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Abstract: Early crop identification can provide timely and valuable information for agricultural
planting management departments to make reasonable and correct decisions. At present, there is
still a lack of systematic summary and analysis on how to obtain real-time samples in the early stage,
what the optimal feature sets are, and what level of crop identification accuracy can be achieved at
different stages. First, this study generated training samples with the help of historical crop maps in
2019 and remote sensing images in 2020. Then, a feature optimization method was used to obtain the
optimal features in different stages. Finally, the differences of the four classifiers in identifying crops
and the variation characteristics of crop identification accuracy at different stages were analyzed.
These experiments were conducted at three sites in Heilongjiang Province to evaluate the reliability
of the results. The results showed that the earliest identification time of corn can be obtained in
early July (the seven leaves period) with an identification accuracy up to 86%. In the early stages, its
accuracy was 40~79%, which was low, and could not reach the satisfied accuracy requirements. In
the middle stages, a satisfactory recognition accuracy could be achieved, and its recognition accuracy
was 79~100%. The late stage had a higher recognition accuracy, which was 90~100%. The accuracy of
soybeans at each stage was similar to that of corn, and the earliest identification time of soybeans
could also be obtained in early July (the blooming period) with an identification accuracy up to
87%. Its accuracy in the early growth stage was 35~71%; in the middle stage, it was 69~100%; and
in the late stage, it was 92~100%. Unlike corn and soybeans, the earliest identification time of rice
could be obtained at the end of April (the flooding period) with an identification accuracy up to 86%.
In the early stage, its accuracy was 58~100%; in the middle stage, its accuracy was 93~100%; and
in the late stage, its accuracy was 96~100%. In terms of crop identification accuracy in the whole
growth stage, GBDT and RF performed better than other classifiers in our three study areas. This
study systematically investigated the potential of early crop recognition in Northeast China, and the
results are helpful for relevant applications and decision making of crop recognition in different crop
growth stages.

Keywords: automatic sample generation; historical crop maps; feature optimization; classifier; early
crop identification

1. Introduction

Crop identification and preliminary estimation of crop planting areas in the early stage
can provide valuable and timely information for individual farmers regarding farmland
management, agricultural insurance, and agricultural subsidy policies. It is also of great
significance for agricultural management departments to make reasonable decisions [1–3].
Remote sensing technology can map the latest and most detailed crop-type mapping in a
timely and accurate manner, which has been proven to be one of the most effective means
for obtaining precise crop information [4–7].
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At present, using remote sensing technology to identify crops is mainly focused on the
middle or late stage of crop growth [8–10], and early crop recognition refers to identifying
crops as early as possible from crop emergence to preharvest [9–12]. The crop information is
too weak at this time, compared with the middle or late stage [10–12]. Moreover, the ground
sample work has not been collected. Therefore, the sample problem is one of the challenges
faced by early identification. All of these factors have resulted in a relatively few studies on
early identification. Although many challenges make early-stage crop recognition difficult,
previous studies have attempted to solve these problems with different methods. It can be
divided into the following two methods: (1) Using the key features in the key phenological
periods. For example, during the transplanting period of rice, there is often 2–15 cm water
in the paddy field, and the surface is a mixture of rice and water. Based on this a priori
knowledge, Wei et al. [13] used the Land Surface Water Index (LSWI) threshold method to
realize rice identification in the transplanting period. Wang et al. [14] used multi-temporal
images of winter wheat, including the periods of sowing, seedling emergence, tillering, and
wintering, and then took the multi-scale segmentation object as the basic classification unit.
Finally, the early recognition of winter wheat was realized by constructing a hierarchical
decision threshold. However, the above-mentioned studies identified crops by constructing
decision thresholds according to the different spectral characteristics of ground objects
in the key periods, and the determination of threshold value was both time consuming
and laborious. Thus, the efficiency of automatic crop extraction was greatly reduced.
Furthermore, the determination of the same crop’s threshold was difficult to apply to
other regions due to the influence of soil, vegetation type, and image brightness [15–19].
(2) Using the image data or ground survey data in historical years. This type of method
learned knowledge from historical year data and applied to the target year with the help of
transfer learning technology. You et al. [20] trained the classifier by using the early season
image time series and field samples collected in 2017, and then the classifier was migrated
to the corresponding time series image data of the target year in 2018 to realize the early
recognition of crops. In this paper, a single binary classifier (target ground object and
non-target ground object) was trained for the recognition of each crop, but when there were
many target objects to extract, the method was time-consuming. Vorobiova et al. [21] used
historical data and the cubic spline function to generate Normalized Difference Vegetation
Index (NDVI) time series to realize early crop recognition in the current year. However,
they only considered a single NDVI in their study, and the inversion information of a single
index was limited, so the identification accuracy of crops had some constraints [22–26].

All the above studies demonstrated that remote sensing technology has the potential to
identify crops in the early stage; however, they placed too much focus on a single crop type,
and the features used in their studies were relatively few. All of them lacked a systematic
summary and research on how to obtain training samples quickly in the early stage, how
early different crops can achieve a satisfactory level of monitoring accuracy, and what are
the key identification features used to achieve crop identification, as well as what accuracy
level each stage can achieve. So, it is difficult to obtain a comprehensive answer to the
above questions.

Therefore, our objectives are: (i) Explore the feasibility of the sample automatic gen-
eration method based on the historical crop maps and image remote sensing images;
(ii) Summarize and analyze the optimal features in different stages; (iii) Explore how early
crops can be identified, what the accuracy variation characteristics of crops at different
stages are, and the differences among different classifiers. Specifically, first, the automatic
sample generation method was used to obtain the training samples based on the historical
crop maps from 2019 and remote sensing images from 2020. Second, the feature optimiza-
tion method was used to calculate feature importance. Therefore, the optimal feature sets
in different stages can be achieved. Third, four classifiers were used to identify crops in dif-
ferent periods. Through the above three parts, the potential of early-stage crop recognition
in Northeast China are systematically explored.
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2. Study Area and Data
2.1. Study Area

Heilongjiang is an important commodity grain base in China. Three typical study
areas with different characteristics were selected in Heilongjiang (Figure 1) as our study
areas. They basically included the main crop types combinations of bulk crops in Hei-
longjiang, which provided good conditions for the extrapolation of research methods and
the objectivity of research conclusions.

Figure 1. Location of the three regions.

Region 1 (125◦02′ E–127◦64′ E, 48◦24′ N–48◦94′ N) is located on the Songnen Plain. The
crop planting structure in Region 1 is relatively complex and fragmented, with intercropped
corn and soybeans being the major crops in this region. Rice is mainly distributed along
the river.

Region 2 (126◦45′ E–27◦16′ E, 45◦95′ N–46◦31′ N) is also located on the Songnen Plain,
the crops in this area are mainly corn, followed by rice, and soybeans are planted sparsely.

Region 3 (131◦67′ E–132◦72′ E, 47◦23′ N–47◦63′ N) is located on the Sanjiang Plain. The
region’s major crop is rice, followed by corn and soybeans, and both of them are covered
with large areas. In the western part of the region, some soybeans and corn are around rice.

The three crops are harvested only once per year due to low sunshine hours and
accumulated heat. Their growing seasons are concentrated from April to early October, and
all of them are sown in April. At this time, the water information on rice is more prominent
in the image, whereas the corn and soybeans are in the state of bare land. In the early June,
the rice is in the reviving period, and it is a mixture of water and rice in the image. Corn
and soybeans are in the seedling period and show low vegetation. From July to August,
the crops gradually enter vigorous growth, and the spectral characteristics of each crop are
more obvious with a certain degree of separability in the image. In the September to early
October, all crops gradually enter the mature and harvest period, soybeans are harvested
first, followed by corn, and rice is harvested in early October. Based on the performance of
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different crops in all the available images, we divided the entire growth stage into three
stages: the early stage (April–June), the middle stage (July–August), and the late stage
(September–early October). These crops show different characteristics in different growth
stages, and the crop types can be identified as early as possible according to these key
characteristics [20].

2.2. Data
2.2.1. Sentinel-2 Data

Sentinel-2 is equipped with the state-of-the-art Multi-Spectral Instrument (MSI), whose
revisit period is 2–5 days depending on latitude, and the width is 290 km. It can provide
optical images with a minimum resolution of 10 m, and the spectral bands cover 13 bands
from visible light, near-infrared, red-edge to shortwave infrared (Table 1). Sentinel-2 has
been proven to be an effective means of monitoring different crop types [27–31]. The Google
Earth Engine (GEE) cloud platform provides an efficient environment to process Sentinel-2
data and can effectively implement various satellite-based remote sensing applications
and research activities. The Sentinel-2 dataset in this platform contains completed data
preprocessing work, such as radiometric calibration, terrain correction, and geometric
correction. The pre-processing work we performed included selecting the images with
cloud cover less than 10% from April to early October in 2020, and using Q60A band to
remove thick clouds in some images. In addition, image cutting work was also necessary.

Table 1. Sentinel-2 Band Information.

Band Number

S2A S2B
Spatial Resolution

(m)Center Wavelength
(num)

Band Width
(nm)

Center Wavelength
(num)

Band Width
(nm)

B1 443.9 27 442.3 45 60

B2 496.6 98 492.1 98 10

B3 560 45 559 46 10

B4 664.5 38 665 39 10

B5 703.9 19 703.8 20 20

B6 740.2 18 739.1 18 20

B7 782.5 28 779.7 28 20

B8 835.1 145 833 133 10

B8A 864.8 33 864 32 20

B9 945 26 943.2 27 60

B10 1373.5 75 1376.9 76 60

B11 1613.7 143 1610.4 141 20

B12 2202.4 242 2185.7 238 20

QA60 60

The availability of useful data is limited due to clouds. Therefore, 34 good quality
images in 2020 that could cover our study areas (Figure 2) were selected. Among them,
11, 11, and 12 images were used in Region 1, 2, and 3, respectively. The cloud coverage
of these images was less than 10%, which could meet the monitoring requirements. The
images collected in each study area can generally cover the period from crop sowing to
harvest, which facilitates the objective results of the identification features and identification
capabilities of each stage. Previous studies have shown that the use of single-date remote
sensing images have limited crop identification accuracy in the early stage, and combining
multi-date images can effectively improve the crop identification accuracy [3,20]. Therefore,
some incremental designs were made for the available image used in each period. That
is, when performing a supervised classification, every time that the image was used in a
current period, all the previously available images also needed to be included. Finally, there
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were 11, 11, and 12 periods for image-conducted increment designs in Region 1, Region 2,
and Region 3, respectively. From the accuracy obtained at different periods in each study
area, we explored how early can the crops be monitored, and what level of accuracy can
crops achieve at different stages.

Figure 2. The image coverage of Sentinel-2 used in the three study areas.

2.2.2. Ground Survey Data

The ground samples are difficult to obtain in the early stage of crops. To reasonably
and effectively evaluate the reliability of the training samples generated based on historical
crop maps from 2019 and remote sensing images from 2020. The ground survey data were
only used as validation samples to evaluate the classification results in our study. The
Songnen Plain and Sanjiang Plain are our major ground survey areas. Rice, corn, and
soybeans are major crops in these areas, so the latitude and longitude of these crops we
collected were labeled, and the samples of woodlands, buildings, and rivers were labeled
by combining Google Earth and Sentinel-2 images with visual interpretation. The usage of
sample points in each study area is shown in Table 2.

Table 2. Validation samples in each study area.

Corn Soybeans Rice Building Woodland River

Region 1 56 60 40 40 38 43
Region 2 56 60 50 40 38 43
Region 3 50 50 63 40 40 30

2.2.3. Supplementary Data

The historical crop maps from 2019 of Heilongjiang Province were also collected,
which could help effectively construct training sample generation work by combining
remote sensing images from 2020, to simplify the workload of manual labeled samples and
ensure the progress of the following research contents. The data came from the research
results of Zhao et al. [32]. A binary indicator featuring high separability for single crop
(corn, rice, and soybeans) based on Sentinel-2 images was proposed by them, and then
they used the image adaptive threshold segmentation method to obtain crop-type mapping
in Heilongjiang Province based on the binary indicative features of the three crops. With
this method, the crop-type mapping was identified with an overall accuracy of 93.12% and
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kappa coefficient of 0.90. A detailed review of this paper and accuracy information can be
found in the article [32].

3. Method

At present, there are three problems that exist in early crop recognition: (i) The problem
that the ground samples are difficult to obtain in real time. (ii) Which features are most
important at different stages. (iii) What precision level can crops achieve at different stages,
and the differences in early identification of crops among different classifiers, still lack a
systematic summary. To solve the above problems, three parts were designed to study
the early identification of crops in Northeast China. First, acquiring the training samples
automatically, historical crop maps from 2019 and remote sensing images from 2020 were
used to generate samples, which solved the problem that samples were difficult to obtain
in real time. Second, selecting the optimal features, the Mean Decrease Accuracy (MDA)
feature selection method was used to calculate feature importance. Therefore, the optimal
feature set at different stages could be obtained. Third, identifying the crops with different
classifiers and using the field samples for accuracy verification. Finally, the characteristic
of crop accuracy levels in the different stages, the earliest identifiable time of each crop,
as well as the difference among different classifiers were analyzed. The overall technical
illustration is shown in Figure 3.

Figure 3. Illustration of early crop identification.
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3.1. Automatic Sample Construction Based on Historical Crop Maps

Studies have shown that major crops vary little in neighboring years [7,20,30]. Based on
the foundation, a method to automatically obtain current year samples based on historical
crop type mapping was designed. First, the crop type mapping from 2019 was used to
segment the remote sensing images from 2020, so that the candidate area image of each
category could be obtained. Then, K-means clustering was used to obtain the clustering
results in each candidate area image, and an appropriate threshold was set to obtain
the pure sample area of each candidate area. Finally, training samples were randomly
generated in the pure sample area (Figure 4). All the samples acquired based on the above
method were used as training samples. The whole processing chain for automatic sample
construction is summarized in the following sections.

Figure 4. Technical process of automatic acquisition of training samples.

First, the acquisition of candidate region image. Three remote sensing images with
good visual separability from 2020 were used in our three study areas (August 22, August
21 and August 23), and they were segmented with historical crop maps from 2019, so
that the 2020 corn candidate area, rice candidate area, soybeans candidate area, and other
candidate areas of each study area could be obtained.

Second, the unsupervised clustering of images. K-means is a popular unsupervised
clustering algorithm, which has the advantages of simple principle, fast processing, and
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good effect [6]. Euclidean Distance (ED) is commonly used as an indicator to measure
the similarity between data objects when using the K-means algorithm to classify remote
sensing images, and the similarity is inversely proportional to the distance between data
objects; that is, the smaller the distance between objects, the greater the similarity [33].
The main principle of obtaining the classification results of candidate region by K-means
clustering method is: (1) In order to make the unsupervised clustering results more detailed,
12 initial points were selected as centroids for each candidate region image, and the pixels
were classified into the most similar class by calculating the similarity between each pixel
and the centroid; (2) The centroid of each class was recalculated, and this process was
repeated until the centroid did not change, and which class each pixel belonged to was
determined. Finally, the 12 sub-cluster results were obtained in each candidate areas.

Third, the determination of pure crop planting area. Its determination needed to be
based on the classification results of the previous step. Specifically, the 12 sub-cluster results
of each candidate region were ranked by area from the largest to smallest, and clusters
ranked in the top 40% were selected as the candidate region category. The threshold was
set at 40%, mainly considering that the principle of the sample could be missed, but that
the error could not be allowed. If the threshold value is set too high, the target sample
range increases, but other ground objects will be introduced, leading to an impure sample;
if the threshold value is set too low, the target sample will not be representative. Therefore,
40% is a good trade-off, avoiding the introduction of other crop samples while maintaining
the significant representativeness of samples.

Finally, the construction of sample set. The pure sample area was converted to vector
data, and the vectorization results were composed of many sub-vector areas, then the area of
these sub-vector regions was calculated and training sample points of the ground object in
the top N sub-vector regions with the largest area were randomly generated (N represents
the number of training samples of the ground object). Some ground features, such as
buildings, woodlands, and rivers, were unified as an “other” class in the historical crop
maps, which was not suitable for the method we proposed. Therefore, the acquisition of
these samples needed to be combined with relevant interpretation knowledge to manually
label the samples of these ground objects. All the training samples in the three regions are
shown in Table 3.

Table 3. Training samples in the three study areas.

Corn Soybeans Rice Building Woodland River

Region 1 115 121 100 80 75 86
Region 2 88 82 88 84 78 80
Region 3 100 100 126 80 78 60

All generated training samples in the three study areas were used for training our
classification model, and its effectiveness was verified from two parts:

(1) Jeffries–Matusita (J-M) distance was used to evaluate the sample separability
between each two ground objects [34]; The J value ranges from 0 to 2. In general, the larger
the value, the better the separability. When the value is less than 1, it is considered that the
two types of samples are not separable. When the value is less than 1.8, it indicates that the
sample features is moderately separable. However, when the value exceeds 1.9, it indicates
that the sample features have good separability. Its formula is as follows:

J = 2
(

1− e−B
)

(1)

J is the value of J-M distance, and B is the Bavarian distance between the two sample
categories. Its calculation formula is

B =
1
8
(m1 −m2)

2 2
δ1

2 + δ22 +
1
2

ln
(

δ1
2 + δ2

2

2δ1δ2

)
(2)
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m1 and m2 represent the mean values of the spectral reflectance of classes 1 and 2,
respectively. δ1 and δ2 represent the standard deviation of the spectral reflectance of classes
1 and 2, respectively.

(2) Random Forest (RF) has the advantage of fast training speed and relatively simple
implementation. Therefore, we used these samples tried to perform a preliminary classifica-
tion of RF, and then evaluated the quality of the samples based on the classification results.

3.2. Feature Preparation

To improve the identification ability of crops, 10 original bands, including B2, B3, B4,
B5, B6, B7, B8, B8A, B11, and B12, and 16 most commonly used vegetation indices related
to crop identification, were used (Table 4) in our study. The bands of B1, B9, and B10 were
eliminated due to their coarser spatial resolution (60 m).

Table 4. Vegetation Index used in this study.

Vegetation Index Formula Reference

Normalized Difference Vegetation Index (NDVI) B8−B4
B8+B4

Rouse et al. [35]

Land Surface Water Index (LSWI) B8−B11
B8+B11

Xiao et al. [36]

Enhanced Vegetation Index (EVI) 2.5 B8−B4
B8+6B4+1−7.5B2

Huete et al. [37]

Modified Chlorophyll Absorption Ratio Index
(MCARI) (B8 − B4 − 0.2(B8 − B3))

B8
B4

Daughtry et al. [38]

Ratio Vegetation Index (RVI) B8
B4

Deering et al. [39]

Difference Vegetation Index (DVI) B8 − B4 Richardson et al. [40]

Triangular Vegetation Index (TVI) 0.5(120(B8 − B3)− 200(B8 − B4)) Rouse et al. [35]

Optimization Soil Adjusted Vegetation Index (OSAVI) (1 + 0.16) B8−B4
B8+B4+0.16 Rondeaux et al. [41]

Green Chlorophyll Vegetation Index (GCVI) B8
B3
− 1 Gitelson et al. [42]

Red Edge Normalized Vegetation Index (RENDVI) B8−B6
B8+B6

Gitelson et al. [43]

Normalized Difference Tillage Index (NDTI) B11−B12
B11+B12

Deventer et al. [44]

Normalized Difference Senescent Vegetation Index
(NDSVI)

B11−B4
B11+B4

Qi et al. [45]

Green Vegetation Index (VIgreen) B3−B4
B3+B4

Peña-Barragán et al. [46]

Wide Dynamic Range Vegetation Index (WDRVI) 0.2B8−B4
0.2B8+B4

Gitelson et al. [47]

Green Normalized Difference Vegetation Index
(GNDVI)

B8−B3
B8+B3

Gitelson et al. [48]

Normalized Difference Water Index (NDWI) B3−B8
B3+B8

Gao et al. [49]

3.3. Crop Classification Model

In our study, Support Vector Machine (SVM), RF, Gradient Boosting Decision Tree
(GBDT) and Maximum Likelihood Classification (MLC) were used to compare their dif-
ferences in early-stage crop recognition. These four methods were selected on the basis of
their wide application and reliability in land cover classifications. The parameter settings
of different classifiers are shown in Table 5.
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Table 5. The parameter settings of different classifiers.

Model Parameter Settings

SVM kernelType: RBF; gamma: 0.8; cost: 50

GBDT numberOfTree: 100; samplingRate: 0.1; maxDepth: 6; shrinkage: 0.1

RF ntree: 100; mtry: 10

MLC data scale factor: 1.0

SVM has significant advantages in small samples, nonlinear problems, and high-
dimensional data processing [50–52]. Usually, the SVM algorithm solves binary classifi-
cation (two-dimensional) problems through finding the separation hyperplane that can
divide the training dataset correctly and the geometric interval maximally; however, for
multi-classifications, it is more complex. Specifically, in the n-dimensional space, an optimal
segmentation surface (kernel function) is used to map it to the high-dimensional space
to maximize the separation of the two types of samples, thus making multi-classification
linear solvable. Finally, multi-classification is realized through combining multiple binary
classifiers [53–55]. Radial Basis Function (RBF) is usually chosen as the kernel function
when using SVM to classify remote sensing images, because it provides a trade-off between
time efficiency and accuracy. There are two parameters in the RBF kernel that need to
be optimized: the penalty coefficient (cost) and gamma, cost controls the complexity and
generality of the model, and gamma determines the extent and width of the input space.
Generally, a larger cost value will not only lead to overfitting but also increase the calcu-
lation time, and inappropriate gamma values will lead to inadequate model accuracy or
introduce errors. After many experiments, a better accuracy can be achieved when the
value of cost was set to 50 and the value of gamma was set to 0.8.

RF has been widely used due to its high speed, high accuracy, and good stabil-
ity [56–60]. Which is an ensemble machine learning technique that combines multiple
trees. Each tree uses the bootstrap sampling strategy to create about 2/3 of the training
samples from the original dataset and generates a decision tree for each training samples
separately, and the remaining about 1/3 of the training samples are used as Out-of-Bag
(OOB) data for internal cross-checking. Finally, the final classification results are determined
by voting according to the classification results of all trees. There are two key parameters in
RF that need to be optimized: the number of randomly selected features used to segment
each node (mtry), and the number of trees (ntree). To balance the accuracy and calculation
time, ntree was set to 100 in our study. In general, mtry is set to the square root of ntree,
which was 10.

GBDT is an iterative decision tree algorithm, which is composed of multiple decision
trees, and the conclusions of all trees are accumulated to obtain the final result. Unlike
RF, this algorithm builds a weak learner at each step of the iteration to compensate for
the shortcomings of the original model. Therefore, it has the characteristics of strong
generalization ability and high classification accuracy [61,62]. Its key parameters are:
the number of decision trees to be created (numberOfTree), the learning rate (shrinkage),
and the max depth of tree (maxDepth), the sampling rate for stochastic tree boosting
(samplingRate), all of these optimized parameters can help improve the performance of the
model in terms of speed and accuracy.

MLC is one of the most well-known and widely used classification algorithms in
remote sensing, which has the advantage of being a simple principle and easy to imple-
ment [63–67]. It assumes that each type of statistic in each band is normally distributed,
and then the likelihood that a given pixel belongs to a certain training sample is calculated,
and finally the pixel merges into the class with the highest likelihood. However, this classi-
fication method is not encapsulated in GEE; the method was conducted in Environment for
Visualizing Images (ENVI) software. The setting of the data scale factor parameter adopted
default value 1.0.
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3.4. Feature Optimization

The MDA feature optimization method was used to evaluate the importance of features
at each stage. The MDA feature ranking method uses OOB error to evaluate the variable
importance (VI) [68,69]. Its principle to evaluate the importance of features is that if random
noise is added to the feature, the accuracy of OOB data classification will be greatly reduced,
which indicates that this feature has a great impact on sample prediction, which in turn
indicates that the feature has higher importance. The calculation formula of VI is as follows:

VI(MA) =
1
N ∑N

t=1

(
BMA

nt − BMA
Ot

)
(3)

where VI represents the importance of different features, MA represents a feature, N is the
number of decision trees, BMA

nt represents the OOB error of the t-th decision tree when MA

is not added, and BMA
Ot

is the OOB error of the t-th decision tree when MA is added with
noise interference.

A previous study proved that there was no increase in crop identification accuracy
when the number of features used exceeded 15 [70]. In order to trade-off between accuracy
and computational cost, the top 15 features with the largest values were selected as the
optimal features, and used for image classification.

3.5. Accuracy Assessment

In this study, overall accuracy (OA), kappa, producer accuracy (PA), user accuracy
(UA), and Fscore were calculated according to the confusion matrix to evaluate the accuracy
of the classification results.

The OA and kappa values represent the accuracy assessment of the global perfor-
mance of our classification results [70]. Specifically, the OA represents the proportion of
all samples that were correctly classified. kappa is a measure range 0–1 and quantifies the
model prediction results and the actual classification results, while the PA, UA, and Fscore
values represent the accuracy assessment of individual crop type [71]. PA represents the
proportion of the correct classification results of a certain class to its validation samples, and
it reflects the omission. UA represents the proportion of the correct classification results
of a certain class to the user’s own classification results, and it reflects the misclassifica-
tion. In general, PA and UA have contradictory relations, and they cannot achieve high
classification accuracy at the same time. Fscore is a comprehensive indicator composed of
PA and UA, which can comprehensively evaluate the performance of the classifier in single
crop [72]. Studies have shown that the 85% crop recognition accuracy can basically meet the
agricultural applications of crop type mapping [73]. Therefore, the earliest identification
time of each crop was defined as the first time when the Fscore value was greater than 85%
in this paper. The formula of Fscore is:

Fscore = 2× PA ∗UA
PA + UA

∗ 100% (4)

4. Results and Discussion
4.1. Automatic Sample Construction and Analysis of Sample Separability

The distributions of training sample points, generated based on the historical crop maps
and remote sensing images in our three study areas, are shown in Figure 5, and the classification
results and accuracy of RF based on these samples are shown in Figures 6 and 7, respectively.
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Figure 5. Distribution of training sample points in the three study areas.

Figure 6. RF classification results in the three study areas.
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Figure 7. Overall accuracy and kappa of RF classification results in three study areas.

The J-M distance was used to measure the degree of separability between each pair-
wise crop, and all the J-M values in our study area were above 1.9, indicating these samples
have good separability, and the OA and kappa coefficient of RF in the three study areas all
reached about 99%. The above two results showed that the automatic generation method of
sample points could be realized based on historical crop maps and remote sensing images,
and the generated samples could be used for image classification work at different periods
of the three study areas.

4.2. The Optimal Features and Changes in Different Stages

In this study, the MDA feature optimization method was used to obtain the optimal
features of the different periods in our three study areas (Tables A1–A3). To analyze which
features were important in the early stages (April–June), middle stages (July–August), and
late stages (September–early October), the common top rankings feature of the different
periods in each growth stage in our three study areas were summarized (Table 6).

Table 6. The key common features in different stages of the three study areas.

The Crop Growth Stages The Common Features in the Three Study Areas

April–June B12, NDTI, LSWI, NDSVI

July–August B12, B11, B8, LSWI, NRED2, RENDVI

September–early October NDTI, B11, NDSVI

At the early stage of crop growth (April–June), rice was basically covered with water;
it was a mixture of water and rice in the image, while corn and soybeans were in a state of
the sowing and emergence period. The height of the crops was low, and had low green
vegetation and soil background in the image. Among the spectral characteristics, B12 was
the most prominent, mainly because the short-wave infrared band was more sensitive to
water information. The LSWI, which was composed of the short-wave infrared band, also
contributed relatively high in this stage. In addition, traces of wheat stubble harvested from
the previous season existed, and many farmlands were in a state of bare tillage. Therefore,
the NDSVI and NDTI also played a key role in crop identification during this stage.
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At the middle stage of crop growth (July–August), all crops in the study area gradually
entered vigorous growth, and the vegetation coverage gradually reached the maximum.
Due to the relatively high vegetation coverage and chlorophyll water content, the advantage
of the red-edge vegetation index was also reflected. In general, the important features were
B12, B11, B8, LSWI, NRED2, RENDVI, and so on, which, according to these features, could
better identify crops at this stage.

At the late stage of crop growth (September–early October) into the late stage of the
crop, the leaves gradually turned yellow and dried until harvest. In general, NDTI, B11,
NDSVI, and other indicators made full use of the short-wave infrared band to represent the
water and vegetation residual coverage. Therefore, they made a relatively large contribution
to the identification of crops in this stage.

4.3. Variation Characteristics of Crop Identification Accuracy at Different Stages

In this study, the optimal feature sets for different periods (Tables A1–A3) were used
as the input of four classifiers (SVM, GBDT, RF, and MLC) to identify crops. The crop
recognition accuracy in different periods could be obtained (Figures 8–10). Figures 8
and 9 show that the accuracy trends of corn and soybeans in the three study areas were
similar, which increased slowly in the initial stage and then entered a rapid increase period,
after which, it gradually tended to be in a stable state after reaching the maximum value.
However, the change in amplitude of rice identification accuracy was relatively smaller
because of its higher initial value; after reaching the maximum value, it was in a state of
fluctuating up and down (Figure 10). To analyze what accuracy each crop can achieve at
different stages, the lowest and highest values for all periods at each stage in our three
study areas were taken as the accuracy level of this stage.

Figure 8. The recognition accuracy of corn in different periods in the three study areas.
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Figure 9. The recognition accuracy of soybeans in different periods in the three study areas.

Figure 10. The recognition accuracy of rice in different periods in the three study areas.

4.3.1. The Recognition Accuracy Level of Corn at Different Stages

Figure 8 shows that the identification levels of corn at different phases, and its recogni-
tion accuracy level were analyzed as follows:

At the early stage of crop growth (April–June), the identification accuracy of soybeans
was between 40% and 79%. Its accuracy was low and could not meet the basic requirements
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of corn identification. With the addition of images, the recognition accuracy of GBDT was
higher than that of other classifiers in Region 1 and Region 2, and it could achieve the
highest accuracy of 79% with four images in Region 2 among the three study areas. In
Region 3, RF performed better than that of other classifiers with 2~4 images, and SVM was
slightly lower than RF. However, MLC performed poorly compared to other classifiers in
the three study areas.

At the middle stage of crop growth (July–August), the identification accuracy of corn
in the three study areas was between 79% and 100% during this stage. The accuracy in
this stage basically reached the maximum value, which could meet the demand of crop
mapping. In Region 2 and Region 3, the recognition accuracy of corn with four classifiers
using five images was all greater than 86% on July 2. However, the earliest recognition time
of corn in Region 1 was a little later than that of the other two study areas; its recognition
accuracy of four classifiers with seven images was all greater than 93% as early as July 13.
These results indicated that the high-precision identification of corn could be identified in
early July at the earliest identification time, and the identification accuracy was above 86%.
At this stage, GBDT performed better than other classifiers, SVM and RF performed after
GBDT, and MLC performed worse in the three study areas.

At the late stage of crop growth (September–early October), corn was basically har-
vested. Its accuracy ranged between 90% and 100%, and basically remained in a stable
state during this stage. The performance of the classifier in this stage was similar to that of
the previous stage. The recognition accuracy of GBDT, RF, and SVM was comparable and
higher than that of MLC.

4.3.2. The Recognition Accuracy Level of Soybeans at Different Stages

It can be seen from Figure 9, the identification levels of soybeans at different stages
were analyzed as follows:

At the early stage of crop growth (April–June), the identification accuracy of soybeans
was between 35% and 71%, which was lower and could not meet the basic requirements of
soybeans mapping in this stage. Among all the classifiers, the accuracy of GBDT was higher
than other classifiers in the three study areas, and it could achieve the highest recognition
accuracy of 71% with four images in Region 2 among the three study areas. RF and SVM
performed comparably in Region 1 and Region 2, and MLC performed worse than other
classifiers in the three study areas.

At the middle stage of crop growth (July–August), the accuracy of soybeans in the
three study areas ranged between 69% and 100%, With the addition of more images, the
accuracy in this stage gradually reached saturation, and the identification accuracy of
soybeans in many periods could achieve satisfactory accuracy during this stage. In Region
2, the recognition accuracy of soybeans with GBDT, RF, and SVM reached 96% with five
images on July 2. In Region 3, the recognition accuracy of soybeans with GBDT and RF was
91% and 87% with five images on July 4, respectively. In Region 1, the recognition accuracy
of soybeans with SVM, GBDT, and RF was all higher than 91% with six images on July 7.
However, MLC needed to use six images to reach the earliest high-precision identification
accuracy of 93% on July 9 (Region 2). These results showed that the early high-precision
identification of soybeans could be obtained in early July, and the identification accuracy
was as high as 87%.

At the late stage of crop growth (September–early October), soybeans were basically
harvested. Its identification accuracy ranged between 92% and 100%. The recognition
accuracy of the four classifiers was basically in a saturated state compared with the previous
several stages, and the accuracy did not increase very much with more images added.

4.3.3. The Recognition Accuracy Level of Rice at Different Stages

It can be seen from Figure 10, the identification levels of rice at different stages were
analyzed as follows:



Remote Sens. 2022, 14, 1928 17 of 26

At the early stage of crop growth (April–May), the recognition accuracy of rice ranged
between 58% and 100%. In Region 2 and Region 3, the recognition accuracy of GBDT
and RF could achieve 86% with one image as early as April 29. However, in Region 1,
SVM, GBDT, and RF could use four images to realize early identification of rice as early
as May 28 with an identification accuracy up to 88%. These results showed that the early
high-precision identification of rice could be obtained as early as the end of April. Among
all the classifiers, the initial recognition accuracy of GBDT was much higher than that of
other classifiers, followed by RF and SVM, and MLC was lower than other classifiers in the
three study areas.

In the middle stage of crop growth (July–August), the recognition accuracy of rice
ranged between 93% and 100% during this stage. In the late stage of crop growth (September–
early October), the rice was basically harvested in early October. Its recognition accuracy
ranged between 96% and 100% during this stage. In Region 2 and Region 3, the accuracy
fluctuated upwards and downwards with more images added, GBDT and RF performed
comparably in the three study areas, followed by SVM, and MLC performed lower than
other classifiers in the three study areas.

In general, the identification accuracy of the three crops in the early stage of crop
growth was less than that in the middle stage, and the accuracy in the late stage was the
best and basically in a stable state. Corn and soybeans had similar phenological periods,
and the accuracies of the two crops were similar. The early identification of the two crops
could be realized in early July at the earliest identification time; they were in the seven
leaves period and the blooming period, respectively. The early identification of rice could
be realized at the end of April at the earliest identification time (the flooding period) due to
its characteristics being different to those of the former two crops. In terms of the whole
process of crop recognition, GBDT and RF performed better than SVM and MLC.

4.4. Potential Analysis of Early Crop Identification

Timely and accurately acquisition of early crop information has important scientific
significance and practical value. It can not only provide basic information for agriculture-
related decisions and applications, but also can be used to support national food security,
market planning, and many other social economic activities. This study systematically
evaluated the potential of early crop identification in Northeast China based on Sentinel-2
image data, and the recognition abilities of the three crops in different growth stages are
presented below.

In the early stage of crop growth (April–June), the recognition accuracies of corn,
soybeans and rice were 40~79%, 35~71%, and 58~99%, respectively. Corn and soybeans
appeared as bare land, and their accuracies were low and could not meet the requirements
of early recognition accuracy in this stage. Rice was basically covered by water in this
stage, which was a mixture of water and rice in the image, and the short-wave infrared
band was more sensitive to the water content information [74]. Therefore, B12, LSWI, and
NDTI ranked relatively higher in the optimal feature set and played an important role in
crop identification in this stage [75]. Combined with GBDT and RF classifiers, the earliest
high-precision recognition date of rice occurred on April 29, and the accuracy was as high
as 86%. Therefore, we made a conclusion that rice could be identified as early as the end of
April (the flooding period). This conclusion was consistent with the early identification time
of rice obtained in the literature [76,77]. In the middle stage of crop growth (July–August),
the recognition accuracies of corn and soybeans were 79~100% and 69~100%, respectively.
Corn and soybeans gradually entered a vigorous growth stage. During this stage, the cover
density and the chlorophyll water content of soybeans were higher than those of corn [78].
Short-wave infrared bands, NRED2 and red-edge index of vegetation, played an important
role in crop identification in this stage. Combining the four classifiers could identify corn
and soybeans as early as July 2, and their recognition accuracy was as high as 86% and
87%, respectively. Therefore, we concluded that the earliest identifiable times of corn and
soybeans occurred in early July, and the phenological stages were in the seven-leaf period



Remote Sens. 2022, 14, 1928 18 of 26

and flowering period, respectively. It has been mentioned in articles [72,79] that corn could
be identified at the earliest period of seven leaves and soybeans at the earliest period of
flowering. Moreover, some other findings were found when analyzing the experimental
results, which are discussed below: from the recognition accuracy of corn in the whole
period of the three regions, it can be found that the early stage was more susceptible to
the influence of the crop planting structure, while the middle and later stages were less
affected. Taking the recognition accuracy of corn in the early stage as an example, the
identification accuracy of corn in Region 2 was higher than that in Region 3, and the Region3
than that in Region1 during this stage. There were also some differences in the earliest
identified time of the three regions, and corn was the earliest identified crop in early July in
Regions 2 and 3, while in Region 1, it was slightly later, which was in mid-July. Therefore,
the early identification of crops was closely related to the planting structure of crops; that is,
the planting structure was relatively simple, the farmlands were relatively regular, and the
accuracy of crop identification was higher [80]. In contrast, the more complex the planting
structure was, the lower the crop identification accuracy [81,82], thus delaying the time of
early crop identification.

From crop emergence to harvest, with the addition of images, crop recognition accu-
racy gradually increases in the early stages, while in the middle and late stages, it gradually
becomes stable. As mentioned above, in the early stage, the rice information is more
prominent in this stage due to its own characteristics, while the information of corn and
soybeans are weak, and the rice information can be enhanced by some key features, while
the information of corn and soybeans is more difficult to capture. Therefore, the recognition
accuracy of rice was higher than that of corn and soybeans in this stage. In the middle stage,
the uniqueness of corn and soybeans gradually emerges, and these two crops’ information
can be well captured by some key separable features, and the addition of these features
greatly improves the accuracy of crops. In the late stage, the crops enter a mature and
harvest period, and the accuracy was in a saturated state. Due to the incremental design
method used for the image data, some previous key features also played an important
role on these periods in the late stage, so the accuracy in this stage was also high. Previ-
ous studies have shown that a high classification accuracy can be achieved by using the
images in only a few optimal dates. However, the accuracy may change to a saturated or
decreased state as more images are added [3,20,83], and our results were consistent with
these conclusions.

The problem that early crop identification cannot be carried out due to a lack of
samples. Considering that the historical crop map has a large amount of prior knowledge,
if the knowledge was fully utilized, it will help to solve the sample problem. Therefore, we
proposed an automatic sample generation method to generate training samples based on
the historical crop map and remote sensing images, which solved the difficulty of obtaining
samples in real time, and this also can be applied to other regions with little difference in
crop planting structure from year to year. Then, the feature optimization method was used
to calculate the feature importance in different periods; from which we summarized the key
recognition feature in different stages to provide a reference for relevant crop recognition
research in selecting effective recognition features and reducing the blindness in feature
selection. Finally, four commonly used classifiers were used to identify crops in different
periods. From which we summarized the accuracy variation characteristics of crops at
different stages and the earliest identifiable date that each crop can reach. In addition,
the difference in the performance of the classifiers was also analyzed, and it was found
that GBDT and RF were better than SVM and MLC in terms of the recognition of crops
at different stages. Although GBDT was not as popular as the other three classifiers, it
showed better accuracy in our three study areas, and can provide a new reference for the
selection of classifiers for crop identification research.

Limited by the resolution of Sentinel-2 images, the spectral and vegetation index
features were only considered in our study, but texture features also contribute significantly
to crop identification. Next, satellite data with higher spatial resolution will be considered
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to comprehensively evaluate the performance of spectral, vegetation index, and texture
features in different periods. Additionally, Deep Learning (DL) technology is more and
more prominent in the field of remote sensing classification [84–86]. Therefore, research on
the comparison between DL algorithms and traditional classifiers in terms of classification
effect and model transfer ability is also the direction of future efforts.

5. Conclusions

In this study, three important contents of early crop identification at three sites in
Heilongjiang Province were explored. First, the method of sample points generation based
on historical crop maps solved the problem that the ground samples could not be obtained
in real time in the early crop stage. Then, MDA was used to optimize the optimal feature
sets at different phases. Finally, four classifiers were used to identify crops, and the variation
characteristics of crop recognition accuracy at different phases and the differences among
different classifiers were analyzed from this part. The main conclusions are below.

(1) The identification accuracy of corn in the early growth stage was between 40% and
79%, while in the middle stage, it could reach 79~100%, and in the late stage, it was
between 90% and 100%. The earliest identification time of corn could be obtained
in early July (the seven leaves stage), and the identification accuracy was up to 86%.
The identification accuracy of soybeans in the early growth stage was between 35%
and 71%, while in the middle stage, it could reach 69~100%, and in the later stage, it
was between 92% and 100%. The earliest identification time of soybeans could also
be obtained in early July (the blooming stage), and the identification accuracy was
up to 87%. The identification accuracy of rice in the early growth stage was between
58% and 100%, while in the middle stage, it could reach 93~100%, and in the late
stage, it was between 96% and 100%. The earliest identification time of rice could be
obtained at the end of April (the flooding period), and the identification accuracy was
up to 86%.

(2) GBDT and RF performed better in the whole growth phases and had higher recog-
nition accuracy than other classifiers. Therefore, they are recommended crop early
recognition research.

(3) In the early stage, B12, NDTI, LSWI, and NDSVI played important roles in identifying
the crops. In the middle stage, features such as B12, B11, B8, LSWI, NRED2, and
RENDVI contributed greatly. In the late stage, NDTI, B11, and NDSVI were important
in identifying the crops.

(4) It was effective in acquiring training samples based on crop-type mapping and remote
sensing data, which could effectively reduce the workload of manual sample selection,
and it is of great significance for large area and real-time crop mapping.
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Appendix A

Table A1. Optimal feature sets at different periods in Region1.

Phase April 29 May 8 May 13 May 28 June 12 July 7 July 13 July 25 August 22 September 30 October 8

Rank by feature
importance

B12 NDTI NDTI LSWI_3 B12_4 B5_5 B12_6 B8_7 NRED2_8 B12_4 NDTI_8

NDTI LSWI OSAVI_2 NDSVI_3 NRED2_3 B12_5 LSWI_4 B11_4 B12_4 B12_7 B5_7

B7 RENDVI_1 LSWI NDTI B2_4 RENDVI_5 B5_6 B12_4 NDTI_7 B11_4 NDSVI_8

NDSVI NRED2_1 B2 NRED2_3 NRED1_3 B8_5 B11_6 B3_6 B5_8 NRED3_8 B12_6

RENDVI NDVI_1 NDSVI_1 B12_3 WDRVI_3 NRED3_5 B12_4 B2_6 B11_7 B5_7 B12_5

LSWI NRED2 LSWI_2 WDRVI_1 LSWI_3 B12_4 NDSVI_5 NDTI_7 B11_4 RENDVI_7 B8A_8

NRED1 WDRVI_1 NDSVI_2 NRED1_3 NDVI_3 NDVI_5 B2_4 B12_6 B8A_8 B11_7 B11_7

B11 NDSVI NDVI_1 EVI_3 B4_2 B11_4 B11_4 NDTI_4 NRED2_8 B11_8 B12_3

WDRVI B11 B4_2 B11_2 TVI_2 RENDVI_5 NDSVI_6 B12_7 B5_8 B3_8 B11_9

TVI NRED1_1 B2_2 GNDVI_2 VIgreen_4 LSWI_5 B4_6 NDVI_7 LSWI_6 B3_6 B11_4

EVI TVI_1 WDRVI_2 B11_3 WDRVI_1 EVI_5 B11_3 B11_7 B11_6 EVI_3 B11_8

NDVI MCARI_1 NDVI_2 NDVI_3 B2_2 VIgreen_5 NDVI_6 B3_7 LSWI_4 NDSVI_4 MCARI_10

MCARI NDTI_1 TVI_1 MCARI_3 B4_4 NDSVI_5 B4_5 NDSVI_6 NDSVI_4 B12_5 B4_6

B4 NRED3_1 B11 GCVI_3 NDSVI_4 B3_5 LSWI_6 NRED2_6 B12_6 B12_3 LSWI_9

B5 GNDVI_1 RENDVI_1 NDTI_2 B11_4 OSAVI_2 B2_6 NDSVI_4 B3_6 OSAVI_7 RENDVI_8
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Table A2. Optimal feature sets at different periods in Region 2.

Phase April 29 May 18 May 28 June 7 July 2 July 9 July 12 July 17 July 25 August 21 September 30 October 15

Rank by feature
importance

TVI NDSVI_1 LSWI LSWI_3 B11_4 B11_5 B12_6 B12_6 B8_6 B11_9 B12_6 NDTI_2

LSWI NDSVI B11_1 B11_2 B11_4 NDSVI_4 B12_5 NDSVI_2 LSWI_8 B11_7 B11_7 B12_8

NDTI B2_1 B12_1 B12_2 EVI_4 NRED2_5 RENDVI_6 B11_7 B11_2 B11_3 NDSVI_2 B11_8

RENDVI LSWI_1 GNDVI NDSVI_2 B2_4 B12_5 B2_5 B11_2 B5_7 NDSVI_6 B11_3 RENDVI_5

NDSVI TVI B2_1 NDSVI_3 B12_4 B5_4 B11_5 B4_7 B12_5 B11_9 B12_7 NRED2_6

B11 B6_1 OSAVI_1 B12_2 NRED1_4 B2_2 B5_5 NDSVI_5 NDSVI_7 B4_2 NRED3_8 B12_2

VIgreen GNDVI_1 GCVI_1 DVI_2 OSAVI_4 B12_5 B11_5 NRED2_7 B12_2 NRED3_6 NRED1_2 GCVI_8

EVI B12_1 RENDVI_1 NRED2 B12_4 B4_5 NDSVI_5 LSWI_2 B3_3 LSWI_2 B3_3 B12_9

B12 NRED2_1 NRED1_1 TVI_1 NDSVI_3 LSWI_3 LSWI_3 NRED3_4 NDSVI_4 LSWI_3 LSWI_3 B11_2

WDRVI NDSVI_1 TVI NRED1_2 NRED2_3 B11_2 B3_2 B12_2 B12_6 NDSVI_6 DVI_5 NDSVI_3

NRED2 NRED3_1 NDSVI_2 NDTI_3 NDTI_4 NDSVI_2 WDRVI_7 B12_7 B11_2 B12_2 RVI_7 NRED3_7

B4 NRED1_1 WDRVI B3_3 RVI_4 NRED2_4 NDSVI_2 LSWI_4 NRED3_2 NDSVI_1 NDTI_2 NDSVI_3

B2 B4_1 NDTI WDRVI_3 LSWI_2 RVI_4 B5_6 VIgreen_5 EVI_7 B12_8 B12_4 B2_8

B8A B6_1 B12_2 B5_3 TVI_4 NDVI_2 B12_2 NDSVI_6 NDTI_2 NDTI_2 MCARI_8 B8A_2

B3 NRED2 B2_2 B8A_3 B11_3 DVI_5 NRED3_6 B5_2 B11_6 NRED2_8 LSWI_7 DVI_8
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Table A3. Optimal feature sets at different periods in Region 3.

Phase April 29 May 7 May 29 June 13 July 4 July 18 July 23 August 20 August 23 September 29 October 9

Rank by feature
importance

NDTI NDTI B12_2 NDSVI_3 GNDVI_4 B3_5 NDSVI_6 LSWI_7 RENDVI_8 NDSVI_3 NDSVI_3

TVI NDTI_1 OSAVI_2 NRED2_3 B12_4 B11_5 NRED2_6 B5_7 B8_2 B6_7 NDTI_7

LSWI NDSVI_1 NDTI_2 B11_3 B11_4 B11_5 B12_6 NDTI_7 B11_7 B11_6 EVI_2

B12 LSWI_1 NDTI_2 RVI_2 WDRVI_4 NRED2_4 B5_2 NDSVI_7 NDWI_8 NRED3_5 NDSVI_8

NDSVI RENDVI LSWI_2 NDWI_2 NDSVI_2 B12_2 NDTI_6 NDSVI_3 NRED2_2 NDVI_7 NDTI_8

RENDVI TVI_1 NDSVI DVI_2 NRED2_2 B11_5 B11_1 B11_7 B11_7 OSAVI_8 B6_8

B5 WDRVI TVI_2 NRED1_1 NRED1_2 B5_5 B11_6 B12_7 B12_8 B5_6 MCARI_8

NRED1 B11_1 B11 B2 B3_4 B5_5 B11_4 NRED1_7 B12_7 NDSVI_2 WDRVI_8

NRED2 B3_1 NDTI_1 NRED2_2 NDSVI_1 VIgreen_5 B3_5 B11_5 B3_7 NRED1_7 B3_1

B11 NRED1 VIgreen_2 MCARI VIgreen_2 NDSVI_5 B3_6 B12_7 B11_8 B11_3 OSAVI_8

VIgreen TVI EVI_2 OSAVI_3 NDWI_4 NDSVI_5 NDSVI_4 EVI_6 B12_8 NRED2_5 NRED3_8

NDVI NDVI NRED2 B12_2 NRED3_4 B12_5 B4_6 B5_7 B8_6 EVI_2 B12_8

EVI NDVI_1 NRED1_1 NRED1_2 RENDVI_3 EVI_5 B2_6 RVI_7 B12_6 B7_7 NDSVI_5

NRED3 RVI RVI_2 NRED1_1 EVI_4 RENDVI_5 B2_6 RENDVI_6 NDSVI_2 B12_7 B11_7

GNDVI RENDVI NDTI_1 B12 B11_2 B12_5 NRED1_6 RENDVI_6 TVI_3 NRED3_8 B8A_7

Note: This study uses an incremental image data design. The features of the first period have no suffix, and the suffixes of the features of each subsequent period are incremented by 1.
For example, _1 represents the features used in the second period of each region, _2 represents the features used in the third period in each region.
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