: 26;
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• Flash: no flash;
• Exposure time: automatic, variable;
• ISO speed: automatic, variable;
• File type: .jpg, converted to tiff.

To ensure consistency of the methodology and results, we took photos in a circular
pattern around each individual tree stem within the three fixed-radius plots, striving for at
least 90% overlap between photos, similarly to Fang and Strimbu [8]. Photos were captured
approximately every meter. Distance to the target tree varied; however, most photos were
captured approximately 5 to 10 m from the tree. The number of photos per tree varied from
25 to 48 photos. No targets or control points were placed within the scene. All images were
collected in the summer of 2019.
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Among the suite of software that implement SfM, we chose Agisoft Metashape Pro-
fessional (version 1.6.2) to process the photos and generate photogrammetric point clouds
(PPC). Metashape Professional reconstructs reality using side images. The majority of SfM
software used in forestry are designed for a nadir view, whereas our study uses a perspec-
tive view, implemented only by a handful of software programs (e.g., Agisoft Metashape,
3DF Zephyr, and VisualSFM). We automatically aligned the photos using the unaltered
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image (no downscaling) with up to 150,000 key points and 100,000 tie points. In some cases,
the ‘generic preselection’ and ‘reference preselection’ options were used to improve image
alignment. Agisoft Metashape did not align all photosets entirely, and it was necessary to
retain separate tree sections (called ‘chunks’ in Agisoft). This automatic alignment process
produced one to three ‘chunks’ per tree.

Table 1. Damage and location codes used in field data collection. Location codes refer to positions
along the total height of the tree stem, divided into thirds.

Damage Code One General Damage Damage Code Two Specific Damage Location Code Damage Location

0 No Damage 0 No Damage 1 Bottom Third
2 Middle Third

1 Unknown 0 Unknown 3 Top Third

2 Mechanical 1 Fire
Logging

3 Chemical 1 Herbicide

4 Disease 0 Unknown
1 Mistletoe
2 Needle rusts
3 Stem decay
4 Stem rusts
5 Stem chancre

5 Insects 1 Defoliators
2 Bark beetles
3 Sucking insects
4 Pitch moths

6 Animal 1 Deer or elk
2 Bear
3 Livestock
4 Porcupine
5 Mountain beaver

7 Weather 1 Windthrow
2 Snow, ice, freeze
3 Drought
4 Lightning
5 Flooding

8 Suppression 0 Suppression

9 Physical 0 Butt swell
1 Broken top
2 Dead top
3 Multiple tops
4 Forked tree
5 Leaning tree
6 Crook or sweep
7 Seam or crack
8 Spike knot
9 Other

Following alignment, we generated dense point clouds for all ‘chunks’ using the
unaltered image and ‘high’ setting in Agisoft. We used the software Cloud Compare
(version 2.10.2) to clean obvious, erroneous points within the PPC and to merge different
sections of the same tree. We accomplished this by using distinct features on the tree stems
as additional tie points. For instance, many trees contained unique, visible tree defects or
painted tree numbers for this study.

Each PPC was scaled using the field-measured DBH and its corresponding height
(1.37 m). In the unscaled point cloud, we measured a series of diameter and heights to find
where the ratio of field DBH to height (1.37 m) is located. We computed the model scale
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by dividing the field-measured DBH (m) by the model DBH (unscaled units), which was
subsequently applied to the x, y, and z of each point in the point cloud.

2.2.3. Handheld Lidar

In September of 2020, each plot was scanned with a GeoSLAM Zeb Horizon (Figure 2)
handheld LiDAR unit (Nottingham, UK), equipped with a Velodyne VLP-16 sensor (San Jose,
CA, USA). The LiDAR sensor operates 16 channels, spread uniformly to cover a field of
view of 30◦ (±15◦), and sends 300,000 beams per second. The sensor can capture laser
returns from a 100-m range (GeoSLAM), but previous work showed that the usable range is
at most 60 m [21]. We walked the outside perimeter of each plot in an approximate circular
pattern. The walking speed was normal to fast-paced. No targets or control points were
placed within the scene. Each plot was scanned in less than two minutes.
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The point clouds acquired with the GeoSLAM Zeb Horizon were processed with
GeoSLAM HUB 6.1 (GeoSLAM 2021), which uses a simultaneous localization and mapping
(SLAM) algorithm to position the data. The software automatically refines and locates the
position of the LiDAR unit and simultaneously generates the point cloud. Because the
objective of the study was not to position the point clouds on the Earth, we used the local
coordinate system rather than a global one.

2.3. Point Cloud Measurements

We estimated the tree dimensions and defect occurrence, type, and size on both
photogrammetric and LiDAR point clouds using Cloud Compare (Table 2). The linear
dimensions were estimated using the point-to-point linear distance feature, whereas quali-
tative attributes, such as damage type, were estimated visually from the point cloud. The
same person performed all estimations, numerical and visual.
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Table 2. Descriptions of point cloud measurements derived from handheld LiDAR and Structure from Motion (SfM) photogrammetry.

Measurement Model Type of Measurement Units Methodology

DBH LiDAR Linear Meter

• Horizontal measurement of diameter;
• Taken approximately 1.37 m above ground-level;
• Dimensions taken for three diameters ~120◦ apart;
• Average of three measures.

Model Height SfM Linear Meter
• Vertical measurement of useable model height;
• Taken from approximate ground-level to point where upper stem

diameter is still visible in point cloud.

Damage Type SfM,
LiDAR Qualitative None

• Visual assessment of tree defect;
• Assessed within the useable model height;
• Recorded damage code according to Table 1.

Damage Location SfM,
LiDAR Linear None

• If defect is present, measured height to damage (from approximate
ground-level) and recorded location according to Table 1;

• Informed by field-measured total tree height.

Damage Length SfM,
LiDAR Linear Meter • Vertical measurement of damage length

• Approximate length of tree bole affected by the damage;

Damage Count SfM,
LiDAR Qualitative None • Sum of the total number of damages per tree.
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2.4. Data Analysis

To answer the two research questions, we used linear mixed effects regression models:

y = Xβ + Zγ + ε (1)

where:

y = subject’s response vector (observed);
X = fixed effects design matrix (known);
β = fixed effects parameter vector (unknown);
Z = random effects design matrix (known);
γ = random effects parameter vector (unknown);
ε = vector of independent (Gaussian), random errors (unobserved).

For research question one (i.e., ability to detect damages), the response variable (y)
corresponded to total damage count per tree, whereas for the second research question (i.e.,
ability to estimate the magnitude of the damage), the response variable (y) corresponded to
damage length. The fixed effects (X) were survey method and plot number (and damage
type for research question two), while the random effect (Z) was the tree number. We
used multiple comparisons Scheffe’s test to assess the differences among the levels of the
fixed effects.

3. Results
3.1. Point Clouds

Of the 35 trees captured with handheld LiDAR and SfM, three did not produce point
clouds that could be used for measurements. One of the failed trees was from a LiDAR
point cloud (DBH 46 cm), and two were from the PPC (DBH 26 cm and 24 cm).

We computed root-mean-square-error (RMSE) and bias for the LiDAR-based estimates
by comparing the LiDAR-derived DBH to field-measured DBH. The bias varied from −0.60
to 0.91 cm, whereas the RMSE varied from 1.00 to 4.04 cm (Table 3). The RMSE and bias
could not be calculated for the photogrammetric point clouds because they were scaled
directly from the field DBH measurements (Section 2.2.2.).

Table 3. LiDAR root-mean-square-error and bias for DBH measurements on trees in three, 400 m2,
fixed-radius forest inventory plots.

Plot RMSE (cm) Bias (cm)

1 1.89 0.79
2 1.00 −0.60
3 4.04 0.91

The LiDAR point clouds had mean surface densities that varied from 7033 to 11,425 points
per m2 (Figure 3). Surface density was not a valid metric for the photogrammetric point
clouds; instead, we computed the mean number of points per tree. The photogrammetric
point clouds had mean densities of 1,269,262 to 1,602,534 points per tree (Figure 4). For
comparison, we also computed mean points per tree for the LiDAR models; they ranged
from 295,805 to 710,130 points per tree (Table 4).

3.2. Damage Count and Length

Survey method and plot had significant effects on mean total damage count per tree
(p-value = 0.003 and p-value = 0.009, respectively), as visual estimates (1.62 damages per
tree) were almost double the LiDAR and SfM values (0.93 damages per tree) (Table 5). Plots
1 and 2 had higher mean total damage counts per tree (1.39 and 1.42 damages per tree,
respectively) compared to Plot 3 (0.66 damages per tree) (Table 5).

Survey method and plot number did not have a significant effect on mean damage
length per tree (p-value = 0.584 and 0.896, respectively). Estimated mean damage length
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varied from 2.30 m (SE = 0.41) to 2.69 m (SE = 0.34) for the survey methods and from 2.43 m
(SE = 0.33) to 2.59 m (SE = 0.33) across the three plots (Table 6). However, the type of
damage had a significant effect on mean damage length per tree (p-value < 0.0001), which
varied from 0.91 m (SE = 0.35, damage type = spike knot) to 8.61 m (SE = 1.56, damage
type = multiple tops).
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Table 4. Mean point cloud density from handheld LiDAR and Structure from Motion (SfM) pho-
togrammetry of three, 400 m2 fixed-radius forest inventory plots.

Plot Handheld LiDAR Point Cloud
Density (Mean Points per m2)

Handheld LiDAR Point Cloud
Density (Mean Points per Tree)

SfM Point Cloud Density
(Mean Points per Tree)

1 7033 295,805 1,269,262
2 11,425 478,417 1,602,534
3 10,212 710,130 1,455,675

Table 5. Mean total damage count (per tree) comparing visual inventory, handheld LiDAR, and
PPC-based methods of assessing tree damage.

Type 3 Tests of Fixed Effects Least Squares Means

Effect p-Value Effect Estimate Standard Error 1

Method 0.003
Visual 1.62 0.21 (a)
LiDAR 0.93 0.21 (b)

PPC 0.93 0.21 (b)

Plot 0.009
Plot 1 1.39 0.20 (a)
Plot 2 1.42 0.21 (a)
Plot 3 0.66 0.26 (b)

1 Least squares means estimates that do not share a letter are significantly different for the type three test of fixed
effects at a 5% level of significance.

Table 6. Mean damage length (m) per tree comparing visual inventory, handheld LiDAR, and
PPC-based methods of assessing tree damage.

Type 3 Tests of Fixed Effects Least Squares Means

Effect p-Value Effect 1 Estimate Standard Error 2

Method 0.584
Visual 2.69 0.34
LiDAR 2.30 0.41

PPC 2.49 0.38

Plot 0.896
Plot 1 2.59 0.33
Plot 2 2.43 0.33
Plot 3 2.47 0.52

Damage Code <0.0001

43 6.21 0.81 (a)
45 1.82 0.44 (bc)
52 1.60 1.56 (abc)
90 1.83 0.70 (abc)
91 1.04 0.79 (bc)
93 8.61 1.56 (ab)
94 1.56 0.40 (bc)
95 1.60 1.57 (abc)
96 1.31 0.30 (c)
97 2.13 0.80 (abc)
98 0.91 0.35 (c)
99 1.34 1.10 (abc)

1 Damage Codes: 43 = stem decay, 45 = stem canker, 52 = bark beetles, 90 = butt swell, 91 = broken top,
93 = multiple tops, 94 = fork, 95 = leaning, 96 = sweep, 97 = seam, 98 = spike knot, and 99 = other physical damage,
2 Least squares means estimates that do not share a letter are significantly different for the type three test of fixed
effects at a 5% level of significance.

4. Discussion
4.1. Damage Count

For the trees included in this study, we found convincing evidence of a significantly
different total damage count between survey methods (p-value = 0.003). The two remote
sensing methods appear to omit damage counts compared to the visual field method, as the
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visual method estimated nearly twice as many damages per tree (mean = 1.62, SE = 0.21)
than LiDAR and PPC-based methods (mean = 0.93, SE = 0.21).

These results support our hypothesis that the remote sensing methods would underes-
timate the damages compared to the visual field estimate. However, the evidence would
be more convincing if specific damages and their positions were integrated into the fixed
effects model and a similar result found. It is difficult to discern if the survey methods
are including or omitting the same damage when looking at mean damage count per tree.
Unfortunately, our sample data did not include enough damage counts from each damage
code to support that type of analysis.

A limited number of studies used stationary terrestrial laser scanning (TLS) to assess
tree damage and defect (18–20). Nguyen et al. (2020) used an automatic segmentation
method and found ~98% of defects can be detected by TLS; however, there was also a very
high number of false positives reported [18]. In contrast, our results show a higher level
of omission than the Nguyen et al. (2020) [18]. The lower damage counts associated with
our remote sensing methods were likely driven by the limited point cloud reconstruction
of the upper stem section of the trees. For the 32 trees included in our study, the average
field-measured height was 31.2 m, whereas LiDAR models captured an average useable
height of 13.6 m, and the PPC-based models captured only 9.3 m. Therefore, the point cloud
models reconstructed solely the lower third to half of the tree stem at the quality needed to
detect tree damages. Piermattei et al. (2019) assessed the ability of SfM photogrammetry to
derive forest inventory data; the maximum reconstructed tree heights in their study varied
from 4.3 to 11.3 m [15]. Additionally, Fang and Strimbu (2017) found loblolly pine trees,
modelled using SfM, could be used for diameter measurement up to ~13 m in height [8].
Bauwens et al. (2016) captured a maximum height of 24.6 m with a GeoSLAM ZEB1
handheld LiDAR sensor; however, TLS scans of the same trees reported maximum heights
in the 40 to 45 m range [22]. Consequently, some handheld LiDAR sensors seem to capture
at most two thirds of tall trees [22]. Other studies using a GeoSLAM ZEB Horizon sensor,
like the one used in our research, had the maximum reconstructed heights ranging from 28
to 33 m [10,23]. Our LiDAR models captured points in the upper canopy of trees; however,
only the lower segment of the tree stem was suitable for detecting tree damage.

Branches, leaves, and canopies of neighboring trees obscure the upper tree stem and
make point cloud reconstruction difficult at greater heights. Panagiotidis et al. (2016)
compared the accuracy of SfM-derived point clouds against terrestrial LiDAR point clouds
and found that error increased linearly with height [24]. The authors noted that increased
error likely occurs because of higher crown density, fewer points, and longer distances
from the sensor to target object [24]. These factors probably limited the effective height of
LiDAR and SfM-based stem models in our study as well, leading to reduced damage counts
compared to visual methods, which were able to assess a larger proportion of the stem.

In addition to height limitations, environmental variables heavily influence the quality
of point cloud models, particularly the PPC. For instance, light conditions varied from
slightly overcast to sunny when we took photos of the trees, and some of the photos
had heavy shadowing due to back-lighting of the trees on sunny days. Consistent light
conditions, i.e., overcast weather days, likely provide better conditions for image acquisition
that are subsequently used in the generation of PPC using SfM [9].

It is also possible that some of our failed tree models resulted from occlusion and
related issues. For our study, LiDAR reconstructed 97% of the surveyed trees, and SfM
reconstructed 94% of the surveyed trees. Piermattei et al. (2019) found SfM detected 65–98%
of the target trees on a plot, with missing trees typically having DBHs less than 12 cm [15],
significantly smaller than the missed trees in our study (i.e., measured DBH was 46 cm for
LiDAR, and 26 cm and 24 cm for SfM). In our study, neighboring trees sometimes obscured
the view to the target tree and forced the usage of pictures located at farther distances
from the tree. Research suggests the angle between adjacent photos should not exceed
15–30 degrees [25]. For our missing trees, it is possible the angle between photos was too
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large, and, as a result, the Agisoft software could not find enough tie points to create the
point clouds.

Finally, the distance to the target tree varied, and it is possible that some photos were
too far from the target object for ideal model reconstruction. Akpo et al. (2020) compared
SfM models captured at distances of 1–5 m from the target tree [25]. They found the
most accurate SfM models used images captured 1–2 m from the tree. Due to working
with tall Douglas-fir trees, ranging from 15 to 42 m in height, our photos were captured
approximately 5–10 m from the target to maximize the length of tree stem captured in
a photo. At this distance, we may have captured more tree stem, but potentially lost
resolution and quality in our SfM models compared to images captured closer to the
target stem.

To expand on this work in future studies, we recommend including a sufficient
number of observations per unique damage code type. Additionally, researchers may want
to identify the exact position of the damage, such as stem height at the start and end of the
damage. Finally, higher quality photogrammetric point cloud models may be obtained with
better image quality—aided by newer smartphone cameras, lenses with wider field of view,
consistent and overcast ambient light conditions, and optimal distance to the target object.

4.2. Damage Length

For the trees included in our study, there is no evidence that damage length varied
between survey methods (p-value = 0.584). The estimates of mean damage length per tree
were not significantly different from one another (Visual = 2.69 m, LiDAR = 2.30 m, and
SfM = 2.49 m), which support our hypothesis that handheld LiDAR and SfM photogram-
metry can quantify damage length, similar to traditional field methods.

Our findings are consistent with other accuracy assessments of handheld LiDAR and
SfM; to date, many of the forest inventory studies for these two methods have focused on
DBH-derived measures. In a review of the current literature, Iglhaut et al. (2019) found
RMSEs for SfM-derived DBH ranged from 0.9 to 6.8 cm, compared to field or TLS DBH
measurements [9]. Additionally, Piermattei et al. (2019) found no significant difference
between field, SfM, and terrestrial LiDAR measures of DBH [15]. Handheld LiDAR can
also produce DBH estimates with high accuracy—on the order of 1.1 cm RMSE [22]. Finally,
Huang et al. (2018) found the accuracy and completeness of SFM models to be comparable
with TLS models [26]. In their research, SfM point clouds had standard deviations of 0.009
to 0.02 m for point-to-point distance compared to a TLS cloud. Our results agree with the
existing literature and find handheld LiDAR and SfM capable of measuring linear features
with high accuracy.

Although the use of a scale bar or target for scaling the SfM measurements could
potentially produce more accurate estimates of size-related variables, such as damage
length, Liang et al. (2014) demonstrated that natural objects can be used to generate
accurate scaling of photogrammetric point clouds [10]. The manual alignment of a limited
number of point cloud chunks from Agisoft Metashape within Cloud Compare could also
introduce error, but a similar process was shown to produce highly accurate (i.e., <1–5 mm)
estimates of changes in size (i.e., growth) in complex, branching coral structures [27]. Since
previously reported errors of less than 1 mm [27] for manually aligned point cloud chunks
are orders of magnitude smaller than the dimensional measurements of interest in this
study (e.g., tens to hundreds of cm for tree diameters and damage length), they are unlikely
to have impacted our conclusions. Further, the lack of significant differences among mean
damage length estimates from our visual, SfM, and LiDAR methods and consistency of
our accuracy assessments with RMSE estimates reported in other studies suggests that
the scaling method we used for SfM, which was based on field-measured diameters at
1.37 m, is likely sufficient for measuring many tree damages. However, future explorations
of the application of SfM to tree damage detection and measurement might benefit from
the use of coded targets, which increase the reliability of the image alignment process [28],
reducing the need to manually align separate point cloud chunks in Cloud Compare.
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Finally, the results of our study could be strengthened by destructive field sampling.
For instance, sample trees could be felled and the exact length of the damage measured
with a distance tape. This would eliminate problems associated with visual estimation and
measurement errors from laser rangefinders, clinometers, relaskops, etc., and provide a
means to directly compare the accuracy of field defect detection methods with handheld
LiDAR and PPC-based methods.

5. Conclusions

This study evaluated the ability of two remote sensing methods to detect and quantify
common tree damages. Our results largely support the hypothesis that handheld LiDAR
and ground-based PPC omit tree defects compared to visual field estimates. We found a
significantly different mean damage count per tree between the three survey methods, with
the field method recording nearly twice as many damages per tree as the handheld LiDAR
and SfM methods. The remote sensing methods likely omit damages due to occlusion
and environmental variables, such as variable lighting conditions. There were also a few
instances were distance between photo points and distance to the target tree were longer
than desired. Additionally, our results support the hypothesis that handheld LiDAR and
PPC can quantify damage length in a manner similar to field methods. For the trees
included in our study, there was no evidence that damage length varied between the three
survey methods. These findings are consistent with other accuracy assessments of linear
tree measurements conducted via handheld LiDAR and SfM [9,15,22,26].

This research was designed as an introductory step in detecting and quantifying tree
damages with handheld LiDAR and SfM photogrammetry. More research is needed to
replicate and improve upon this work in different regions and forest types. The natural
expansion of our study is to use handheld LiDAR and SfM to automatically detect, classify,
and measure tree defects. We believe this is essential research and required to integrate
mobile remote sensing methods into active forest inventory programs.
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