
����������
�������

Citation: Danescu, R.G.; Itu, R.;

Muresan, M.P.; Rednic, A.; Turcu, V.

SST Anywhere—A Portable Solution

for Wide Field Low Earth Orbit

Surveillance. Remote Sens. 2022, 14,

1905. https://doi.org/

10.3390/rs14081905

Academic Editors: Valerio Baiocchi

and Francesca Giannone

Received: 8 March 2022

Accepted: 12 April 2022

Published: 15 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

SST Anywhere—A Portable Solution for Wide Field Low Earth
Orbit Surveillance
Radu Gabriel Danescu 1,* , Razvan Itu 1 , Mircea Paul Muresan 1 , Ana Rednic 1 and Vlad Turcu 2

1 Computer Science Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania;
razvan.itu@cs.utcluj.ro (R.I.); mircea.muresan@cs.utcluj.ro (M.P.M.); anarednic@gmail.com (A.R.)

2 Romanian Academy, Astronomical Observatory Cluj-Napoca, 400487 Cluj-Napoca, Romania;
vladturcu@academia-cj.ro

* Correspondence: radu.danescu@cs.utcluj.ro; Tel.: +40-264-401457

Abstract: The low-Earth orbit (LEO) is filled with active satellites, but also with space debris, which
need constant observation. The orbiting objects may be affected by collisions or by atmospheric drag,
and therefore they can change their orbit or even fall to the ground, a process known as reentry.
The low altitude of these objects (below 2000 km, usually even below 1000 km) means that at given
time they can be observed from a limited range of locations on the Earths’ surface, and therefore
having multiple, easy to set up observation stations can be extremely useful. This paper presents
a portable hardware solution for on-demand wide-field surveillance of the LEO region, the image
processing algorithms for detecting the satellite streaks and for joining these streaks into tracklets, and
the solution for astrometrical reduction and generating the result file for each tracklet. An automatic
validation solution that is able to automatically identify the detected satellites and compute the
measurement angular errors is also presented. The acquisition and processing system is built with
commercially available items of low and moderate costs and is capable of on-site acquisition and real-
time processing of images. The acquired images are processed by background subtraction, analysis of
the difference between frames, extraction of elongated objects corresponding to the satellite streaks,
and forming trajectories (tracklets) from consecutive detections. The pixel coordinates of the tracklets
are converted to angular coordinates using the tools from Astrometry.net, subsequently filtered
for improving the accuracy. The results are validated by using daily updated orbital parameters
(TLEs), which are used to predict the angular positions that are subsequently matched with the
detection results.

Keywords: space surveillance; image processing; astrometry; low-Earth orbit; portable

1. Introduction

The low-Earth orbit region (LEO region) is defined as the region around the Earth
that contains objects having a distance to the Earth’s surface (the altitude) of less than
2000 km. The LEO satellites have an orbital period of less than 128 min, and the eccentricity
of their orbit is less than 0.25. The LEO family includes communication satellites, Earth
Observation satellites (civil and military), scientific satellites, but also space debris such as
rocket bodies or satellite fragments. Many of these fragments will eventually reenter the
atmosphere. The fast motion, the changing nature of the orbit due to the proximity of the
Earth, and the drag caused by the Earth’s atmosphere, their sheer number, and the periodic
reentry events, are all reasons for intense observation of their position.

The LEO satellites are close to the ground, and many of them are visible to the naked
eye or through a photographic camera lens. Due to their small orbital period, they move
very fast, both in terms of absolute speed and also in terms of the perceived angular speed.
This means that they will pass quickly out of a narrow field of view (FOV) of a telescope
and will generate long streaks in images captured with long exposure times.

Remote Sens. 2022, 14, 1905. https://doi.org/10.3390/rs14081905 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14081905
https://doi.org/10.3390/rs14081905
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4515-8114
https://orcid.org/0000-0001-8156-7313
https://orcid.org/0000-0003-0315-3507
https://doi.org/10.3390/rs14081905
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14081905?type=check_update&version=1

Remote Sens. 2022, 14, 1905 2 of 31

According to the European Space Agency (ESA), a Space Surveillance and Tracking
(SST) system detects space objects, catalogues objects, and determines and predicts their
orbits. The data generated by an SST system can be used to predict hazards to operational
spacecraft, such as a potential collision with a debris objects, or to infrastructure on the
ground, in the case of a re-entering object. An SST system can be considered a “processing
pipeline” based on observation data acquired by sensors—the telescopes, radars or laser-
ranging stations—and can provide derived applications and services, comprising collision
warnings, fragmentation detection, and re-entry predictions [1].

The optical sensors, i.e., lenses or telescopes attached to digital cameras, are the easiest
solution to employ for observing orbital objects. They are usually cheap, do not require
much power to operate, and are passive, receiving the light reflected by the satellite as it is
lit by the Sun.

A review of observation strategies and image processing techniques for SST systems
based on optical sensors is presented in [2]. Based on this study, the most popular obser-
vation approaches are the ones that track the sky (sidereal tracking mode), causing the
background stars to be fixed in the image sequence and the satellite to be perceived as a
streak, or the ones which track a previously known object (target tracking mode), causing it
to be a point in the image and the stars to be the streaks. While the target tracking strategy
seems to start from an already solved problem, as the position and speed of the object are
known, the satellite can also have variable intensity over time or can deviate slightly from
its predicted position, and these changes need to be analyzed, as shown in [3].

When the starry background is fixed, the satellite is seen as a linear streak. If detection
is desired for a single frame, the streak can be detected using matched filters, as presented
in [4,5], or using a transformation that emphasizes the linear aspect of the streak, such as
the Hough transform [6] or the Radon transform [7,8]. If multiple frames are available to be
processed consecutively, the streaks can be detected as differences followed by validation
based on shape [9]. A more complex approach, which assumes neither sidereal tracking
(fixed background) nor target tracking, uses image registration to match the stars between
frames and is shown in [10].

Optical surveillance methods face significant challenges when tasked with observing
the LEO region. The poor accuracy of the orbital information for many orbiting objects
leads to inaccurate prediction of the passes, which is a significant problem for a narrow
FOV instrument. The small time window for observing the LEO objects, due to the Earth’s
shadow or due to daylight, limits the useful acquisition time to a few hours a day. Besides
these problems, there is the generic problem of the weather, which affects all optical
observations, for all orbits.

The most common solution for these problems is the use of a space radar. However, a
space radar system is expensive, requires a lot of power to operate, and therefore is not
within the reach of everybody. This paper proposes an alternative solution: a portable
system, which is also cheap and can be replicated and transported in many places of the
world, so that even though individual observations are of limited accuracy, they can be
combined to obtain a complete and accurate picture.

1.1. Related Work

The vast majority of tracking systems for LEO satellites use radar. The most advanced
radar-based system currently, Space Fence, is specialized in detecting microsatellites and
debris in low-earth orbit. Previously, the Space Surveillance Network was able to monitor
more than 20,000 LEO objects. Since 2019, the capabilities of detecting debris improved
significantly according to Space Fence [11].

The greatest advantage of optical systems, such as the one presented in this paper,
is related to costs. Compared to radar detection systems, the optical ones are much more
accessible cost-wise. One more advantage of optical systems is the field of view, which
is wider than the range of detection for radars. Even though optical systems depend

Remote Sens. 2022, 14, 1905 3 of 31

on weather conditions or light pollution, this problem can be reduced by constructing a
network of such systems spread across the globe.

An experiment was conducted by the Korea Astronomy and Space Science Institute
from the Republic of Korea starting in 2016. The institute constructed a network, called
OWL-Net, of 0.5 m wide-field optical telescopes that were positioned as evenly as possible
over the longitude grid (Mongolia, Morocco, Israel, South Korea, and USA). Data are
processed locally for each of the identical systems but are centralized in Daejeon, Korea [12].
The interconnected systems are automated to work without human intervention, starting
with the scheduling phase for observations, then the preparation and the actual observa-
tions, followed by the data storage part [12]. OWL-Net has seven operation modes, being
applicable to GEO and MEO satellites, in addition to LEO.

A network of passive telescopes dedicated to the Space Surveillance and Tracking
operations called TAROT (Télescope à Action Rapide pour les Objets Transitoires) was
developed for France’s space sector starting in 2000 [13]. The network is composed of three
small telescopes (two of them have a 25 cm aperture and one has an 18 cm aperture) and a
large telescope (1 m aperture), distributed in France, Chile, Réunion Island, and Australia.
The detectors are Andor back-illuminated CCD (charge coupled device) and FLI front-
illuminated CCD, with a resulting FOV of 1.8◦ × 1.8◦, 4◦ × 4◦ and 20 arcmin × 20 arcmin.
The small telescopes take advantage of the custom-made equatorial mounts with very fast
pointing speed (up to 60◦/s) and very precise tracking capabilities. Typical exposures times
for satellite tracking are 10–30 s. The processing chain uses some common centralized
parts and some distributed software that runs with the telescopes. The medium number of
images generated per night for each small telescope is 400, making the TAROT network
one of the most efficient robotic sensor networks in generating SST data.

An approach for detecting low-orbit space objects similar to the one presented in the
current paper was developed at the German Aerospace Center Stuttgart. It was based on
the “Stare and Chase” method for initial detection of passing objects in images with a large
FOV sensor with a starry background and subsequent recapture of some of the detected
objects with a small FOV secondary sensor. The system was composed of two telephoto
lenses and CCD/CMOS cameras with a wide FOV, which are the “stare” parts, a main
telescope and a CMOS camera with a small FOV, which is the “chase” part, an Arduino
Uno, and a GPS timer, for time synchronization. The initial detection “stare” telephoto
lenses were different Canon lenses: 135 mm f/2.0, 200 mm f/2.0. The two corresponding
cameras were a ProLine 16803 from Finger Lakes Instrumentation (FLI), with a CCD sensor,
optimized for low noise, and an Andor Zyla camera, with a CMOS type sensor chip, having
the advantage of fast readout. The recapture “chase” telescope used was a corrected Dall–
Kirkham telescope with an aperture of 17 inch (432 mm). The camera used for the telescope
was an Andor Zyla camera, with a CMOS type sensor chip. The GPS timer was used for
synchronization of readings between the two cameras and the telescope. Data processing
was done on an Arduino Uno [14]. Different tests were performed with short and long
exposure times, concluding that the short one, between 5 s and 15 s was sufficiently precise.
A Monte Carlo simulation was used to determine the minimum focal length of the lenses,
resulting in the best performance with a 135 mm lens [14].

The Astronomical Observatory Institute in Cracow, Poland, performed LEO optical
observations using small telescopes: 0.7 m RBT/PST2 in the USA (AO AMU) and 0.4 m
Solaris Observatory in Poland (6ROADS). The experiment was part of a joint campaign
between 6 Remote Observatories for Asteroid and Debris Searching (6ROADS) and the
Astronomical Observatory of Adam Mickiewicz University. The timing problem was
approached using an ATmega32u4 controller and a NEO-7M GPS module. The GEODYN
II software from NASA was used for precisely determining the orbit of LEO satellites [15].
Their experiment is valuable to determine how multiple interconnected optical systems,
compared to OWL-Net, could work together to detect and follow satellites from different
regions of the globe.

Remote Sens. 2022, 14, 1905 4 of 31

A group of researchers from Macquarie University, Sydney, Australia, developed a
very low-cost optical system able to detect and point towards satellites in space during
nighttime, called “TrackInk”. The processing unit is a Raspberry Pi 4B+. Two servo motors
can orient a telescope in automatic or manual mode, using a joystick. For localization,
the system uses an IMU (magnetometer, accelerometer, and gyroscope), as well as a
GPS receiver. Results show that the system can identify and track an object above the
horizon, which has the highest priority, including the sun, the moon, and Mars [16].
Several improvements can be made by using more advanced cameras and adapting the
implementation to detect only satellites and more than one object at a time in a given field
of view.

A project developed by Leiden University and Space Security Center, The Netherlands,
uses the existing two robotic, multi lens, all-sky camera system coupled to a dedicated data
reduction pipeline to automatically determine orbital parameters of LEO satellites [17].
The existing all-sky-cameras systems were MASCARA [18] and bRing [19]. Both systems
use the same wide-field lenses Canon 24 mm f/1.4 USML II with 17 mm aperture, and
CCD cameras with Kodak KAI -11002 front-illuminated interline CCD with microlens
array and electronic shutter. The automated data reduction pipeline developed in this
project identifies the satellite tracks using Hough transform and the Ransac method and
determines and refines satellite orbital elements to a subpixel accuracy level.

A similar approach using an array of low-cost optical telescopes with a wide FOV for
surveillance of LEO object was adopted in a project by a team comprised of DEIMOS Space,
Bordon, Hants, UK, DEIMOS Engineering System, Madrid, Spain, DEIMOS Space SLU,
Madrid, Spain, Inverse Quanta Ltd., Farnham, Surrey, UK, and SJE Space Ltd., Reading,
Berkshire, UK [20,21]. The system specifications for an LCLEOSEN (Low-Cost Low Earth
Orbit optical surveillance SENsor) were designed. A prototype for one of the LCLEOSEN
channels was designed, implemented, and tested.

Airbus Defence and Space GmbH, Germany, designed and implemented a robotic
telescope for Space Surveillance and Tracking ART (Airbus Robotic Telescope) [22]. The
telescope of 400 mm f/2.4 gives up to a 4.2 deg diagonal FOV, which is relatively small
compared with other presented systems, but its fast equatorial direct drive mount can
perform in both survey and tracking mode for LEO to GEO space objects. The sensor is
located in Extremadura, Spain, taking advantage of good observation conditions. The
system uses the Airbus proprietary SST data processing system.

1.2. Summary of the Contributions

This paper presents a complete system for space surveillance in the LEO region.
Section 2.1 describes the architecture of the portable acquisition system and computing
platform, Section 2.2 describes the image processing algorithm for detecting the satellite
as a sequence of streaks (a tracklet), Section 2.3 describes the astrometric calibration and
the angular coordinates generation, and Section 3 describes the testing methodology and
the results. The algorithm is based on detecting differences without the use of sidereal
tracking, which means that the background is not completely static. The differences are
analyzed by computing their geometric properties, to extract initial streak candidates, and
then the candidates are validated by analyzing their trajectory across multiple frames. This
simple approach allows real-time processing of large images and is sensitive enough to
detect dim satellites from an urban location and also to have a minimum of false positives
even in the presence of clouds. The trajectories (tracklets), in the form of pixel coordinates
with timestamps, are then transformed into celestial angular coordinates of right ascension
(RA) and declination (DEC), using the astrometric calibration based on the tools from
astrometry.net [23,24]. The astrometry engine uses the Tycho-2 reference catalog [25], in the
form of index files that can be downloaded from http://broiler.astrometry.net/~dstn/4100/
(last accessed on 11 April 2022). Tycho-2 coordinates are given in the J2000.0 ICRS reference
system; therefore, the coordinates derived for the detected satellites are in a celestial
reference frame apparent (topocentric) for the epoch J2000.0. Key frames, taken every

http://broiler.astrometry.net/~dstn/4100/

Remote Sens. 2022, 14, 1905 5 of 31

2 min, are used to generate the calibration files, and then these files are used to convert
each tracklet into angular coordinates. Each tracklet is converted using multiple files, and
the results are filtered using the median filter to ensure the exclusion of erroneous outliers.
For validation, the results are compared with predictions based on the sgp4 model [26] and
the up-to-date orbital elements downloaded from space-track.org.

2. Materials and Methods
2.1. The Image Acquisition and Processing System
2.1.1. Hardware Architecture

The portable space surveillance system is based on three main components:

• One laptop PC, running a Unix-based operating system;
• One DSLR camera equipped with a wide-angle lens of high aperture, for increased

light sensitivity;
• A custom-made synchronization device that will act as the interface between the PC

and the camera.

The block diagram of the complete system is shown in Figure 1. For our systems, we
used the following components:

• Laptop PC: 13-inch 2020 MacBook Pro, equipped with an Apple M1 processor and
16 GB of RAM. The MacOS system is Unix compatible and able to run the required
dependencies for astrometry. The high battery autonomy is sufficient to power up
the whole setup for the whole duration of the acquisition and processing, without the
need of external power source, which may limit portability.

• Camera: Off-the-shelf Canon EOS 800D, one of the cheapest commercially available
DSLR cameras. The camera is equipped with a 24-megapixel CMOS sensor, supports
external triggering and exposure control via the trigger pulse width, and can be
interfaced with the PC to transfer the captured images directly, in real time, without
the need of a memory card. The image size is set to 2400 × 1600 pixels.

• Lens: Sigma 20 mm f/1.8 EX DG Aspherical, a 94.5◦ wide-angle lens with low dis-
tortion and high aperture. With the Canon camera, the effective field of the acquired
images is 60◦ × 40◦.

• Synchronization device: Built using a low-cost microcontroller board (Arduino Uno,
based on the AVR AtMega 328 microcontroller) and a HW 658 GPS receiver board
using the L80 receiver chip, able to provide GPS location and time data via the UART
interface, and the precise time synchronization signal 1PPS, once per second.

The camera and lens assembly is mounted on a fixed photographic tripod, without
any tracking system to compensate for the Earth’s rotation (no sidereal tracking). While
this solution impacts accuracy, causing the background stars to move slightly between
shots and to deviate from the point-like or circular shape for long exposures, it greatly
increases the ease of use and portability, as the system can be set up anywhere without any
preparation, and reduces the overall costs.

The assembled and operational system is shown in Figure 2. We built two such
systems, both operational.

2.1.2. The Triggering Process

For space surveillance and target tracking, it is very important that the time of ob-
servation is accurately established, especially in the case of very fast-moving targets such
as the LEO objects. The most accurate but still cost-effective solution is the use of a GPS
receiver capable of outputting the 1pps (1 pulse per second) signal, which is synchronized
with the global time.

Remote Sens. 2022, 14, 1905 6 of 31

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 31

files, and the results are filtered using the median filter to ensure the exclusion of errone-
ous outliers. For validation, the results are compared with predictions based on the sgp4
model [26] and the up-to-date orbital elements downloaded from space-track.org.

2. Materials and Methods
2.1. The Image Acquisition and Processing System
2.1.1. Hardware Architecture

The portable space surveillance system is based on three main components:
• One laptop PC, running a Unix-based operating system;
• One DSLR camera equipped with a wide-angle lens of high aperture, for increased

light sensitivity;
• A custom-made synchronization device that will act as the interface between the PC

and the camera.
The block diagram of the complete system is shown in Figure 1. For our systems, we

used the following components:
• Laptop PC: 13-inch 2020 MacBook Pro, equipped with an Apple M1 processor and

16 GB of RAM. The MacOS system is Unix compatible and able to run the required
dependencies for astrometry. The high battery autonomy is sufficient to power up
the whole setup for the whole duration of the acquisition and processing, without
the need of external power source, which may limit portability.

• Camera: Off-the-shelf Canon EOS 800D, one of the cheapest commercially available
DSLR cameras. The camera is equipped with a 24-megapixel CMOS sensor, supports
external triggering and exposure control via the trigger pulse width, and can be in-
terfaced with the PC to transfer the captured images directly, in real time, without
the need of a memory card. The image size is set to 2400 × 1600 pixels.

• Lens: Sigma 20 mm f/1.8 EX DG Aspherical, a 94.5° wide-angle lens with low distor-
tion and high aperture. With the Canon camera, the effective field of the acquired
images is 60° × 40°.

• Synchronization device: Built using a low-cost microcontroller board (Arduino Uno,
based on the AVR AtMega 328 microcontroller) and a HW 658 GPS receiver board
using the L80 receiver chip, able to provide GPS location and time data via the UART
interface, and the precise time synchronization signal 1PPS, once per second.

Figure 1. The hardware architecture of the image acquisition and processing system.
Figure 1. The hardware architecture of the image acquisition and processing system.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 31

The camera and lens assembly is mounted on a fixed photographic tripod, without
any tracking system to compensate for the Earth’s rotation (no sidereal tracking). While
this solution impacts accuracy, causing the background stars to move slightly between
shots and to deviate from the point-like or circular shape for long exposures, it greatly
increases the ease of use and portability, as the system can be set up anywhere without
any preparation, and reduces the overall costs.

The assembled and operational system is shown in Figure 2. We built two such sys-
tems, both operational.

Figure 2. One assembled portable SST system.

2.1.2. The Triggering Process
For space surveillance and target tracking, it is very important that the time of obser-

vation is accurately established, especially in the case of very fast-moving targets such as
the LEO objects. The most accurate but still cost-effective solution is the use of a GPS re-
ceiver capable of outputting the 1pps (1 pulse per second) signal, which is synchronized
with the global time.

For accurate triggering, we built an Arduino-based interface between the PC and the
camera. The PC will use the USB-based serial port to communicate with the interface. The
triggering device receives the following commands:
• ‘L’ will read the location from the GPS receiver and will send it to the PC. This needs

to be executed once for a new observation sequence to store the location in a config-
uration file.

• ‘nnnnn*’—nnnnn is the number of milliseconds of exposure, for example, 3000 for a
3-s exposure time. This command needs to be sent once before the beginning of the
capture sequence.

• ‘X’—this command triggers the capture of one image. The interface will wait until
the next GPS synchronized second and will set the camera trigger signal to zero,
which will open the camera’s shutter. The system will then wait for the exposure time
and then set the trigger signal back to one, closing the shutter. The global UTC time
will be read from the GPS receiver’s UART output, and the image name, containing
the time, will be sent to the PC via the USB interface.
From the PC’s point of view, the image acquisition process has the following steps:

Figure 2. One assembled portable SST system.

For accurate triggering, we built an Arduino-based interface between the PC and the
camera. The PC will use the USB-based serial port to communicate with the interface. The
triggering device receives the following commands:

• ‘L’ will read the location from the GPS receiver and will send it to the PC. This
needs to be executed once for a new observation sequence to store the location in a
configuration file.

Remote Sens. 2022, 14, 1905 7 of 31

• ‘nnnnn*’—nnnnn is the number of milliseconds of exposure, for example, 3000 for a
3-s exposure time. This command needs to be sent once before the beginning of the
capture sequence.

• ‘X’—this command triggers the capture of one image. The interface will wait until the
next GPS synchronized second and will set the camera trigger signal to zero, which
will open the camera’s shutter. The system will then wait for the exposure time and
then set the trigger signal back to one, closing the shutter. The global UTC time will be
read from the GPS receiver’s UART output, and the image name, containing the time,
will be sent to the PC via the USB interface.

From the PC’s point of view, the image acquisition process has the following steps:

1. Configuration of the exposure time by sending the exposure value to the interface;
2. Reading the location from the interface, via the USB interface;
3. Send the ‘X’ command to the interface;
4. Wait for the image to be acquired. The image will be stored by the camera’s driver on

the PC;
5. Read the image name from the interface, via USB. For example, IMG_2021_10_24_16_33_42.jpg

means that the image was acquired on 24 October 2021, at 16:33:42, UTC time;
6. Rename the captured image using the name provided by the synchronization interface;
7. Go to step 3.

The algorithm running on the synchronization device for the triggering of one image
is shown in Figure 3. The main idea is to use the 1pps signal from the GPS receiver to time
the start of the exposure of the camera to the start of the UTC second. The 1pps signal is
generated by the GPS receiver when the reception is good enough for accurate positioning
and timing. Unfortunately, sometimes this signal can be temporarily lost, and thus relying
on it for every frame can lead to lost frames in the acquisition sequence. For this reason, we
have chosen the solution of using the internal timing mechanism of the microcontroller,
but every time the 1pps signal is available, the internal time will be synchronized with the
global time.

The program has a main loop, which processes inputs from the PC via the UART/USB
interface. If the PC gives the trigger command (‘X’), the program goes into the ‘Armed’
mode and will trigger the camera at the next full second. The symbol T denotes the current
microcontroller time, in milliseconds, and Toffset is the offset synchronized with the GPS
1pps signal. When the difference between them is an integer multiple of 1000, and the
system is armed, the exposure digital signal (denoted as E) will be set to 0, opening the
camera shutter. After the required exposure time has passed, the exposure signal is set to 1,
and the shutter will be closed.

The 1pps signal from the GPS receiver is handled asynchronously using an interrupt
service routine (ISR) attached to the external interrupt 0, which is configured to be triggered
on the signal’s rising edge. The ISR will adjust the time offset Toffset to be equal to the
current time T, thus bringing the internal time in sync with the global UTC time.

After the camera is triggered, the GPRMC string from the GPS receiver is read using a
software serial interface and parsed to extract the time, and the name for the image file is
created. This name is then sent to the PC. This process has not been depicted in Figure 3.

Remote Sens. 2022, 14, 1905 8 of 31
Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 31

Figure 3. The triggering algorithm of the synchronization interface.

2.1.3. Software Architecture
The detection system has four main components, as shown in Figure 4. The acquisi-

tion component, which was described in the previous section, provides synchronized and
timestamped images to the processing modules. The tracklet detection module uses the
image sequence to detect differences between consecutive images, classifies these differ-
ences to extract streak candidates, and joins the streaks, if locally collinear, into tracklets.

Figure 3. The triggering algorithm of the synchronization interface.

2.1.3. Software Architecture

The detection system has four main components, as shown in Figure 4. The acquisition
component, which was described in the previous section, provides synchronized and times-
tamped images to the processing modules. The tracklet detection module uses the image
sequence to detect differences between consecutive images, classifies these differences to ex-
tract streak candidates, and joins the streaks, if locally collinear, into tracklets. More details
about this module will be presented in Section 2.2. The astrometric calibration module is
based on the tools from astrometry.net, and because it is very computationally intensive, will

Remote Sens. 2022, 14, 1905 9 of 31

use only one out of every 20 frames to compute the calibration information. The necessity
of repeating the calibration periodically stems from the lack of sidereal tracking, which
causes the star background to move. The angular results generation module takes the
pixel coordinates of the tracklets and the calibration results and produces the final results,
the tracklets in right ascension (RA) and declination (DEC) coordinates. The astrometric
calibration and results generation module will be described in Section 2.3.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 31

More details about this module will be presented in Section 2.2. The astrometric calibra-
tion module is based on the tools from astrometry.net, and because it is very computation-
ally intensive, will use only one out of every 20 frames to compute the calibration infor-
mation. The necessity of repeating the calibration periodically stems from the lack of si-
dereal tracking, which causes the star background to move. The angular results generation
module takes the pixel coordinates of the tracklets and the calibration results and pro-
duces the final results, the tracklets in right ascension (RA) and declination (DEC) coordi-
nates. The astrometric calibration and results generation module will be described in Sec-
tion 2.3.

Figure 4. The software components of the LEO tracklet detection system.

2.2. Tracklet Detection from Image Sequences
2.2.1. Extracting the Moving Features

The strategy for detecting the satellites from an image sequence takes advantage of
their moving nature against the quasi-fixed starry background. If an accurate sidereal
tracking system were used, the starry background can be assumed to be fixed. In a single
frame, a satellite will cause a linear streak, as it moves during the camera exposure time.
In consecutive frames, the streak will change its position, moving in a quasi-linear man-
ner. These two properties lead to the basic strategy of finding different regions between
consecutive frames, check to see whether these regions are elongated shapes that may be
caused by a moving satellite, and then analyze subsequent frames to see whether the
streaks detected in those frames are aligned on the same trajectory. This approach has
been used before; as shown in [2,9], it can be implemented easily using basic image pro-
cessing techniques and can process large images in real time, with robust results when the
images are acquired under good observation conditions such as low light pollution, no
clouds, and a fixed background, i.e., conditions that are usually available when the obser-
vation is carried out in an astronomical observatory. Our objective is to have a system that
can work with light pollution from cities or the uneven background of the sunrise or the
sunset, without star tracking to ensure a stationary background, and we aim to detect even
the faint, short streaks, which are impossible to see with the naked eye. For these reasons,
significant improvements had to be made to the basic streak detection approach.

The first problem to be solved is the unevenly lit background. This problem is espe-
cially relevant in the case of observing LEO satellites, as they are visible only near sunset

Figure 4. The software components of the LEO tracklet detection system.

2.2. Tracklet Detection from Image Sequences
2.2.1. Extracting the Moving Features

The strategy for detecting the satellites from an image sequence takes advantage of
their moving nature against the quasi-fixed starry background. If an accurate sidereal
tracking system were used, the starry background can be assumed to be fixed. In a
single frame, a satellite will cause a linear streak, as it moves during the camera exposure
time. In consecutive frames, the streak will change its position, moving in a quasi-linear
manner. These two properties lead to the basic strategy of finding different regions between
consecutive frames, check to see whether these regions are elongated shapes that may
be caused by a moving satellite, and then analyze subsequent frames to see whether the
streaks detected in those frames are aligned on the same trajectory. This approach has been
used before; as shown in [2,9], it can be implemented easily using basic image processing
techniques and can process large images in real time, with robust results when the images
are acquired under good observation conditions such as low light pollution, no clouds,
and a fixed background, i.e., conditions that are usually available when the observation
is carried out in an astronomical observatory. Our objective is to have a system that can
work with light pollution from cities or the uneven background of the sunrise or the sunset,
without star tracking to ensure a stationary background, and we aim to detect even the
faint, short streaks, which are impossible to see with the naked eye. For these reasons,
significant improvements had to be made to the basic streak detection approach.

The first problem to be solved is the unevenly lit background. This problem is espe-
cially relevant in the case of observing LEO satellites, as they are visible only near sunset or
near sunrise, otherwise they are either in the Earth’s shadow or the sunlight is too powerful
and renders them invisible. Unfortunately, these times are exactly the times the sky is
unevenly lit. Figure 5 shows a full frame with uneven background light and the detail

Remote Sens. 2022, 14, 1905 10 of 31

around a satellite streak (brightness and contrast are enhanced in the detail image, for
visibility, but the enhancements are not used in the detection process).

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 31

or near sunrise, otherwise they are either in the Earth’s shadow or the sunlight is too pow-
erful and renders them invisible. Unfortunately, these times are exactly the times the sky
is unevenly lit. Figure 5 shows a full frame with uneven background light and the detail
around a satellite streak (brightness and contrast are enhanced in the detail image, for
visibility, but the enhancements are not used in the detection process).

Figure 5. Captured image, converted to grayscale, showing an unevenly lit background. On the
right side a detail of the full image is shown, with the faint satellite streak.

The background light can be modeled as a parametric surface, whose parameters are
estimated based on the observed data, as seen in [5]. However, this model can be limited
if the sources of light pollution are multiple, such as city lights combined with the sun-
set/sunrise. In our experiments, we found that a median filter of a sufficiently large size
can model the background light accurately, without the need for assumptions, as seen in
Figure 6.

Figure 6. The background light for the image in Figure 5, extracted by median filtering in a neigh-
borhood of 55 pixels radius.

Formally, if we denote by It the image acquired at time t, and we compute the back-
ground light image Bt by median filtering, the dark background image Dt will be obtained
by subtracting the background from the acquired image: 𝐵 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐼 , 55) (1) 𝐷 = 𝐼 − 𝐵 (2)

A detailed dark image is presented in Figure 7.

Figure 5. Captured image, converted to grayscale, showing an unevenly lit background. On the right
side a detail of the full image is shown, with the faint satellite streak.

The background light can be modeled as a parametric surface, whose parameters
are estimated based on the observed data, as seen in [5]. However, this model can be
limited if the sources of light pollution are multiple, such as city lights combined with the
sunset/sunrise. In our experiments, we found that a median filter of a sufficiently large
size can model the background light accurately, without the need for assumptions, as seen
in Figure 6.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 31

or near sunrise, otherwise they are either in the Earth’s shadow or the sunlight is too pow-
erful and renders them invisible. Unfortunately, these times are exactly the times the sky
is unevenly lit. Figure 5 shows a full frame with uneven background light and the detail
around a satellite streak (brightness and contrast are enhanced in the detail image, for
visibility, but the enhancements are not used in the detection process).

Figure 5. Captured image, converted to grayscale, showing an unevenly lit background. On the
right side a detail of the full image is shown, with the faint satellite streak.

The background light can be modeled as a parametric surface, whose parameters are
estimated based on the observed data, as seen in [5]. However, this model can be limited
if the sources of light pollution are multiple, such as city lights combined with the sun-
set/sunrise. In our experiments, we found that a median filter of a sufficiently large size
can model the background light accurately, without the need for assumptions, as seen in
Figure 6.

Figure 6. The background light for the image in Figure 5, extracted by median filtering in a neigh-
borhood of 55 pixels radius.

Formally, if we denote by It the image acquired at time t, and we compute the back-
ground light image Bt by median filtering, the dark background image Dt will be obtained
by subtracting the background from the acquired image: 𝐵 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝐼 , 55) (1) 𝐷 = 𝐼 − 𝐵 (2)

A detailed dark image is presented in Figure 7.

Figure 6. The background light for the image in Figure 5, extracted by median filtering in a neighbor-
hood of 55 pixels radius.

Formally, if we denote by It the image acquired at time t, and we compute the back-
ground light image Bt by median filtering, the dark background image Dt will be obtained
by subtracting the background from the acquired image:

Bt = median(It, 55) (1)

Dt = It − Bt (2)

A detailed dark image is presented in Figure 7.

Remote Sens. 2022, 14, 1905 11 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 31

Figure 7. Detailed region after background subtraction.

The sequence of dark background images Dt is then used for identifying the pixels
belonging to moving regions. For each time stamp t, the image Dt is compared to the past
image Dt−1, obtaining the movement image Mt. 𝑀 = 𝐷 − 𝐷 (3)

All subtractions shown in Equations (2) and (3) are performed using saturation,
meaning that any pixel difference below 0 is set to 0. The movement image is then
thresholded with a very low threshold (the threshold can be changed in the configuration
file, usually we set it to Tthreshold = 2). In this way, any small variation of intensity is taken
into consideration. The result for our detail window is seen (in negative) in Figure 8.

Figure 8. Binary image, following thresholding of the movement image.

As we can see, many features, including parts of the stars, are present in the binary
image. This is due mostly to the fact that we do not use a star tracking mount for the
camera, to compensate for the Earth’s rotation. The satellite streaks will be extracted by
further analyzing the size and shape of the binary objects.

2.2.2. Classifying Moving Features into Streak Candidates
The binary image is further processed by extracting the connected components, using

the process of labeling. First, for each connected component, we compute the area or the
number of pixels included in the object. This first property is used to filter out the binary
objects that are too small to be taken into consideration. The area threshold, Athreshold, is a

Figure 7. Detailed region after background subtraction.

The sequence of dark background images Dt is then used for identifying the pixels
belonging to moving regions. For each time stamp t, the image Dt is compared to the past
image Dt−1, obtaining the movement image Mt.

Mt = Dt − Dt−1 (3)

All subtractions shown in Equations (2) and (3) are performed using saturation, mean-
ing that any pixel difference below 0 is set to 0. The movement image is then thresholded
with a very low threshold (the threshold can be changed in the configuration file, usually we
set it to Tthreshold = 2). In this way, any small variation of intensity is taken into consideration.
The result for our detail window is seen (in negative) in Figure 8.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 31

Figure 7. Detailed region after background subtraction.

The sequence of dark background images Dt is then used for identifying the pixels
belonging to moving regions. For each time stamp t, the image Dt is compared to the past
image Dt−1, obtaining the movement image Mt. 𝑀 = 𝐷 − 𝐷 (3)

All subtractions shown in Equations (2) and (3) are performed using saturation,
meaning that any pixel difference below 0 is set to 0. The movement image is then
thresholded with a very low threshold (the threshold can be changed in the configuration
file, usually we set it to Tthreshold = 2). In this way, any small variation of intensity is taken
into consideration. The result for our detail window is seen (in negative) in Figure 8.

Figure 8. Binary image, following thresholding of the movement image.

As we can see, many features, including parts of the stars, are present in the binary
image. This is due mostly to the fact that we do not use a star tracking mount for the
camera, to compensate for the Earth’s rotation. The satellite streaks will be extracted by
further analyzing the size and shape of the binary objects.

2.2.2. Classifying Moving Features into Streak Candidates
The binary image is further processed by extracting the connected components, using

the process of labeling. First, for each connected component, we compute the area or the
number of pixels included in the object. This first property is used to filter out the binary
objects that are too small to be taken into consideration. The area threshold, Athreshold, is a

Figure 8. Binary image, following thresholding of the movement image.

As we can see, many features, including parts of the stars, are present in the binary
image. This is due mostly to the fact that we do not use a star tracking mount for the
camera, to compensate for the Earth’s rotation. The satellite streaks will be extracted by
further analyzing the size and shape of the binary objects.

2.2.2. Classifying Moving Features into Streak Candidates

The binary image is further processed by extracting the connected components, using
the process of labeling. First, for each connected component, we compute the area or the
number of pixels included in the object. This first property is used to filter out the binary
objects that are too small to be taken into consideration. The area threshold, Athreshold, is

Remote Sens. 2022, 14, 1905 12 of 31

a parameter of the system, and will be read from the configuration file. We have set this
value to 15, experimentally.

The binary objects with the area below the threshold are discarded. For the remaining
objects, the following geometric properties are computed:

• Center of mass (x0, y0),
• Major ellipse axis length (Lmajor),
• Minor ellipse axis length (Lminor),
• Eccentricity (e), computed from the axes’ lengths,

e =

√√√√1−
L2

minor
L2

major
(4)

• Orientation angle (ϕ), computed from the points (x, y) belonging to the object S, and
the center of mass.

tan(2ϕ) =
2 ∑(x,y)∈S(x− x0)(y− y0)

∑(x,y)∈S(x− x0)
2 −∑(x,y)∈S(y− y0)

2 (5)

The major axis length is compared to the threshold Lthreshold, read from the configu-
ration file. A typical value is 30 pixels, but we can decrease this threshold for increased
sensitivity for small streaks, which correspond to satellites further away. The eccentricity
will also be compared to ethreshold, read from the configuration file. A value of 0.95 will
identify the clear streaks, but for increased sensitivity in the presence of smaller streaks,
this parameter can be decreased to 0.85 or even lower.

A summary of the conditions for an object to be accepted as a streak candidate:

• Area greater than Athreshold (15 pixels or more);
• Major ellipse axis length greater than Lthreshold (30 pixels typical, can be as low as 15 for

increased sensitivity);
• Eccentricity greater than ethreshold (0.95 typical, but as low as 0.80 for increased sensitivity).

Together with Tthreshold used for binary image generation, these values are the configu-
ration parameters of the algorithm.

A result of the streak classification process is shown in Figure 9. The streak candidate
has the pixels labeled with the color green, and the rest of the objects, which are caused by
the relative motion of the stars in the background, are labeled blue. The contrast, brightness,
and saturation are increased for better visualization.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 31

parameter of the system, and will be read from the configuration file. We have set this
value to 15, experimentally.

The binary objects with the area below the threshold are discarded. For the remaining
objects, the following geometric properties are computed:
• Center of mass (x0, y0),
• Major ellipse axis length (Lmajor),
• Minor ellipse axis length (Lminor),
• Eccentricity (e), computed from the axes’ lengths,

𝑒 = 1 − 𝐿𝐿 (4)

• Orientation angle (φ), computed from the points (x, y) belonging to the object S, and
the center of mass. tan (2𝜑) = 2 ∑ (𝑥 − 𝑥)(𝑦 − 𝑦)(,)∈∑ (𝑥 − 𝑥)(,)∈ − ∑ (𝑦 − 𝑦)(,)∈ (5)

The major axis length is compared to the threshold Lthreshold, read from the configura-
tion file. A typical value is 30 pixels, but we can decrease this threshold for increased sen-
sitivity for small streaks, which correspond to satellites further away. The eccentricity will
also be compared to ethreshold, read from the configuration file. A value of 0.95 will identify
the clear streaks, but for increased sensitivity in the presence of smaller streaks, this pa-
rameter can be decreased to 0.85 or even lower.

A summary of the conditions for an object to be accepted as a streak candidate:
• Area greater than Athreshold (15 pixels or more);
• Major ellipse axis length greater than Lthreshold (30 pixels typical, can be as low as 15 for

increased sensitivity);
• Eccentricity greater than ethreshold (0.95 typical, but as low as 0.80 for increased sensitiv-

ity).
Together with Tthreshold used for binary image generation, these values are the config-

uration parameters of the algorithm.
A result of the streak classification process is shown in Figure 9. The streak candidate

has the pixels labeled with the color green, and the rest of the objects, which are caused
by the relative motion of the stars in the background, are labeled blue. The contrast, bright-
ness, and saturation are increased for better visualization.

Figure 9. Objects classification: the streak candidate is shown in green, and the other large area
objects in blue.
Figure 9. Objects classification: the streak candidate is shown in green, and the other large area
objects in blue.

Remote Sens. 2022, 14, 1905 13 of 31

The conditions for the streak candidate are not strict because the distance of a LEO
from the observation site varies greatly, along with the perceived angular speed, and
therefore the streak length can vary significantly. The variable brightness of the satellite
also affects the thickness of the streak. Thus, strict criteria will lead to a lot of missed targets.
However, our lax criteria will lead to a lot of false positives when other moving features
are present in the image, such as clouds, as seen in Figure 10. In order to have the best of
both worlds, high sensitivity and a low number of false positives, we validated the streaks
by their trajectory.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 31

The conditions for the streak candidate are not strict because the distance of a LEO
from the observation site varies greatly, along with the perceived angular speed, and
therefore the streak length can vary significantly. The variable brightness of the satellite
also affects the thickness of the streak. Thus, strict criteria will lead to a lot of missed tar-
gets. However, our lax criteria will lead to a lot of false positives when other moving fea-
tures are present in the image, such as clouds, as seen in Figure 10. In order to have the
best of both worlds, high sensitivity and a low number of false positives, we validated the
streaks by their trajectory.

Figure 10. False streaks caused by clouds. The green areas are possible streaks, while the blue areas
show movement but they are rejected by the shape criteria.

2.2.3. Trajectory Analysis and Tracklet Formation
For every possible streak candidate, we computed three key points, which define the

streak as a line segment (see Figure 11). The first point is the center of mass, already
known, denoted as O, having the coordinates x0 and y0. The other two points are denoted
as A and B, and their coordinates are computed by starting from the streak’s center and
going along its orientation axis, progressively increasing the distance r from the center
until the current point passes beyond the pixel set of the streak. The search is performed
in both directions, and therefore the coordinates of the streak ends are computed as fol-
lows: 𝑥 = 𝑥 − 𝑟 cos 𝜑 (6) 𝑦 = 𝑦 − 𝑟 sin 𝜑 (7) 𝑥 = 𝑥 + 𝑟 cos 𝜑 (8) 𝑦 = 𝑦 + 𝑟 sin 𝜑 (9)

The distances from the center O, rA and rB, are usually equal, but they may differ
when the streak has uneven illumination (for example, when the satellite is spinning fast).

The trajectories will be formed based on individual streaks detected in consecutive
images. Having the two streaks defined by the three points O, A, and B, and O’, A′, B′, we
can define two types of distances between them:
• The Euclidean distance between centroids, due to velocity, dV; 𝑑 = (𝑥 − 𝑥) + (𝑦 − 𝑦) (10)

• The distances between one streak’s points and the line defined by the other streak,
d(P, A, B), where P can be either the centroid of the new streak, O′, or one of the end
points, A′ and B′.

Figure 10. False streaks caused by clouds. The green areas are possible streaks, while the blue areas
show movement but they are rejected by the shape criteria.

2.2.3. Trajectory Analysis and Tracklet Formation

For every possible streak candidate, we computed three key points, which define the
streak as a line segment (see Figure 11). The first point is the center of mass, already known,
denoted as O, having the coordinates x0 and y0. The other two points are denoted as A and
B, and their coordinates are computed by starting from the streak’s center and going along
its orientation axis, progressively increasing the distance r from the center until the current
point passes beyond the pixel set of the streak. The search is performed in both directions,
and therefore the coordinates of the streak ends are computed as follows:

xA = xO − rA cos ϕ (6)

yA = yO − rA sin ϕ (7)

xB = xO + rB cos ϕ (8)

yB = yO + rB sin ϕ (9)

The distances from the center O, rA and rB, are usually equal, but they may differ
when the streak has uneven illumination (for example, when the satellite is spinning fast).

The trajectories will be formed based on individual streaks detected in consecutive
images. Having the two streaks defined by the three points O, A, and B, and O’, A′, B′, we
can define two types of distances between them:

• The Euclidean distance between centroids, due to velocity, dV;

dV =

√
(xO − xO′)

2 + (yO − yO′)
2 (10)

Remote Sens. 2022, 14, 1905 14 of 31

• The distances between one streak’s points and the line defined by the other streak, d(P,
A, B), where P can be either the centroid of the new streak, O′, or one of the end points,
A′ and B′.

d(P, A, B) =
|(xB − xA)(yA − yP)− (xA − xP)(yB − yA)|√

(xB − xA)
2 + (yB − yA)

2
(11)

The two types of distances are shown in Figure 11.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 31

𝑑(𝑃, 𝐴, 𝐵) = |(𝑥 − 𝑥)(𝑦 − 𝑦) − (𝑥 − 𝑥)(𝑦 − 𝑦)|(𝑥 − 𝑥) + (𝑦 − 𝑦) (11)

The two types of distances are shown in Figure 11.

Figure 11. Computing distances between two streaks.

A tracklet is a sequence of streaks that depict the same LEO object at different mo-
ments in time. A new tracklet is started when a new streak is detected, and this streak
cannot be associated with an existing tracklet.

In our algorithm, a tracklet can have the following states:
State 0—empty tracklet.
State 1—a new streak has been detected, and a new tracklet has been initialized. In

this state, the speed of the streak is not yet known, and neither is the orientation along the
trajectory line. This state is depicted in Figure 12: the gray areas are the locations of the
possible new streaks to be matched to this track. Even though we do not know the speed
of the tracklet, we can assume that it is similar to the length of the streak, as the exposure
time is equal to the time between frames (this is set explicitly in the acquisition program.
A shorter or longer time between frames can be used, and the condition for the distance
between streaks can be adjusted proportionally). Thus, we will impose an acceptable in-
terval for the distance dV.

Figure 12. A tracklet in state 1: a single streak is detected, and the following streak can be on either
side.

State 2—at least two streaks are associated with the tracklet, and therefore the speed
and the orientation of the trajectory are known. In this state, the area allowed for the new
detections is limited to the side pointed by the speed vector, as shown in Figure 13.

Figure 13. A tracklet in state 2: the tracklet now has speed and orientation, and new detections can
only match in one direction.

Figure 11. Computing distances between two streaks.

A tracklet is a sequence of streaks that depict the same LEO object at different moments
in time. A new tracklet is started when a new streak is detected, and this streak cannot be
associated with an existing tracklet.

In our algorithm, a tracklet can have the following states:
State 0—empty tracklet.
State 1—a new streak has been detected, and a new tracklet has been initialized. In

this state, the speed of the streak is not yet known, and neither is the orientation along
the trajectory line. This state is depicted in Figure 12: the gray areas are the locations of
the possible new streaks to be matched to this track. Even though we do not know the
speed of the tracklet, we can assume that it is similar to the length of the streak, as the
exposure time is equal to the time between frames (this is set explicitly in the acquisition
program. A shorter or longer time between frames can be used, and the condition for
the distance between streaks can be adjusted proportionally). Thus, we will impose an
acceptable interval for the distance dV.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 31

𝑑(𝑃, 𝐴, 𝐵) = |(𝑥 − 𝑥)(𝑦 − 𝑦) − (𝑥 − 𝑥)(𝑦 − 𝑦)|(𝑥 − 𝑥) + (𝑦 − 𝑦) (11)

The two types of distances are shown in Figure 11.

Figure 11. Computing distances between two streaks.

A tracklet is a sequence of streaks that depict the same LEO object at different mo-
ments in time. A new tracklet is started when a new streak is detected, and this streak
cannot be associated with an existing tracklet.

In our algorithm, a tracklet can have the following states:
State 0—empty tracklet.
State 1—a new streak has been detected, and a new tracklet has been initialized. In

this state, the speed of the streak is not yet known, and neither is the orientation along the
trajectory line. This state is depicted in Figure 12: the gray areas are the locations of the
possible new streaks to be matched to this track. Even though we do not know the speed
of the tracklet, we can assume that it is similar to the length of the streak, as the exposure
time is equal to the time between frames (this is set explicitly in the acquisition program.
A shorter or longer time between frames can be used, and the condition for the distance
between streaks can be adjusted proportionally). Thus, we will impose an acceptable in-
terval for the distance dV.

Figure 12. A tracklet in state 1: a single streak is detected, and the following streak can be on either
side.

State 2—at least two streaks are associated with the tracklet, and therefore the speed
and the orientation of the trajectory are known. In this state, the area allowed for the new
detections is limited to the side pointed by the speed vector, as shown in Figure 13.

Figure 13. A tracklet in state 2: the tracklet now has speed and orientation, and new detections can
only match in one direction.

Figure 12. A tracklet in state 1: a single streak is detected, and the following streak can be on either side.

State 2—at least two streaks are associated with the tracklet, and therefore the speed
and the orientation of the trajectory are known. In this state, the area allowed for the new
detections is limited to the side pointed by the speed vector, as shown in Figure 13.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 31

𝑑(𝑃, 𝐴, 𝐵) = |(𝑥 − 𝑥)(𝑦 − 𝑦) − (𝑥 − 𝑥)(𝑦 − 𝑦)|(𝑥 − 𝑥) + (𝑦 − 𝑦) (11)

The two types of distances are shown in Figure 11.

Figure 11. Computing distances between two streaks.

A tracklet is a sequence of streaks that depict the same LEO object at different mo-
ments in time. A new tracklet is started when a new streak is detected, and this streak
cannot be associated with an existing tracklet.

In our algorithm, a tracklet can have the following states:
State 0—empty tracklet.
State 1—a new streak has been detected, and a new tracklet has been initialized. In

this state, the speed of the streak is not yet known, and neither is the orientation along the
trajectory line. This state is depicted in Figure 12: the gray areas are the locations of the
possible new streaks to be matched to this track. Even though we do not know the speed
of the tracklet, we can assume that it is similar to the length of the streak, as the exposure
time is equal to the time between frames (this is set explicitly in the acquisition program.
A shorter or longer time between frames can be used, and the condition for the distance
between streaks can be adjusted proportionally). Thus, we will impose an acceptable in-
terval for the distance dV.

Figure 12. A tracklet in state 1: a single streak is detected, and the following streak can be on either
side.

State 2—at least two streaks are associated with the tracklet, and therefore the speed
and the orientation of the trajectory are known. In this state, the area allowed for the new
detections is limited to the side pointed by the speed vector, as shown in Figure 13.

Figure 13. A tracklet in state 2: the tracklet now has speed and orientation, and new detections can
only match in one direction.
Figure 13. A tracklet in state 2: the tracklet now has speed and orientation, and new detections can
only match in one direction.

Remote Sens. 2022, 14, 1905 15 of 31

State 3—a state 2 tracker will eventually pass beyond the borders of the image, or
no new streaks will be added to it for a significant number of frames. This state repre-
sents a “closed” tracklet, which will be delivered as output for the angular coordinates
generation module.

The tracking (tracklet generation) algorithm:

For each detected streak S
For each active tracklet T (state 1 or 2)

1. Predict the state of the tracklet based on the speed and the time stamp.
2. Compute the centroid distance dV between the predicted centroid and the streak

centroid, using equation (10). If the track is in state 1, assume the speed is equal to the
streak length and make predictions on both sides.

3. Compute the distances d(A′, A, B) and d(B′, A, B) between the extremities A′, B′ of the
detected streak and the line defined by points A, B of the previous streak associated
with the track using equation (11).

4. If the distances dV, d(A′, A, B) and d(B′, A, B) are below a threshold, associate streak S
with tracklet T.

5. If T was in state 1, change the state to 2.
6. If the prediction of the centroid falls outside of the image, change the state to 3, and

output the tracklet results.

If streak S remains unassociated with a tracklet, start a new tracklet from S, with state 1.

The process is illustrated step by step in Figure 14. When a new streak is detected,
and it cannot be associated with an existing tracklet, a new tracklet is created as shown in
Figure 14b. The tracklet has no clear orientation, only a linear direction. When a new streak
is detected, it is associated with the new tracklet, as seen in Figure 14d. Now the tracklet
has a clear orientation and will only associate with streaks that confirm to it, as seen in
Figure 14f. The white circle represents the predicted centroid. When the tracklet is in state
1, the prediction is shown in the place of the first streak, but after the tracklet is in state 2,
the prediction relies on the speed and orientation. When the prediction passes beyond the
limits of the image, the tracklet is finished. The 2nd degree curve fit to the tracklet points is
shown for illustration purposes only.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 31

State 3—a state 2 tracker will eventually pass beyond the borders of the image, or no new
streaks will be added to it for a significant number of frames. This state represents a “closed”
tracklet, which will be delivered as output for the angular coordinates generation module.

The tracking (tracklet generation) algorithm:
For each detected streak S
For each active tracklet T (state 1 or 2)

1. Predict the state of the tracklet based on the speed and the time stamp.
2. Compute the centroid distance dV between the predicted centroid and the
streak centroid, using equation (10). If the track is in state 1, assume the speed
is equal to the streak length and make predictions on both sides.
3. Compute the distances d(A′, A, B) and d(B′, A, B) between the extremities A′,
B′ of the detected streak and the line defined by points A, B of the previous
streak associated with the track using equation (11).
4. If the distances dV, d(A′, A, B) and d(B′, A, B) are below a threshold, associate
streak S with tracklet T.
5. If T was in state 1, change the state to 2.
6. If the prediction of the centroid falls outside of the image, change the state to
3, and output the tracklet results.

If streak S remains unassociated with a tracklet, start a new tracklet from S, with state 1.
The process is illustrated step by step in Figure 14. When a new streak is detected,

and it cannot be associated with an existing tracklet, a new tracklet is created as shown in
Figure 14b. The tracklet has no clear orientation, only a linear direction. When a new
streak is detected, it is associated with the new tracklet, as seen in Figure 14d. Now the
tracklet has a clear orientation and will only associate with streaks that confirm to it, as
seen in Figure 14f. The white circle represents the predicted centroid. When the tracklet is
in state 1, the prediction is shown in the place of the first streak, but after the tracklet is in
state 2, the prediction relies on the speed and orientation. When the prediction passes
beyond the limits of the image, the tracklet is finished. The 2nd degree curve fit to the
tracklet points is shown for illustration purposes only.

In Figure 14, at the bottom of the individual images, we can also see false streaks
caused by clouds. While they will create new tracklets, these tracklets will usually not go
beyond state 1, and therefore they will not be included in the results.

Figure 14. The evolution of a tracklet: (a,b) a new streak is detected, and a tracklet is formed; (c,d)
the tracklet, in state 1, will be associated with a newly detected streak, and its state will be changed
to 2; (e,f) the tracklet is in state 2 and associates with a new streak that matches the prediction of
speed and orientation; (g,h) a completed tracklet, in state 3.

Figure 14. The evolution of a tracklet: (a,b) a new streak is detected, and a tracklet is formed; (c,d) the
tracklet, in state 1, will be associated with a newly detected streak, and its state will be changed to 2;
(e,f) the tracklet is in state 2 and associates with a new streak that matches the prediction of speed
and orientation; (g,h) a completed tracklet, in state 3.

Remote Sens. 2022, 14, 1905 16 of 31

In Figure 14, at the bottom of the individual images, we can also see false streaks
caused by clouds. While they will create new tracklets, these tracklets will usually not go
beyond state 1, and therefore they will not be included in the results.

The result of the image processing algorithm is the tracklet file, containing the pixel
coordinates and timestamps for all detected positions of a tracklet. An example of tracklet
file contents:

Track 73
2021 11 24 3 14 4.080000 389.000000 433.000000
2021 11 24 3 14 16.080000 608.000000 345.000000
2021 11 24 3 14 23.080000 739.000000 294.000000
2021 11 24 3 14 29.080000 863.000000 245.000000
2021 11 24 3 14 35.080002 989.000000 197.000000
2021 11 24 3 14 41.080002 1124.000000 148.000000
2021 11 24 3 14 47.080002 1261.000000 98.000000
2021 11 24 3 14 53.080002 1406.000000 47.000000

The first six columns contain the timestamp. The number that shows the second is not
an integer because we added to the GPS time the camera shutter lag time, which for the
Canon EOS 800D is 80 ms. The last two columns are the image x coordinate and the image
y coordinate of the streak. The streak point identified by these coordinates is either point A
or point B of the tracklet; the selection between them is based on the tracklet’s speed vector
orientation. Our intention is to identify the first point of the streak corresponding to the
satellite’s position in the image space at the start of the exposure time.

2.3. Astrometry and Angular Results Generation
2.3.1. Astrometric Calibration

The detection results are so far expressed in pixel coordinates, a tracklet being a
sequence of (x, y) pixel coordinates associated with the acquisition timestamps for the
corresponding frames. For the results to be useful from the SST perspective, they need to
be expressed in astronomical, celestial angular coordinates. These coordinates are the right
ascension (RA), similar to the geographical longitude, and the declination (DEC), similar to
the geographical latitude. These coordinates can be further used to compute or update the
orbit of the observed space object, a process which is beyond the scope of this paper.

The principle behind translation from pixels to RA/DEC coordinates is the use of
background stars as reference markers. All stars are catalogued, and their RA/DEC
coordinates are known, and therefore the process can be described as the task of identifying
the stars in the image, creating a model of the coordinate mapping from the image pixels to
the angular coordinates, and then mapping the detection points. While the process may
sound simple, it involves a search through a very large parameter space, including the
angular pixel size (the scale), which depends on the camera and the image sensor, the
coordinates of the image center, which depend on the orientation of the camera/lens, the
angle of the camera sensor with respect to the horizon, and the distortion (non-linearity)
coefficients, which are not negligible when the observed field is as wide as in our case.

The freely available tools from Astrometry.net are designed to recognize the stars
and generate the mapping between pixels and angular coordinates with minimum to
no user input or prior knowledge about the acquisition conditions. The tools can be
easily installed on any computer running a Unix-compatible operating system or even on
Windows machines that use the Cygwin emulator. The tools work with .jpg images, such
as in our case, but also with .FITS images acquired by professional astronomical cameras.

Figure 15 shows four types of calls to the field solver program of the Astrometry.net
package, the program that automatically recognizes the stars in the input image and
generates the pixels to RA/DEC angles mapping model. The first call is the generic, blind
call, when no information about the acquisition conditions is available. This call is the

Remote Sens. 2022, 14, 1905 17 of 31

simplest, can take a very long time to complete, but is useful when nothing is known about
the lens and the camera. One of the most important pieces of information is the pixel size,
which, after a successful first blind calibration can then be restricted to a narrow range,
as long as the camera and lens are not changed. This is what is shown in the second call:
as the initial calibration found a pixel size of about 92 arcseconds/pixel, we will limit the
further calls to a lower limit (-L) of 85 and a higher limit (-H) of 95, specifying the unit or
arcseconds per pixel (-u app). In this way, the calibration time is significantly shortened to
about one minute or less.

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 31

calls to a lower limit (-L) of 85 and a higher limit (-H) of 95, specifying the unit or arcsec-
onds per pixel (-u app). In this way, the calibration time is significantly shortened to about
one minute or less.

Due to the fact that the observed field is 60 × 40 degrees wide, the default degree for
the SIP (simple imaging polynomial) that models the nonlinear distortions of the plate
calibration [27] is sometimes not accurate enough, especially for the peripheral areas of
the image. We can instruct the calibration tool to use a higher degree polynomial, as seen
in call number 3 (-t 7). The argument 7 is the degree of the distortion polynomial and was
found by experiment. For a narrower field of view, this degree may be significantly lower
than or to the left of the default value. In this way, the model will be more accurate, but
the calibration time can be again increased.

Call number 4 shows how we can further decrease the processing time by using the
past results to restrict the search field. The parameters RA and DEC in the call (--ra RA --
dec DEC --radius 40) are the coordinates of the plate center obtained from the previous
call in a sequence, forcing the next calibration to focus around the previous sky region
instead of considering the whole sky. In this way, the processing time for each image can
be reduced to about 10 s. This may seem as a major impediment to using the system for
real-time detection, but one calibration can be used for multiple detections in subsequent
frames.

Figure 15. Using the astrometry engine for obtaining the calibration between pixels and angular
coordinates.

Based on the four types of calls already described, and shown in Figure 15, the com-
plete strategy for astrometric calibration is the following:
1. Use blind call 1 for a new instrument, once, for establishing the angular size of the pixel.
2. For an acquired image sequence, process every 1 in 20 frames:

a. Use call 3 for the first processed frame to establish the first plate center by search-
ing the whole sky;

b. Use call 4 for the subsequent frames, restricting the search space around the pre-
vious found plate center;

c. Store the calibration file along with its timestamp for converting the tracklets
into RA/DEC coordinates.

A result of the automatic star recognition for an acquired image is shown in Figure
16.

Figure 15. Using the astrometry engine for obtaining the calibration between pixels and angu-
lar coordinates.

Due to the fact that the observed field is 60 × 40 degrees wide, the default degree for
the SIP (simple imaging polynomial) that models the nonlinear distortions of the plate
calibration [27] is sometimes not accurate enough, especially for the peripheral areas of the
image. We can instruct the calibration tool to use a higher degree polynomial, as seen in
call number 3 (-t 7). The argument 7 is the degree of the distortion polynomial and was
found by experiment. For a narrower field of view, this degree may be significantly lower
than or to the left of the default value. In this way, the model will be more accurate, but the
calibration time can be again increased.

Call number 4 shows how we can further decrease the processing time by using the
past results to restrict the search field. The parameters RA and DEC in the call (–ra RA –dec
DEC –radius 40) are the coordinates of the plate center obtained from the previous call in a
sequence, forcing the next calibration to focus around the previous sky region instead of
considering the whole sky. In this way, the processing time for each image can be reduced
to about 10 s. This may seem as a major impediment to using the system for real-time
detection, but one calibration can be used for multiple detections in subsequent frames.

Based on the four types of calls already described, and shown in Figure 15, the
complete strategy for astrometric calibration is the following:

1. Use blind call 1 for a new instrument, once, for establishing the angular size of
the pixel.

2. For an acquired image sequence, process every 1 in 20 frames:

a. Use call 3 for the first processed frame to establish the first plate center by
searching the whole sky;

b. Use call 4 for the subsequent frames, restricting the search space around the
previous found plate center;

c. Store the calibration file along with its timestamp for converting the tracklets
into RA/DEC coordinates.

A result of the automatic star recognition for an acquired image is shown in Figure 16.

Remote Sens. 2022, 14, 1905 18 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 31

Figure 16. Astrometric calibration results: (a) input image, (b) recognized constellations.

2.3.2. Computing the Angular Coordinates of the Tracklets
If a calibration file is available, the astrometry.net tools can compute the relationship

between image pixel coordinates and the world coordinates, by invoking the wcs-xy2rd
command. The process is, however, complicated by the following challenges:
1. The lack of sidereal tracking means that the sky configuration in the moment of cali-

bration is not the same as the configuration for each observation point;
2. Errors in calibration, due mostly to less-than-ideal conditions and to the wide field

of view.
To overcome the first challenge, we have to take into consideration the time between

the calibration and the observation. Denoting the time of the observation point i as ti, the
time of the calibration c as tc, and the angular coordinates provided by wcs-xy2rd as RAc
and DECc, the angular coordinates for the point i will be computed as: 𝑅𝐴 , = 𝑅𝐴 + 15 (𝑡 − 𝑡) 1.0027379093 (12) 𝐷𝐸𝐶𝑖,𝑐 = 𝐷𝐸𝐶𝑐 (13)

In Equation (12), the times are expressed in hours, and the angles in degrees. The
equation will compensate for the Earth’s rotation during the time difference, with a speed
of 15 degrees for every sidereal hour. The term 1.0027379093 in Equation (12) is the con-
version factor from UTC to sidereal time. The right ascension angle will be affected by this
rotation, but the declination angle will not, as stated by Equation (13).

By compensating for the Earth’s rotation, we can use the calibration files at any time,
as long as the time difference is not too high. For example, in 20 min, the sky will rotate
by approximately 5 degrees, an amount which is almost 10% of our observation field, and
therefore we have chosen not to use calibration files that have a higher time difference
than 20 min from the observation time.

The second challenge is related to the errors in the astrometrical process. In order to
overcome these errors, we compute, for each track, the angular coordinates using all avail-
able calibration files in the ±20 min range. While most of the results will be in agreement,
there is a significant chance of outliers, as seen in Figure 17.

a b

Figure 16. Astrometric calibration results: (a) input image, (b) recognized constellations.

2.3.2. Computing the Angular Coordinates of the Tracklets

If a calibration file is available, the astrometry.net tools can compute the relationship
between image pixel coordinates and the world coordinates, by invoking the wcs-xy2rd
command. The process is, however, complicated by the following challenges:

1. The lack of sidereal tracking means that the sky configuration in the moment of
calibration is not the same as the configuration for each observation point;

2. Errors in calibration, due mostly to less-than-ideal conditions and to the wide field
of view.

To overcome the first challenge, we have to take into consideration the time between
the calibration and the observation. Denoting the time of the observation point i as ti, the
time of the calibration c as tc, and the angular coordinates provided by wcs-xy2rd as RAc
and DECc, the angular coordinates for the point i will be computed as:

RAi,c = RAc + 15·(ti − tc)·1.0027379093 (12)

DECi,c = DECc (13)

In Equation (12), the times are expressed in hours, and the angles in degrees. The
equation will compensate for the Earth’s rotation during the time difference, with a speed of
15 degrees for every sidereal hour. The term 1.0027379093 in Equation (12) is the conversion
factor from UTC to sidereal time. The right ascension angle will be affected by this rotation,
but the declination angle will not, as stated by Equation (13).

By compensating for the Earth’s rotation, we can use the calibration files at any time,
as long as the time difference is not too high. For example, in 20 min, the sky will rotate
by approximately 5 degrees, an amount which is almost 10% of our observation field, and
therefore we have chosen not to use calibration files that have a higher time difference than
20 min from the observation time.

The second challenge is related to the errors in the astrometrical process. In order
to overcome these errors, we compute, for each track, the angular coordinates using all
available calibration files in the ±20 min range. While most of the results will be in
agreement, there is a significant chance of outliers, as seen in Figure 17.

For each observation point i, and each of n usable calibration frames c (within the
40-min wide window, c), we have a list of right ascension values RAi,1, RAi,2, . . . , RAi,n,
and a list of declination values, DECi,1, DECi,2, . . . , DECi,n. The filtered, final result for the
two angles will be provided by the median filter (Equations (14) and (15)), which eliminates
the outliers and selects the middle value of a sorted sequence.

RAi = median({RAi,1, RAi,2, . . . , RAi,n}) (14)

DECi = median({DECi,1, DECi,2, . . . , DECi,n}) (15)

Remote Sens. 2022, 14, 1905 19 of 31

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 31

Figure 17. Angular coordinates for a single tracklet, computed with different calibration files. While
most of the results are in agreement, outliers are present.

For each observation point i, and each of n usable calibration frames c (within the 40-
min wide window, c), we have a list of right ascension values 𝑅𝐴 , , 𝑅𝐴 , , … , 𝑅𝐴 , , and a
list of declination values, 𝐷𝐸𝐶 , , 𝐷𝐸𝐶 , , … , 𝐷𝐸𝐶 , . The filtered, final result for the two an-
gles will be provided by the median filter (Equations (14) and (15)), which eliminates the
outliers and selects the middle value of a sorted sequence. 𝑅𝐴 = 𝑚𝑒𝑑𝑖𝑎𝑛({𝑅𝐴 , , 𝑅𝐴 , , … , 𝑅𝐴 , }) (14) 𝐷𝐸𝐶 = 𝑚𝑒𝑑𝑖𝑎𝑛({𝐷𝐸𝐶 , , 𝐷𝐸𝐶 , , … , 𝐷𝐸𝐶 , }) (15)

The final result will be written as a Track Data Message (.tdm) file [28]. The .tdm file
for the tracklet shown in Figure 17 will have the following content:

CREATION_DATE = 2022-01-17T09:50:0.000000
ORIGINATOR = UTCN
META_START
COMMENT LONGITUDE 23.607456 EAST
COMMENT LATITUDE 46.792990 NORTH
COMMENT ALTITUDE 376.000000 M
TIME_SYSTEM = UTC
ANGLE_TYPE = RADEC
REFERENCE_FRAME = EME2000
META_STOP
DATA_START
ANGLE_1=2021-11-24T03:14:4.080000 224.247955
ANGLE_2=2021-11-24T03:14:4.080000 51.636265
ANGLE_1=2021-11-24T03:14:16.080000 216.112122
ANGLE_2=2021-11-24T03:14:16.080000 49.333347
ANGLE_1=2021-11-24T03:14:23.080000 211.565292
ANGLE_2=2021-11-24T03:14:23.080000 47.648979
ANGLE_1=2021-11-24T03:14:29.080000 207.471420
ANGLE_2=2021-11-24T03:14:29.080000 45.897671
ANGLE_1=2021-11-24T03:14:35.080002 203.605835
ANGLE_2=2021-11-24T03:14:35.080002 43.953228
ANGLE_1=2021-11-24T03:14:41.080002 199.806335
ANGLE_2=2021-11-24T03:14:41.080002 41.710945
ANGLE_1=2021-11-24T03:14:47.080002 196.226089
ANGLE_2=2021-11-24T03:14:47.080002 39.337502
ANGLE_1=2021-11-24T03:14:53.080002 192.780472
ANGLE_2=2021-11-24T03:14:53.080002 36.729244
DATA_STOP

190 195 200 205 210 215 220 225
36

38

40

42

44

46

48

50

52
 Y A O G A N 6 ---IM G _2021_11_24_03_15_05_track_73.tdmYAOGAN 6 -- IMG_2021_11_24_03_15_05_track_73.tdm

Figure 17. Angular coordinates for a single tracklet, computed with different calibration files. While
most of the results are in agreement, outliers are present.

The final result will be written as a Track Data Message (.tdm) file [28]. The .tdm file
for the tracklet shown in Figure 17 will have the following content:

CREATION_DATE = 2022-01-17T09:50:0.000000
ORIGINATOR = UTCN
META_START
COMMENT LONGITUDE 23.607456 EAST
COMMENT LATITUDE 46.792990 NORTH
COMMENT ALTITUDE 376.000000 M
TIME_SYSTEM = UTC
ANGLE_TYPE = RADEC
REFERENCE_FRAME = EME2000
META_STOP
DATA_START
ANGLE_1=2021-11-24T03:14:4.080000 224.247955
ANGLE_2=2021-11-24T03:14:4.080000 51.636265
ANGLE_1=2021-11-24T03:14:16.080000 216.112122
ANGLE_2=2021-11-24T03:14:16.080000 49.333347
ANGLE_1=2021-11-24T03:14:23.080000 211.565292
ANGLE_2=2021-11-24T03:14:23.080000 47.648979
ANGLE_1=2021-11-24T03:14:29.080000 207.471420
ANGLE_2=2021-11-24T03:14:29.080000 45.897671
ANGLE_1=2021-11-24T03:14:35.080002 203.605835
ANGLE_2=2021-11-24T03:14:35.080002 43.953228
ANGLE_1=2021-11-24T03:14:41.080002 199.806335
ANGLE_2=2021-11-24T03:14:41.080002 41.710945
ANGLE_1=2021-11-24T03:14:47.080002 196.226089
ANGLE_2=2021-11-24T03:14:47.080002 39.337502
ANGLE_1=2021-11-24T03:14:53.080002 192.780472
ANGLE_2=2021-11-24T03:14:53.080002 36.729244
DATA_STOP

Remote Sens. 2022, 14, 1905 20 of 31

3. Results
3.1. Testing Methodology

The detection results were tested against the known orbits of the satellites. The website
space-track.org maintains up-to-date orbital information files for more than 20000 satellites
and space debris, which can be freely downloaded. We developed a Matlab application that
uses the SGP4 predictor [24] to generate angular coordinates for a given satellite’s orbital
parameters, given observation timestamps, and the known geographical location of the
observer. The application loads the result .tdm file, extracts the timestamps and the location,
generates the predicted coordinates for each satellite based on its Two Line Element (TLE)
data, and compares the results with the measured angles from the .tdm file. The process,
for a given orbit and a given result file, is shown in Figure 18.

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 31

3. Results
3.1. Testing Methodology

The detection results were tested against the known orbits of the satellites. The web-
site space-track.org maintains up-to-date orbital information files for more than 20000 sat-
ellites and space debris, which can be freely downloaded. We developed a Matlab appli-
cation that uses the SGP4 predictor [24] to generate angular coordinates for a given satel-
lite’s orbital parameters, given observation timestamps, and the known geographical lo-
cation of the observer. The application loads the result .tdm file, extracts the timestamps
and the location, generates the predicted coordinates for each satellite based on its Two
Line Element (TLE) data, and compares the results with the measured angles from the
.tdm file. The process, for a given orbit and a given result file, is shown in Figure 18.

Figure 18. The TLE-based validation methodology.

The predicted and the measured trajectories were compared using two error meas-
urements, the Cross Track Error (cte) and the Along Track Error (ate). The Cross Track
Error is the distance between corresponding line segments generated by the measurement
and the prediction, and the Along Track Error is the error generated by the displacement
of the detected point along the line segment (or along the trajectory). In practice, for every
measurement point, we compute the distance to the closest predicted line segment, for
computing the cte, and then the Euclidean distance to the predicted corresponding point.
Using Pythagoras’ theorem, we obtain then the second side, which is the ate, as seen in
Figure 19.

Figure 19. The cross-track error (cte) and the along-track error (ate) between two trajectories.

The cte and the ate are computed for every point of the tracklet. The cte and the ate
errors for the whole tracklet are computed as the means of the individual point errors.

The validation application compares each result file of the acquired sequence with
each satellite orbit downloaded from space-track.org. A match is declared if the cross-track
error and along-track error are below some thresholds established as a function of sensor
characteristics and object orbit type (e.g., eccentric orbits are subject to larger thresholds).
For our sensor, a match is declared if the cross-track error is less than 1 degree and the
along-track error is less than 10 degrees. These large thresholds are considered to cover

Figure 18. The TLE-based validation methodology.

The predicted and the measured trajectories were compared using two error measure-
ments, the Cross Track Error (cte) and the Along Track Error (ate). The Cross Track Error
is the distance between corresponding line segments generated by the measurement and
the prediction, and the Along Track Error is the error generated by the displacement of
the detected point along the line segment (or along the trajectory). In practice, for every
measurement point, we compute the distance to the closest predicted line segment, for
computing the cte, and then the Euclidean distance to the predicted corresponding point.
Using Pythagoras’ theorem, we obtain then the second side, which is the ate, as seen in
Figure 19.

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 31

3. Results
3.1. Testing Methodology

The detection results were tested against the known orbits of the satellites. The web-
site space-track.org maintains up-to-date orbital information files for more than 20000 sat-
ellites and space debris, which can be freely downloaded. We developed a Matlab appli-
cation that uses the SGP4 predictor [24] to generate angular coordinates for a given satel-
lite’s orbital parameters, given observation timestamps, and the known geographical lo-
cation of the observer. The application loads the result .tdm file, extracts the timestamps
and the location, generates the predicted coordinates for each satellite based on its Two
Line Element (TLE) data, and compares the results with the measured angles from the
.tdm file. The process, for a given orbit and a given result file, is shown in Figure 18.

Figure 18. The TLE-based validation methodology.

The predicted and the measured trajectories were compared using two error meas-
urements, the Cross Track Error (cte) and the Along Track Error (ate). The Cross Track
Error is the distance between corresponding line segments generated by the measurement
and the prediction, and the Along Track Error is the error generated by the displacement
of the detected point along the line segment (or along the trajectory). In practice, for every
measurement point, we compute the distance to the closest predicted line segment, for
computing the cte, and then the Euclidean distance to the predicted corresponding point.
Using Pythagoras’ theorem, we obtain then the second side, which is the ate, as seen in
Figure 19.

Figure 19. The cross-track error (cte) and the along-track error (ate) between two trajectories.

The cte and the ate are computed for every point of the tracklet. The cte and the ate
errors for the whole tracklet are computed as the means of the individual point errors.

The validation application compares each result file of the acquired sequence with
each satellite orbit downloaded from space-track.org. A match is declared if the cross-track
error and along-track error are below some thresholds established as a function of sensor
characteristics and object orbit type (e.g., eccentric orbits are subject to larger thresholds).
For our sensor, a match is declared if the cross-track error is less than 1 degree and the
along-track error is less than 10 degrees. These large thresholds are considered to cover

Figure 19. The cross-track error (cte) and the along-track error (ate) between two trajectories.

The cte and the ate are computed for every point of the tracklet. The cte and the ate
errors for the whole tracklet are computed as the means of the individual point errors.

The validation application compares each result file of the acquired sequence with
each satellite orbit downloaded from space-track.org. A match is declared if the cross-track
error and along-track error are below some thresholds established as a function of sensor
characteristics and object orbit type (e.g., eccentric orbits are subject to larger thresholds).
For our sensor, a match is declared if the cross-track error is less than 1 degree and the along-
track error is less than 10 degrees. These large thresholds are considered to cover cases of
the re-entry objects, of which the orbits are strongly perturbed by the upper atmosphere

Remote Sens. 2022, 14, 1905 21 of 31

conditions. If we exclude these objects, the thresholds could be considerably lower as can
be seen from the results presented in Tables 1 and 2.

Table 1. Error statistics for the SW sequence.

Orientation South-West

Duration 16:25:23–18:55:18

Date 27 October 2021

Mean Cross Track Error (arcsec) 215.1380

Mean Cross Track Error (pixels) 2.3384

Median Cross Track Error (arcsec) 100.5876

Median Cross Track Error (pixels) 1.0933

Mean Along Track Error (arcsec) 574.7124

Mean Along Track Error (pixels) 6.2468

Median Along Track Error (arcsec) 413.7912

Median Along Track Error (pixels) 4.4977

Number of matched detected objects 25

Number of non-matched detections 14

Number of planes (manual analysis) 11

Number of possible non-matched LEOs 3

Table 2. Error statistics for the East sequence.

Orientation East

Duration 03:11:04–03:55:48

Date 24 November 2021

Mean Cross Track Error (arcsec) 108.3147

Mean Cross Track Error (pixels) 1.1773

Median Cross Track Error (arcsec) 48.1284

Median Cross Track Error (pixels) 0.5231

Mean Along Track Error (arcsec) 1008.1054

Mean Along Track Error (pixels) 10.9576

Median Along Track Error (arcsec) 435.0348

Median Along Track Error (pixels) 4.7286

Number of matched detected objects 14

Number of non-matched detections 0

Number of planes (manual analysis) 0

Number of possible non-matched LEOs 0

3.2. Testing the Portable SST System

The complete portable SST system was tested in two locations in the city of Cluj-
Napoca, Romania. The locations are in populated areas, with mostly houses less than three
stories high, and the observations were made from balconies. The city lights and the light
of sunset or sunrise were present, which created an uneven and fairly bright background.

Below we present the results for two sequences. The first sequence was captured
with the camera facing south-west, where the LEO satellites are usually observable around
sunset. A typical frame from the 2-h sequence is shown in Figure 20. Most of the detected
satellites were not visible to the naked eyes.

Remote Sens. 2022, 14, 1905 22 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 31

Figure 20. A frame from a sequence captured in Cluj-Napoca, at sunset, facing south-west. An LEO
streak is highlighted by the red circle.

In Figure 21, we can see several detected and recognized satellites. The system also
detected satellite-like objects that were not recognized by the TLE-based prediction. Some
of these objects were planes (the city of Cluj-Napoca also has an airport and the air traffic
is significant), but some may also be satellites or space debris with outdated TLE data
Unfortunately, for very faint objects, which can be either planes illuminated by the sun or
space debris, we do not have any means of determining their nature. In Table 1, we also
show the number of tracklets that we were not able to match with the TLE data, and by
manual analysis of the image sequence, we identified that most of them were planes (11
out of 14), but there were still three tracklets with LEO characteristics.

The detected and recognized objects ranged from 600 to more than 1500 km from the
observation point. The range was extracted from the orbit-based position prediction, as
the detection system is not able to directly measure the range.

Name: SMAP
Orbit:
1 40376U 15003A 21300.34421866 .00000113
00000-0 30912-4 0 9993
2 40376 98.1260 305.5845 0001102 111.1197 249.0123
14.63369264359892

Range to camera: 1235.239396 km
Cross Track Error: 0.004625 degrees
Along Track Error: 0.186136 degrees

Figure 20. A frame from a sequence captured in Cluj-Napoca, at sunset, facing south-west. An LEO
streak is highlighted by the red circle.

In Figure 21, we can see several detected and recognized satellites. The system also
detected satellite-like objects that were not recognized by the TLE-based prediction. Some
of these objects were planes (the city of Cluj-Napoca also has an airport and the air traffic
is significant), but some may also be satellites or space debris with outdated TLE data
Unfortunately, for very faint objects, which can be either planes illuminated by the sun or
space debris, we do not have any means of determining their nature. In Table 1, we also
show the number of tracklets that we were not able to match with the TLE data, and by
manual analysis of the image sequence, we identified that most of them were planes (11
out of 14), but there were still three tracklets with LEO characteristics.

The detected and recognized objects ranged from 600 to more than 1500 km from the
observation point. The range was extracted from the orbit-based position prediction, as the
detection system is not able to directly measure the range.

A summary of the sequence, including the errors, is shown in Table 1.

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 31

Figure 20. A frame from a sequence captured in Cluj-Napoca, at sunset, facing south-west. An LEO
streak is highlighted by the red circle.

In Figure 21, we can see several detected and recognized satellites. The system also
detected satellite-like objects that were not recognized by the TLE-based prediction. Some
of these objects were planes (the city of Cluj-Napoca also has an airport and the air traffic
is significant), but some may also be satellites or space debris with outdated TLE data
Unfortunately, for very faint objects, which can be either planes illuminated by the sun or
space debris, we do not have any means of determining their nature. In Table 1, we also
show the number of tracklets that we were not able to match with the TLE data, and by
manual analysis of the image sequence, we identified that most of them were planes (11
out of 14), but there were still three tracklets with LEO characteristics.

The detected and recognized objects ranged from 600 to more than 1500 km from the
observation point. The range was extracted from the orbit-based position prediction, as
the detection system is not able to directly measure the range.

Name: SMAP
Orbit:
1 40376U 15003A 21300.34421866 .00000113
00000-0 30912-4 0 9993
2 40376 98.1260 305.5845 0001102 111.1197 249.0123
14.63369264359892

Range to camera: 1235.239396 km
Cross Track Error: 0.004625 degrees
Along Track Error: 0.186136 degrees

Figure 21. Cont.

Remote Sens. 2022, 14, 1905 23 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 23 of 31

Name: STARLINK-1606
Orbit:
1 46144U 20057AD 21300.36019127 .00000296
00000-0 38758-4 0 9990
2 46144 53.0547 253.8451 0001841 65.7033 294.4148
15.06401980 54297

Range to camera: 711.759845 km
Cross Track Error: 0.022545 degrees
Along Track Error: 0.128004 degrees

Name: COSMOS 1300
Orbit:
1 12785U 81082A 21300.46375569 .00001298
00000-0 61723-4 0 9996
2 12785 82.4998 296.2882 0002881 98.2895 18.0680
15.18318447193246

Range to camera: 1146.108754 km
Cross Track Error: 0.078413 degrees
Along Track Error: 0.076039 degrees

Name: YUNHAI 2 4

Orbit:
1 43912U 18112D 21300.45213349 -.00000196 00000-
0 -14096-4 0 9991
2 43912 50.0126 268.4469 0015447 162.9609 197.1825
14.27701303145504

Range to camera: 1517.629247 km
Cross Track Error: 0.006140 degrees
Along Track Error: 0.053935 degrees

Figure 21. Selection of detected satellites (SW sequence). In the left column we can see the trajectory
comparison between the prediction (marked with X) and the measurement (marked with O), and in
the right column we see the satellite name, the orbital parameters, and the errors. Frame from a
sequence captured in Cluj-Napoca, at sunset, facing south-west.

A summary of the sequence, including the errors, is shown in Table 1.
The second sequence was captured before sunrise, and the camera was oriented to-

wards East. The location of the system, in this case, was more challenging, as the street
lights were much closer and their effect was much more visible, even creating a lens flare,
as seen in Figure 22, in the top right region. No satellites in this sequence could be seen by
the naked eye or by directly looking at the images.

Figure 21. Selection of detected satellites (SW sequence). In the left column we can see the trajectory
comparison between the prediction (marked with X) and the measurement (marked with O), and
in the right column we see the satellite name, the orbital parameters, and the errors. Frame from a
sequence captured in Cluj-Napoca, at sunset, facing south-west.

The second sequence was captured before sunrise, and the camera was oriented
towards East. The location of the system, in this case, was more challenging, as the street
lights were much closer and their effect was much more visible, even creating a lens flare,
as seen in Figure 22, in the top right region. No satellites in this sequence could be seen by
the naked eye or by directly looking at the images.

Remote Sens. 2022, 14, 1905 24 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 24 of 31

Figure 22. A frame from a sequence captured in Cluj-Napoca, before sunrise, facing East.

From this sequence, less than one hour long, the system detected 14 satellites, all rec-
ognized based on TLE orbital parameter prediction. The range, from prediction, was be-
tween 650 and 1300 km. A selection of recognized satellites, compared with their pre-
dicted trajectories, is shown in Figure 23.

Name: Starlink 1174
Orbit:
1 45075U 20006AH 21327.79005844 .00001583
00000-0 12518-3 0 9998
2 45075 53.0554 100.7171 0001279 75.9027 284.2104
15.06388666100574

Range to camera: 1252.304888 km
Cross Track Error: 0.037925 degrees
Along Track Error: 0.159946 degrees

Name: Yaogan 6
Orbit:
1 34839U 09021A 21327.91475716 .00001392
00000-0 53135-4 0 9990
2 34839 97.0625 313.3449 0025788 314.1992 45.7130
15.27950741699830

Range to camera: 671.800661 km
Cross Track Error: 0.040859 degrees
Along Track Error: 0.031365 degrees

Figure 22. A frame from a sequence captured in Cluj-Napoca, before sunrise, facing East.

From this sequence, less than one hour long, the system detected 14 satellites, all
recognized based on TLE orbital parameter prediction. The range, from prediction, was
between 650 and 1300 km. A selection of recognized satellites, compared with their
predicted trajectories, is shown in Figure 23.

Remote Sens. 2022, 14, x FOR PEER REVIEW 24 of 31

Figure 22. A frame from a sequence captured in Cluj-Napoca, before sunrise, facing East.

From this sequence, less than one hour long, the system detected 14 satellites, all rec-
ognized based on TLE orbital parameter prediction. The range, from prediction, was be-
tween 650 and 1300 km. A selection of recognized satellites, compared with their pre-
dicted trajectories, is shown in Figure 23.

Name: Starlink 1174
Orbit:
1 45075U 20006AH 21327.79005844 .00001583
00000-0 12518-3 0 9998
2 45075 53.0554 100.7171 0001279 75.9027 284.2104
15.06388666100574

Range to camera: 1252.304888 km
Cross Track Error: 0.037925 degrees
Along Track Error: 0.159946 degrees

Name: Yaogan 6
Orbit:
1 34839U 09021A 21327.91475716 .00001392
00000-0 53135-4 0 9990
2 34839 97.0625 313.3449 0025788 314.1992 45.7130
15.27950741699830

Range to camera: 671.800661 km
Cross Track Error: 0.040859 degrees
Along Track Error: 0.031365 degrees

Figure 23. Cont.

Remote Sens. 2022, 14, 1905 25 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 25 of 31

Name: KOMPSAT 5
Orbit:
1 39227U 13042A 21327.81425115 .00000619
00000-0 48557-4 0 9994
2 39227 97.6253 151.0954 0001323 77.3919 17.8880
15.04513878453362

Range to camera: 827.567065
Cross Track Error: 0.010463 degrees
Along Track Error: 0.523050 degrees

Name: CZ-2C R/B
Orbit:
1 28480U 04046B 21327.86352858 .00000030
00000-0 25762-4 0 9995
2 28480 98.0527 327.0236 0142998 111.2601 298.5848
14.25770260885147

Range to camera: 1248.976540 km
Cross Track Error: 0.010546 degrees
Along Track Error: 0.050030 degrees

Figure 23. Selection of detected satellites (East sequence). In the left column we can see the trajectory
comparison between the prediction (marked with X) and the measurement (marked with O), and in
the right column we see the satellite name, the orbital parameters, and the errors.

A summary of the sequence, including the errors, is shown in Table 2.
From analysis of the errors, we observed that the cross-track errors were lower than

the along-track errors: the average absolute error was equivalent to around 1 pixel, and
the median cross-track error was nearly half a pixel, which means that the system is lim-
ited by the camera resolution and lens focal length and does not add errors through pro-
cessing. The median errors were lower because they excluded the outliers that appeared
when the satellite was first and last seen, and the streak was not completely included in
the image.

The along-track error, for both sequences, was much higher. This is the error of lo-
cating the satellite along its trajectory at a specific moment in time, and therefore it is
mostly caused by imperfections in the synchronization system. Due to the fact that the
acquisitions were performed from balconies, the GPS did not have perfect reception, and
the time synchronization was less than perfect.

3.3. Testing the Processing System with Precisely Timed Telescope Images
The software system can also act as an automatic processing tool for image sequences

acquired with different instruments. We processed sequences provided by the Astronom-
ical Observatory of Cluj-Napoca, acquired from the Feleacu observation site. For observ-
ing LEOs, the setup is based on an Orion ShortTube 80 telescope, with aperture of 80 mm
and focal distance of 400 mm, mounted on a PlaneWave L600 equatorial mount, operating

Figure 23. Selection of detected satellites (East sequence). In the left column we can see the trajectory
comparison between the prediction (marked with X) and the measurement (marked with O), and in
the right column we see the satellite name, the orbital parameters, and the errors.

A summary of the sequence, including the errors, is shown in Table 2.
From analysis of the errors, we observed that the cross-track errors were lower than

the along-track errors: the average absolute error was equivalent to around 1 pixel, and the
median cross-track error was nearly half a pixel, which means that the system is limited by
the camera resolution and lens focal length and does not add errors through processing.
The median errors were lower because they excluded the outliers that appeared when the
satellite was first and last seen, and the streak was not completely included in the image.

The along-track error, for both sequences, was much higher. This is the error of
locating the satellite along its trajectory at a specific moment in time, and therefore it is
mostly caused by imperfections in the synchronization system. Due to the fact that the
acquisitions were performed from balconies, the GPS did not have perfect reception, and
the time synchronization was less than perfect.

3.3. Testing the Processing System with Precisely Timed Telescope Images

The software system can also act as an automatic processing tool for image sequences
acquired with different instruments. We processed sequences provided by the Astronomical
Observatory of Cluj-Napoca, acquired from the Feleacu observation site. For observing
LEOs, the setup is based on an Orion ShortTube 80 telescope, with aperture of 80 mm and
focal distance of 400 mm, mounted on a PlaneWave L600 equatorial mount, operating in
star tracking mode. The images were acquired with an astronomical CCD camera operating
in binning mode, the resulting FITS image size being 768 × 512 pixels. The field of view

Remote Sens. 2022, 14, 1905 26 of 31

was 1.98 × 1.32 degrees, and the pixel angular size was 9.28 arcseconds. The time was
precisely synchronized using a GNSS-based Synoptes device (https://www.spacetech.ro/
en/synoptes/, last accessed on 11 April 2022).

All of the processing algorithms, from detection to .tdm file generation, were the
same as for the wide-field instrument. There was no change in algorithm, not even in the
algorithm settings (thresholds, etc.), with the sole exception of the range of the angular
pixel size, which instead of 85 to 95 became much smaller, 8 to 10. A custom function for
reading the FITS files and the metadata including the location and timestamp was added
to the software tool.

A frame from a sequence acquired with the previously described setup is shown in
Figure 24.

Remote Sens. 2022, 14, x FOR PEER REVIEW 26 of 31

in star tracking mode. The images were acquired with an astronomical CCD camera op-
erating in binning mode, the resulting FITS image size being 768 × 512 pixels. The field of
view was 1.98 × 1.32 degrees, and the pixel angular size was 9.28 arcseconds. The time
was precisely synchronized using a GNSS-based Synoptes device
(https://www.spacetech.ro/en/synoptes/, last accessed on 11 April 2022).

All of the processing algorithms, from detection to .tdm file generation, were the
same as for the wide-field instrument. There was no change in algorithm, not even in the
algorithm settings (thresholds, etc.), with the sole exception of the range of the angular
pixel size, which instead of 85 to 95 became much smaller, 8 to 10. A custom function for
reading the FITS files and the metadata including the location and timestamp was added
to the software tool.

A frame from a sequence acquired with the previously described setup is shown in
Figure 24.

Figure 24. An LEO photographed through the Orion ShortTube 80 telescope.

The ground truth was generated using the astrometrical reduction tool Astrometrica
[29]. The accuracy comparison was based not on trajectory, but on the corresponding an-
gular coordinates. The error statistics are shown in Table 3.

Table 3. Error statistics for the telescope sequence.

Duration 19:08:58–20:07:10
Date 15 September 2021
Mean RA Error (arcsec) 12.8055
Mean RA Error (pixels) 1.3799
Median RA Error (arcsec) 8.5610
Median RA Error (pixels) 0.9225
Mean DEC Error (arcsec) 9.1181
Mean DEC Error (pixels) 0.9825
Median DEC Error (arcsec) 6.1644
Median DEC Error (pixels) 0.6642
Number of detected objects 10

A selection of two trajectories, for the same satellite but different passes, is shown in
Figure 25. We can see that the ground truth and the measured (by our system) position
agree well, most errors being at the ends of the trajectories, where the streak is not com-
pletely included in the image.

Figure 24. An LEO photographed through the Orion ShortTube 80 telescope.

The ground truth was generated using the astrometrical reduction tool Astromet-
rica [29]. The accuracy comparison was based not on trajectory, but on the corresponding
angular coordinates. The error statistics are shown in Table 3.

Table 3. Error statistics for the telescope sequence.

Duration 19:08:58–20:07:10

Date 15 September 2021

Mean RA Error (arcsec) 12.8055

Mean RA Error (pixels) 1.3799

Median RA Error (arcsec) 8.5610

Median RA Error (pixels) 0.9225

Mean DEC Error (arcsec) 9.1181

Mean DEC Error (pixels) 0.9825

Median DEC Error (arcsec) 6.1644

Median DEC Error (pixels) 0.6642

Number of detected objects 10

A selection of two trajectories, for the same satellite but different passes, is shown in
Figure 25. We can see that the ground truth and the measured (by our system) position agree
well, most errors being at the ends of the trajectories, where the streak is not completely
included in the image.

https://www.spacetech.ro/en/synoptes/
https://www.spacetech.ro/en/synoptes/

Remote Sens. 2022, 14, 1905 27 of 31Remote Sens. 2022, 14, x FOR PEER REVIEW 27 of 31

Figure 25. Two passes of the Sentinel 3A satellite. The ground truth is shown in blue, and the meas-
urement in orange.

The errors for the telescope sequence were less than one pixel, for both angles. This
means that the software system is able to accurately measure the position of the target
from the image sequences, and the overall accuracy is limited mostly by the precision of
the time synchronization.

3.4. Execution Time
All of the processing steps, detection, calibration, and results generation were per-

formed on the same PC used for triggering the camera, the 13-inch 2020 MacBook Pro,
equipped with the Apple M1 processor and 16 GB of RAM. The typical execution times
for a 1.5-h sequence are:
• Image processing (detection): 5 min
• Astrometric calibration: 20 min
• Results generation: 15 min

Therefore, the system is able to provide the .tdm results in about 40 min from the
completion of the acquisition.

4. Discussion
The errors resulting from testing in a real environment of our portable SST system

“SST Anywhere” are in the range of a few pixels in both along-track and cross-track di-
rections. The cross-track error median values were around 1 pixel, which was as expected.
Larger values were obtained for along-track errors, which are due to synchronization er-
rors (lack of GPS signal). These synchronization errors also manifested in the cross-track
errors, but their effects were less obvious than the effects for along-track errors.

The total number of objects detected and validated in the two experimental testing
runs are in line with the expected detections corresponding to the aperture, FOV of our
system, and the specific urban sky background conditions.

When we tested only the processing system using precisely timed telescope satellite
image sequences in the astronomical observatory environment, the median errors in both
RA and DEC were below 1 pixel compared with the standard processing system “Astro-
metrica”. Some differences in the residuals remained. Fine-tuning and analysis of the as-
tronomical corrections considered/omitted in the compared processing software are fur-
ther needed.

The total processing time for a typical 1.5-h observation sequence, obtained with our
portable SST system, is about 40 min. This value is less than half of the rotation period or
when applicable, the interval between two consecutive transits of the same LEO object.

Figure 25. Two passes of the Sentinel 3A satellite. The ground truth is shown in blue, and the
measurement in orange.

The errors for the telescope sequence were less than one pixel, for both angles. This
means that the software system is able to accurately measure the position of the target from
the image sequences, and the overall accuracy is limited mostly by the precision of the
time synchronization.

3.4. Execution Time

All of the processing steps, detection, calibration, and results generation were per-
formed on the same PC used for triggering the camera, the 13-inch 2020 MacBook Pro,
equipped with the Apple M1 processor and 16 GB of RAM. The typical execution times for
a 1.5-h sequence are:

• Image processing (detection): 5 min
• Astrometric calibration: 20 min
• Results generation: 15 min

Therefore, the system is able to provide the .tdm results in about 40 min from the
completion of the acquisition.

4. Discussion

The errors resulting from testing in a real environment of our portable SST system “SST
Anywhere” are in the range of a few pixels in both along-track and cross-track directions.
The cross-track error median values were around 1 pixel, which was as expected. Larger
values were obtained for along-track errors, which are due to synchronization errors (lack
of GPS signal). These synchronization errors also manifested in the cross-track errors, but
their effects were less obvious than the effects for along-track errors.

The total number of objects detected and validated in the two experimental testing
runs are in line with the expected detections corresponding to the aperture, FOV of our
system, and the specific urban sky background conditions.

When we tested only the processing system using precisely timed telescope satellite
image sequences in the astronomical observatory environment, the median errors in both
RA and DEC were below 1 pixel compared with the standard processing system “Astro-
metrica”. Some differences in the residuals remained. Fine-tuning and analysis of the
astronomical corrections considered/omitted in the compared processing software are
further needed.

The total processing time for a typical 1.5-h observation sequence, obtained with our
portable SST system, is about 40 min. This value is less than half of the rotation period
or when applicable, the interval between two consecutive transits of the same LEO object.

Remote Sens. 2022, 14, 1905 28 of 31

This observation is important if we want to use our portable system for refinement of an
Initial Orbit Determination for an object or to further incorporate our system in a “Stare
and Chase” architecture.

A comparison of our system with a similar large FOV system for SST mentioned in
Section 1.1 is provided in Table 4.

Table 4. Comparison of the main characteristics of similar LEO optical surveillance sensors.

Reference Hasenohr [14] Wijnen et al. [17] Kerr et al. [20] Boër et al. [13] Present Work

Name &
Location

DLR,
Uhlandshöhe,

Stuttgart,
Germany

bRing,
Sunderland,
South Africa

LCLEOSEN,
Deimos Sky

Survey, Spain

TAROT-TRE,
Reunion Island,

France

SST Anywhere,
Cluj-Napoca,

Romania

latitude deg 48.7824 N 32.3812 S 38.54362 24.1833 S 46.75804 N

longitude deg 9.1964 E 20.8102 E 4.40844 W 55.4166 E 23.58809 E

Elevation m 399 1798 1065 1000 410

Working mode Surveillance Surveillance Surveillance Tracking Surveillance

Telescope/lens Canon EF 135
mm f/2 L USM

Canon 24 mm
f/1.4 USML II

Canon 85 mm
f/1.4

Takahashi/CNRS
Newton

hyperbolic

Sigma EX DG
RF 20 mm F1.8

Aperture mm 67.5 17 60.7 180 11.11

Focal length mm 135 24 85 576 20

Optoelectronic
sensor

CCD (FLI Proline
PL16803)

CCD (FLI
Microline 11002

CMOS (FLI
Kepler KL4040)

CCD (FLI Proline
PL16803)

CMOS (Canon
24.2 MP APS-C

CMOS)

Max. Quantum
Efficiency % 60 50 68 50 43

HxV
dimensions pixels 4096 × 4096 4008 × 2672 2048 × 2048 4096 × 4096 2400 × 1600

Pixel
dimension
(including
binning)

microns 9 × 9 9 × 9 18 × 18 9 × 9 9.37 × 9.37

Resolution/pixel arcsec 13.75 66.5 44.8 3.22 92.0

Field of View
(H× V) deg × deg 15.27 × 15.27 74 × 53 25.4 × 25.4 3.66 × 3.66 61.3 × 40.9

Exposure time s 1 6.4 0.1 10 5

Measurement
rate s 13 12.8 3 15 10

Limiting
Magnitude

(Texp)
mag No information

available 10 (6.4) 9 (0.1 sec) 16 (60 sec) 10.5 (5 sec)

Along track
error arcsec 874 *recapture >66.5 2 0.8 414 (TLE)

Cross track
error arcsec 692 *recapture >66.5 2 0.8 101 (TLE)

Mount type &
speed No No No Equatorial;

60 deg/s No

Dome/enclosure Clamshell dome Custom Fixed
enclosure

Clamshell
dome

Custom
automatic
enclosure

No

Remote Sens. 2022, 14, 1905 29 of 31

Table 4. Cont.

Time synchro-
nization

Microcontroller
+ GPS

Galleon
NTS-4000-GPS-R

Server

Chronostamper
+ GPS

Symmetricon
GPS timer board

[30]

Microcontroller
+ GPS

Image files FITS FITS FITS FITS JPG, RAW, FITS

Processing
time min 0.12 (recapture) No information

available
162 (for 3-h

observations)
No information

available
40 (for 1.5-h

observations)

Estimated
Costs (without
enclosure and

processing)

Euros 16,100 18,100 16,700 33,300 1700

Observations Prototype for
5–9 multisensors

Part of a
multisensor
2–5 elements

Prototype for
28 multisensors

Part of a network
of four telescopes

Two identical
systems were

realized

We included in the comparison four LEO optical surveillance systems (LEOOS) and
one of the “classical” LEO optical tracking systems: TAROT. LEOOS have the advantage of
a larger FOV and do not require a mount, but are less sensitive and precise compared with
TAROT or other comparable LEO optical tracking systems.

Our system is in line with the other three LEOOS regarding the optics: it uses a COTS
photographical objective but a DSLR camera body instead of CCD/CMOS astronomical
cameras used in the other three LEOOS. This option for our system has some advantages
in terms of portability, pixel dimension, image file formats, and most notably, the estimated
costs. At the same time, the use of the APS-C CMOS sensor comes with disadvantages
regarding the sensor area and quantum efficiency. However, the resulting FOV is the
second largest in the analyzed LEOOS.

The ultimate comparison characteristics between LEOOS should be the along-track
and cross-track errors. These errors are influenced by the sensor performances, algorithms
for LEO object detection, astrometric reduction, and the precision of orbital elements for
LEO objects used for calculation of reference orbits. As a result, a suitable comparison
between LEOOS is difficult to make. The error estimations for our system are comparable
with [14], presenting a similar disparity between ATE and CTE.

The estimated costs for all analyzed systems were made taking into account the optics,
the optoelectronic sensor/camera, and time synchronization devices with actual prices,
excluding processing hardware and software and auxiliary costs for automatization, which
are difficult to establish and compare. From this perspective, our system is the cheapest.

All of the analyzed systems are either a prototype or part of a multisensor or network
array. Site astronomical conditions play an important role, as well as geographical dis-
tribution in the network cases. Our sensor was tested in a less than ideal astronomical
environment, and part of the poorer performance was due to the poor visibility conditions.

5. Conclusions

We have presented a complete and portable system for image acquisition, image
processing, and astrometric reduction, which can be easily set up anywhere to survey a
large portion of the sky for low-Earth orbit objects. While not quite real time, the system is
able to produce angular results in less than one hour after the sequence is acquired, and the
accuracy is limited only by the resolution of the image sensor and the precision of the time
synchronization. The system can also be used to automatically process sequences acquired
from other sources, in .jpg or .fits format, with wide or narrow fields of view.

There are two problems that need to be addressed in future work: one is the problem
of false tracklets generated by passing planes, which can be solved by further analysis of
the intensity profile of the streak and of its neighboring pixels (the planes have position
lights that cause flashes as they move), and the other is the introduction of a real-time

Remote Sens. 2022, 14, 1905 30 of 31

operation mode. The main challenge of real-time operation is the lack of multiple images
for calibration, which will cause the loss of accuracy of the results, and some kind of
iterative refinement of the results will need to be carried out as the data become available.
However, a real-time operation in the wide field, even with diminished precision, can be
used to automatically target a narrow-field instrument, which can greatly improve the
accuracy of the final results.

Author Contributions: Conceptualization, R.G.D.; methodology, R.G.D. and R.I.; software, R.G.D.,
R.I. and M.P.M.; validation, R.G.D., A.R. and V.T.; writing—original draft preparation, R.G.D.;
writing—review and editing, A.R. and V.T.; project administration, R.G.D. All authors have read and
agreed to the published version of the manuscript.

Funding: The research was supported by a grant from the Ministry of Research and Innovation,
CNCS–UEFISCDI, project number PN-III-P2-2.1-PED-2019-4819, within PNCDI III, and also by a
grant from the Ministry of Research, Innovation and Digitization, CNCS/CCDI–UEFISCDI, project
number PN-III-P2-2.1-SOL-2021-2-0192, within PNCDI III.

Data Availability Statement: The complete sequences used for the statistics in Tables 1 and 2,
including the original image files, the result TDM files, and the satellite matching reports, can
be downloaded from https://drive.google.com/drive/folders/1bNtM00Qx3tclZYBBZSAt50B7Hz9
XRGPq?usp=sharing (last accessed on 11 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. European Space Agency. Space Safety. Available online: https://www.esa.int/Our_Activities/Space_Safety/Space_Surveillance_

and_Tracking_-_SST_Segment (accessed on 9 February 2022).
2. Stoveken, E.; Schildknecht, T. Algorithms for the optical detection of space debris objects. In Proceedings of the 4th European

Conference on Space Debris, Darmstadt, Germany, 18–20 April 2005; pp. 637–640.
3. Maksim, S. A comparison between a non-linear, poisson-based statistical detector and a linear, gaussian statistical detector for

detecting dim satellites. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Maui,
HI, USA, 11–14 September 2012; p. 44.

4. Sara, R.; Cvrcek, V. Faint streak detection with certificate by adaptive multi-level bayesian inference. In Proceedings of the
European Conference on Space Debris, Darmstadt, Germany, 17–21 April 2017.

5. Levesque, M.P.; Buteau, S. Image Processing Technique for Automatic Detection of Satellite Streaks; Technical Report; Defence Research
and Development: Valcartier, QC, Canada, 2007.

6. Diprima, F.; Santoni, F.; Piergentili, F.; Fortunato, V.; Abbattista, C.; Amoruso, L. Efficient and automatic image reduction
framework for space debris detection based on gpu technology. Acta Astronaut. 2018, 145, 332–341. [CrossRef]

7. Ciurte, A.; Danescu, R. Automatic detection of MEO satellite streaks from single long exposure astronomic images. In Proceedings
of the International Conference on Computer Vision Theory and Applications (VISAPP), Lisbon, Portugal, 5–8 January 2014.

8. Hickson, P. A fast algorithm for the detection of faint orbital debris tracks in optical images. Adv. Space Res. 2018, 62, 3078–3085.
[CrossRef]

9. Danescu, R.; Oniga, F.; Turcu, V.; Cristea, O. Long baseline stereo-vision for automatic detection and ranging of moving objects in
the night sky. Sensors 2012, 12, 12940–12963. [CrossRef] [PubMed]

10. Do, H.N.; Chin, T.J.; Moretti, N.; Jah, M.K.; Tetlow, M. Robust foreground segmentation and image registration for optical
detection of geo objects. Adv. Space Res. 2019, 64, 733–746. [CrossRef]

11. Martin, L. Space Fence. Available online: https://www.lockheedmartin.com/en-us/products/space-fence.html (accessed on
15 February 2022).

12. Park, J.H.; Yim, H.S.; Choi, Y.J.; Jo, J.H.; Moon, H.K.; Park, Y.S.; Roh, D.G.; Cho, S.; Choi, E.J.; Kim, M.J.; et al. OWL-Net: Global
Network of Robotic Telescopes for Satellites Observation. Adv. Space Res. 2018, 62, 152–163. [CrossRef]

13. Boër, M.; Klotz, A.; Laugier, R.; Richard, P.; Dolado Perez, J.-C.; Lapasset, L.; Verzeni, A.; Théron, S.; Coward, D.; Kennewell, J.A.
TAROT: A network for Space Surveillance and Tracking operations. In Proceedings of the 7th European Conference on Space
Debris, Darmstadt, Germany, 17–21 April 2017.

14. Hasenohr, T. Initial Detection and Tracking of Objects in Low Earth Orbit. Available online: https://elib.dlr.de/110661/1/Initial%
20Detection%20and%20Tracking%20of%20Objects%20in%20Low%20Earth%20Orbit.pdf (accessed on 9 February 2022).

15. Kaminski, K.; Zołnowski, M.; Wnuk, E.; Golebiewska, J.; Kruzynski, M.; Kaminska, M.K.; Gedek, M. Low Leo Optical Tracking
Observations With Small Telescopes. In Proceedings of the 1st NEO and Debris Detection Conference, Darmstadt, Germany,
22–24 January 2019.

16. Aume, C.; Andrews, K.; Pal, S.; James, A.; Seth, A.; Mukhopadhyay, S. TrackInk: An IoT-Enabled Real-Time Object Tracking
System in Space. Sensors 2022, 22, 608. [CrossRef] [PubMed]

https://drive.google.com/drive/folders/1bNtM00Qx3tclZYBBZSAt50B7Hz9XRGPq?usp=sharing
https://drive.google.com/drive/folders/1bNtM00Qx3tclZYBBZSAt50B7Hz9XRGPq?usp=sharing
https://www.esa.int/Our_Activities/Space_Safety/Space_Surveillance_and_Tracking_-_SST_Segment
https://www.esa.int/Our_Activities/Space_Safety/Space_Surveillance_and_Tracking_-_SST_Segment
http://doi.org/10.1016/j.actaastro.2018.02.009
http://doi.org/10.1016/j.asr.2018.08.039
http://doi.org/10.3390/s121012940
http://www.ncbi.nlm.nih.gov/pubmed/23201979
http://doi.org/10.1016/j.asr.2019.03.008
https://www.lockheedmartin.com/en-us/products/space-fence.html
http://doi.org/10.1016/j.asr.2018.04.008
https://elib.dlr.de/110661/1/Initial%20Detection%20and%20Tracking%20of%20Objects%20in%20Low%20Earth%20Orbit.pdf
https://elib.dlr.de/110661/1/Initial%20Detection%20and%20Tracking%20of%20Objects%20in%20Low%20Earth%20Orbit.pdf
http://doi.org/10.3390/s22020608
http://www.ncbi.nlm.nih.gov/pubmed/35062565

Remote Sens. 2022, 14, 1905 31 of 31

17. Wijnen, T.P.G.; Stuik, R.; Redenhuis, M.; Langbroek, M.; Wijnja, P. Using All-Sky optical observations for automated orbit
determination and prediction for satellites in Low Earth Orbit. In Proceedings of the 1st NEO and Debris Detection Conference,
Darmstadt, Germany, 22–24 January 2019.

18. Talens, G.J.J.; Spronck, J.F.P.; Lesage, A.-L.; Otten, G.P.P.L.; Stuik, R.; Pollacco, D.; Snellen, I.A.G. The Multi-site Al-Sky CAmeRA
(MASCARA). Finding transiting exoplanets around bright (mV <8) stars. Astron. Astrophys. 2017, 601, A11.

19. Stuik, R.; Bailey, J.I., III; Dorval, P.; Talens, G.J.J.; Laginja, I.; Mellon, S.N.; Lomberg, B.B.D.; Crawford, S.M.; Ireland, M.J.;
Mamajek, E.E.; et al. bRing: An observatory dedicated to monitoring the β Pictoris b Hill sphere transit. Astron. Astrophys. 2017,
607, A45. [CrossRef]

20. Kerr, E.; López, B.D.C.; Maric, N.; Torres, J.N.; Falco, G.; Sánchez Ortiz, N.; Dorn, C.; Eves, S. Design and prototyping of a
low-cost LEO optical surveillance sensor. In Proceedings of the 8th European Conference on Space Debris, Darmstadt, Germany,
20–23 April 2021.

21. López, B.D.C.; Kerr, E.; Torres, J.N.; Dorn, C.; Eves, S. Developing and Testing of aNovel Low-Cpsost LEO Optical Surveillance
Sensor. In Proceedings of the Advanced Maui Optical and Surveillance Technologies Conference (AMOS), Maui, HI, USA,
14–17 September 2021.

22. Utzmann, J.; Dimitrova Vesselinova, M.G.; Fernandez, O.R. Airbus Robotic Telescope. In Proceedings of the 1st NEO and Debris
Detection Conference, Darmstadt, Germany, 22–24 January 2019.

23. Lang, D.; Hogg, D.W.; Mierle, K.; Blanton, M.; Roweis, S. Astrometry.net: Blind astrometric calibration of arbitrary astronomical
images. Astron. J. 2010, 139, 1782–1800. [CrossRef]

24. Roweis, S.; Lang, D.; Mierle, D.; Hogg, D.; Blanton, M. Making the Sky Searchable: Fast Geometric Hashing for Automated Astrom-
etry. Available online: https://cosmo.nyu.edu/hogg/research/2006/09/28/astrometry_google.pdf (accessed on 3 March 2022).

25. Høg, E.; Fabricius, C.; Makarov, V.V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. The Tycho-2
catalogue of the 2.5 million brightest stars. Astron. Astrophys. 2000, 355, L27–L30.

26. Vallado, D. Fundamentals of Astrodynamics and Applications, 4th ed.; Microcosm Press: Cleveland, OH, USA, 2013.
27. Shupe, D.L.; Moshir, M.; Li, J.; Makovoz, D.; Narron, R.; Hook, R.N. The SIP Convention for Representing Distortion in FITS

Image Headers. In Proceedings of the Astronomical Data Analysis Software and Systems XIV—ASP Conference Series, Pasadena,
CA, USA, 14–16 November 2005.

28. The Consultative Committee for Space Data Systems Tracking Data Message—RECOMMENDED STANDARD CCSDS 503.0-B-1.
Available online: https://public.ccsds.org/Pubs/503x0b1s.pdf (accessed on 9 February 2022).

29. Raab, H. Astrometrica—Shareware for Research Grade CCD Astrometry. Available online: http://www.astrometrica.at/
(accessed on 9 February 2022).

30. Klotz, A.; Boër, M.; Eysseric, J.; Damerdji, Y.; Laas-Bourez, M.; Pollas, C.; Vachier, F. Robotic Observations of the Sky with TAROT:
2004–2007. Publ. Astron. Soc. Pac. 2008, 120, 1298–1306. [CrossRef]

http://doi.org/10.1051/0004-6361/201731679
http://doi.org/10.1088/0004-6256/139/5/1782
https://cosmo.nyu.edu/hogg/research/2006/09/28/astrometry_google.pdf
https://public.ccsds.org/Pubs/503x0b1s.pdf
http://www.astrometrica.at/
http://doi.org/10.1086/596022

	Introduction
	Related Work
	Summary of the Contributions

	Materials and Methods
	The Image Acquisition and Processing System
	Hardware Architecture
	The Triggering Process
	Software Architecture

	Tracklet Detection from Image Sequences
	Extracting the Moving Features
	Classifying Moving Features into Streak Candidates
	Trajectory Analysis and Tracklet Formation

	Astrometry and Angular Results Generation
	Astrometric Calibration
	Computing the Angular Coordinates of the Tracklets

	Results
	Testing Methodology
	Testing the Portable SST System
	Testing the Processing System with Precisely Timed Telescope Images
	Execution Time

	Discussion
	Conclusions
	References

