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Abstract: Validation of satellite sea surface salinity (SSS) products is typically based on comparisons 

with in-situ measurements at a few meters’ depth, which are mostly done at a single location and 

time. The difference in term of spatio-temporal resolution between the in-situ near-surface salinity 

and the two-dimensional satellite SSS results in a sampling mismatch uncertainty. The Climate 

Change Initiative (CCI) project has merged SSS from three satellite missions. Using an optimal 

interpolation, weekly and monthly SSS and their uncertainties are estimated at a 50 km spatial 

resolution over the global ocean. Over the 2016–2018 period, the mean uncertainty on weekly CCI 

SSS is 0.13, whereas the standard deviation of weekly CCI minus in-situ Argo salinities is 0.24. Using 

SSS from a high-resolution model reanalysis, we estimate the expected uncertainty due to the CCI 

versus Argo sampling mismatch. Most of the largest spatial variability of the satellite minus Argo 

salinity is observed in regions with large estimated sampling mismatch. A quantitative validation 

is performed by considering the statistical distribution of the CCI minus Argo salinity normalized 

by the sampling and retrieval uncertainties. This quantity should follow a Gaussian distribution 

with a standard deviation of 1, if all uncertainty contributions are properly taken into account. We 

find that (1) the observed differences between Argo and CCI data in dynamical regions (river 

plumes, fronts) are mainly due to the sampling mismatch; (2) overall, the uncertainties are well 

estimated in CCI version 3, much improved compared to CCI version 2. There are a few dynamical 

regions where discrepancies remain and where the satellite SSS, their associated uncertainties and 

the sampling mismatch estimates should be further validated. 

Keywords: sea surface salinity; sampling mismatch; sub footprint variability; uncertainty; 

validation 

 

1. Introduction 

Knowledge of salinity is crucial for understanding the thermohaline circulation of 

the ocean as salinity makes a large contribution to water density. As an advected property, 

it is an interesting tracer of oceanic phenomena. Salinity also conditions the stratification 

of the surface layer and thus influences the ability of the ocean surface to mix [1]. Salinity 

is a key indicator for monitoring the water cycle as it integrates the freshwater input to 

the ocean, through interactions with the atmosphere (precipitation and evaporation), with 

the continents (river discharges) or with ice [2]. 
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Sea Surface Salinity (SSS) has been measured by satellite for more than 12 years, 

thanks to three satellite missions: the Soil Moisture and Ocean Salinity (SMOS), the first 

SSS observing satellite mission launched in 2009 and still operating today; the Aquarius 

mission, which operated from 2011 to 2015; and the Soil Moisture Active Passive (SMAP) 

mission launched in 2015 and still operating today. These three satellite missions measure 

brightness temperature at 1.4 GHz, allowing for the retrieval of SSS, with unprecedented 

spatio-temporal coverage (see reviews in [3,4]). Although they operate in the same 

frequency band, they have their own characteristics in terms of spatial resolution: the 

spatial resolution of SMOS and SMAP-retrieved SSS (~40 to 50 km) is about a factor 2 to 3 

higher than that of the Aquarius SSS (see more details in [3]). 

The recent ESA Climate Change Initiative project (CCI+SSS) combines measurements 

of these three satellite missions, resulting in a decrease of the differences between satellite 

salinity fields and Argo float surface salinities (standard deviation (robust standard 

deviation) of the monthly CCI SSS minus the Argo float surface salinities over the whole 

period equal to 0.27 (0.16) globally) [5,6]. However, the interpretation of such comparisons 

in terms of satellite field uncertainties is tricky as it involves not only uncertainties in 

satellite estimates but also uncertainties in in-situ estimates and sampling mismatches [7]. 

In this paper, we focus on better understanding these differences by estimating the 

contribution of the sampling mismatch between in-situ salinity and the CCI+SSS fields as 

produced with the last CCI+SSS version (version 3). 

Satellite SSS is typically compared to in-situ measurements for validation. The in-situ 

data used are of several types: either at fixed point (moorings) or from moving platforms 

(ships; floats). A major problem with these comparisons is the difference in sampling 

between satellite and in-situ datasets [8]: satellite data are integrated over a surface, of 

nearly 50 km in diameter for the CCI products, and are either for a single time or over a 

weekly or monthly period, in the case a temporal optimal interpolation is applied, as is 

done for the CCI fields. In-situ data are generally at a single point in space and time, as is 

the case for ships, Argo floats and mooring measurements. Moreover, satellite salinity 

represents the upper 1 cm depth, whereas in situ salinity is mostly measured at a few 

meters’ depth. 

This difference in sampling necessarily implies a different sensitivity of both types of 

measurements to small-scale variability and distorts the uncertainty estimate of the 

satellite data if the in-situ data is used as a reference without taking into account the 

uncertainty due to the sampling mismatch. This issue is particularly important in regions 

of high SSS variability such as river plumes (e.g., Amazon plume), meanders of large 

currents (e.g., Gulf Stream) or rainy regions, as illustrated on Figure 1. The variability of 

salinity is of three kinds: spatial, temporal and vertical [8]. We mainly focus on spatial and 

temporal variability in this paper. 
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Figure 1. Examples of SSS measured in three regions, in February 2016. Top: ARGO floats, Middle: 

CCI, Bottom: GLORYS Reanalysis; Column 1: West African coast; Column 2: Gulf Stream; and 

Column 3: Amazon plume. 

Thus, to get a valid estimate of the uncertainties of satellite products obtained by 

comparison with in-situ data, it is important to complement the satellite SSS uncertainty 

with the uncertainty due to the sampling mismatch [7]. In case of satellite salinities, 

Vinogradova et al. [9] found that, in several ocean regions, including the tropics and 

western boundary current regions, small-scale variability, simulated with a 1/12° HYCOM 

model, is an important source of sampling mismatch in comparisons between 1° 

(~Aquarius footprint) satellite SSS and in situ salinities. More recent studies (see [10]) used 

in situ measurements and high-resolution models (1/48°) to estimate the sub-footprint 

variability (SFV) at level 2 and simulate spatial integration for Aquarius at footprint size 

of 100 km and for SMAP at 40 km. Strong dependencies of SFV on region, season and 

footprint size have been found. SFV is particularly high in rainy regions [11], along the 

continental shelves where strong river outflow is present [12], and near frontal zones such 

as the western boundary currents [13]. The variabilities obtained range from less than 0.1 

to 1 pss. To simulate expected RMS between satellite and Argo salinities, Bingham et al. 

[13] derives Representation Errors (RE) between a footprint integrated satellite SSS and a 

local SSS using one year of high-resolution simulations; Bingham et al. [13] reports that 

the distribution of RE for a 40 km footprint peaks at 0.06 pss, with typical values of 0.01–

0.15 pss but also some high values reaching 0.4 pss or even larger (see Figure 9b in [13]). 

The objective of this paper is, for the first time, to demonstrate the applicability of 

using uncertainties related to sampling mismatch, to validate satellite SSS and its 

uncertainties. Indeed, until now, the uncertainty related to sampling mismatch has been 

neglected in satellite SSS validations, and the satellite SSS uncertainties provided by 

satellite retrieval systems are very rarely evaluated. This demonstration study is used to 

interpret the differences observed between the weekly (monthly) satellite CCI+SSS fields 

and Argo salinities, given the uncertainties attributed to the CCI+SSS fields and the 

sampling mismatches between both types of measurements. We will then focus on 
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validating the CCI+SSS and associated uncertainties. The sampling mismatch uncertainty 

is estimated using SSS simulated with a 1/12° resolution model, and small-scale variability 

not resolved by the model will be estimated following a spectral method similar to that 

proposed by [12]. We conduct our study using three years (2016–2018) of SSS simulation 

contemporary to CCI+SSS fields. We consider both the spatial variability within a satellite 

footprint and the temporal variability within one week (month). 

We report results obtained with the weekly products in the main paper; results 

obtained with the monthly products are reported in the supplementary material. A similar 

study was conducted on CCI v2 in order to compare the two versions, and the results 

obtained with CCI v2 are also in supplementary materials. 

The datasets and methods are described in Section 2. Results are presented in Section 

3, followed by a discussion (Section 4) and conclusions (Section 5). 

2. Materials and Methods 

2.1. Materials 

The study is performed from 2016 to 2018, a period during which SMOS and SMAP 

data are available, and focuses on the interpretation of the comparisons between CCI+SSS 

and Argo salinities. We use three data sources: 

- Satellite product: CCI v3.2. 

We use version 3.2 of the SSS products generated in the framework of the ESA CCI 

project [14]. They have been generated following a methodology very similar to the one 

described in [5] with main modifications described in [15,16]. They are summarized 

below. 

These Level 4 (L4) SSS products are derived using a temporal optimal interpolation 

of SSS retrieved from the three L-band radiometric satellite missions launched since 2010: 

SMOS (2010–present), SMAP (2015–present), and Aquarius (2012–2015). The SSS fields 

span a period from 2010 to 2020 and are available on a 25 km Equal-Area Scalable Earth 

(EASE 2) Grid [17] and at weekly and monthly temporal resolutions. During the period 

studied here (2016–2018), both SMOS and SMAP data are available. 

The CCI v3.2 SSS fields have been generated following an optimal interpolation 

similar to CCI v2 [5]. Compared to the CCI v2 processing, the CCI v3 processing has been 

updated to improve the long-term stability of the SMOS SSS entering in the CCI L4 

optimal interpolation and to improve the L4 SSS uncertainty estimates. In particular: 

- Instead of using SMOS SSS produced by the Centre Aval de Traitement des Données 

SMOS (CATDS) operational chain, the SMOS SSS were reprocessed with a modified 

ESA v662 processor [15]. 

- Instead of using European Center for Medium Weather Forecast (ECMWF) 

Integrated Forecast System (IFS) fields as auxiliary parameters, the processing used 

ECMWF ERA5 fields. 

- The SMOS vicarious calibration, the so-called Ocean Target Transformation, is 

estimated using in situ interpolated SSS fields produced by the In Situ Analysis 

System (ISAS) [18] instead of using a salinity climatology. 

- The dielectric constant model is updated as proposed by [5]. 

- The SMOS SSS affected by instantaneous rain rate are adjusted for RR up to 10 mm 

h−1 [19] and are sorted out in case of stronger RR. SMAP SSS retrieved with RR larger 

than 0.5 mm h−1 are filtered out. Therefore, in rainy regions the CCI v3 fields are close 

to bulk salinities. 

- In the CCI v3 L4 optimal interpolation, a full least square propagation of the errors is 

implemented, instead of a simplified propagation. 

- Representativity uncertainties between the swath measurements of the SMOS and 

SMAP level 2 SSS and that of the L4 estimated SSS (weekly or monthly fields), 

corresponding to the temporal variability of the SSS at the SMOS and SMAP 

resolution (~50 km), within one week or one month, are taken into account as 
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described in [5] and in its supplementary information (S3). The equations are the 

same for CCI version 2 and version 3, but the numerical implementation differs: a 

full error propagation scheme has been implemented in version 3. 

The original footprint sizes of level 2 SMOS and SMAP SSS entering in the CCI v3.2 

processing are slightly less than 50 km (close to 45 km for SMOS (depending on the across 

swath location) and to 43 km for SMAP). SMOS original SSS are provided on an 

icosahedral Snyder equal area (ISEA) grid at 12 km resolution. SMAP original SSS are on 

a regular 0.25° grid. In a first CCI+SSS processing step, SMOS and SMAP SSS are 

reprojected on the 25 km EASE 2 grid using nearest neighbors method. In the later stages 

of the CCI+SSS processing, no spatial smoothing is applied, with each grid point being 

treated independently. Based on that, we consider in the following that each grid point is 

representative of SSS obtained with a simple average within 50 km grid cell. In order not 

to add too much complexity to the processing and the computing time, we consider that 

the weekly and monthly temporal OI is equivalent to a simple average of SSS over one 

week and one month. 

- In-situ products: Argo floats 

The Argo [20] project is a set of ~3000 floats moving in the upper 2000 m of the global 

ocean. These floats give access to about 100,000 measurements of salinity and temperature 

per year with a global coverage, and an average spacing of 3° between measurements. 

These data are collected and made freely available by the international Argo project and 

the national programs that contribute to it. 

We use the collocations provided by the SMOS Pilot-Mission Exploitation Platform 

(Pi-MEP) [21] between the CCI fields and Argo floats. The colocation methodology will 

be described in Section 2.2. 

The Pi-MEP collocations are made from Argo data with a quality index of 1 or 2. Argo 

upper measurements between 10 m depth and 0 m depth are considered as surface data 

and are used as a comparison to satellite data. Most of the Argo data resulting from this 

selection are taken at a depth of about 5 m. More details about this method are available 

in the Pi-MEP reports. 

- Mercator GLORYS reanalysis 

We use the daily high-resolution (1/12°) Mercator GLORYS reanalyzed SSS. We 

consider that it resolves variability above the Nyquist wavelength (1/6°). These SSS 

simulated fields have a slightly reduced spatial resolution compared to studies [12,13] to 

allow global ocean coverage, while keeping the small scales that contribute much to SSS 

variability in a satellite pixel [22]. 

The GLORYS12V1 product is a CMEMS global ocean eddy-resolving (50 vertical 

levels) reanalysis. These data are available from 1993 to today. These reanalyses are based 

on the NEMO ocean model, forced, at the surface by ECMWF ERA5 data, and by 

climatological runoffs. Satellite sea level anomalies, SST, sea ice concentration, in-situ 

temperature and salinity vertical profiles (but not satellite SSS) are assimilated using a 

reduced-order Kalman filter derived from a singular evolutive extended Kalman (SEEK) 

filter with a three-dimensional multivariate background error covariance matrix and a 7 

day assimilation cycle [23]. 

Data are available at daily temporal resolution, and on a regular 1/12° grid, for 50 

levels, starting from the sea surface with levels at 0.5 m, 1.5 m, 2.6 m, 3.8 m and 5 m. We 

use the level at 5 m depth as a proxy for Argo upper salinity. See [24] for a complete 

description of the model. 

An example of the estimation of GLORYS SSS variability within satellite grid cells 

(the calculation method is described in Section 2.2) is shown on Figure 2. This map shows 

the standard deviation of the GLORYS salinities accumulated in boxes of 50 km × 50 km 

and during a 7-day period, corresponding to the spatiotemporal resolution of the weekly 

CCI data for the day of 15 February 2017. This estimation has been computed for every 

day over the entire period from 2016 to the end of 2018. As described in the methods 
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section, this represents the variability of salinity at 5 m depth. The same maps were 

generated with surface salinities for a better understanding of the vertical variability of 

near-surface salinity (see discussion below). As expected from previous studies [12,25], 

high standard deviation values are observed in areas of high natural variability, such as 

river plumes (e.g., Amazon, Congo) and regions with strong salinity gradients (e.g., Gulf 

Stream). The 30-day variability is similar to the 7-day variability with stronger values (the 

map is available in the Supplementary Materials). 

 

Figure 2. Standard deviation of GLORYS data within one week and 50 × 50 km2 surface (Umis_glo) at 

5 m depth for the 15 February 2017. Orange (purple) boxes correspond to the low (high) variability 

regions that are selected for our tests (see regions definition in Table 1). 

Table 1. Definition of regions shown on Figure 2. 

Region Latitude (°) Longitude (°) Very Variable Area 

Gulf Stream 30.52 57.64 −74.83 −29.70 X 

Amazon plume −3.43 14.37 −59.27 −34.89 X 

Agulhas return current −54.84 −31.43 5.84 91.43 X 

South Pacific Ocean −60.27 −40.10 −172.35 −81.57  

2.2. Methods 

- Uncertainties balance 

We follow the methodology proposed by [7] to validate the uncertainties of the 

satellite products, by considering the total uncertainty composed of three terms: 

U��� is the uncertainty of each satellite estimate. 

U��� is the uncertainty due to sampling mismatch between satellite data and in-situ 

data. 

U��� corresponds to the uncertainties of the reference in-situ data. 

According to [7], uncertainties of satellite measurements are well represented when 

the observed differences between satellite and reference in-situ measurements, 

normalized by the quadratic sum of these uncertainties, follow a Gaussian distribution 

with a standard deviation of 1. 

STD �
x��� − x���

�U���
�   +   U���

�   +   U���
�

� =  1 (1)

In Equation (1), STD stands for the standard deviation, x���  represents the satellite 

measurements and x���  represents the reference in-situ data. We now detail how the 

various terms of Equation (1) are obtained. 

- x��� − x��� 



Remote Sens. 2022, 14, 1878 7 of 21 
 

 

The colocations between CCI+SSS and Argo floats measurements are performed by 

the Pi-MEP, as described in [5,21], and summarized below. 

CCI products are sampled on a Rsat spatial grid (corresponding to the 25 km EASE 

grid) and with RT time sampling: RT is one day for weekly products and 15 days for 

monthly products. Given CCI products centered at T0, each Argo data sampled within 

[T0−RT/2 T0+RT/2] is colocated with the CCI SSS at grid nodes located within a radius of 

Rsat/2 from the Argo data location. If several CCI SSS product samples are found to meet 

these criteria, the final CCI SSS match-up point is chosen to be the CCI SSS with central 

time, which is the closest in time to the in situ data measurement date. Hence, there is a 

unique matchup corresponding to each Argo measurement. 

The locations of xref corresponding to the Argo measurement points made available 

in the Pi-MEP database are used as the basis for calculating the normalized differences 

described in Equation (1). The terms Usat and Umis are thus collocated at these locations as 

described below. 

- U��� 

The uncertainty of each CCI+SSS gridpoint is estimated in the course of the CCI+SSS 

temporal OI using the formalism described in the Supplementary Information (S3) of [5]. 

It takes into account uncertainties of SMOS and SMAP individual SSS, their 

representativity uncertainties with respect to a weekly (or monthly) integrated field, and 

uncertainties on the bias corrected by the CCI processing. In the CCI+SSS v3 processing, 

while the formalism remains the same as the one of version 2, the numerical 

implementation differs: a full least square propagation of the uncertainties is 

implemented, instead of a simplified propagation involving matrix inversion over limited 

time period as in version 2. This quantity is described in Figure 3b. 

 

Figure 3. Terms of Equation (1) integrated for 2016–2018: (a) observed STD of the differences 

between weekly CCI and Argo salinity; (b) quadratic mean of Usat; (c) the difference of squared 

terms shown in (a,b), STD2 (CCI7-Argo)—mean (Usat2); and (d) quadratic mean of Umis. The 

statistics are reported in 1° boxes containing at least 3 Argo measurements (boxes in Figure 3a,b 

with less than 3 measurements are in white). 
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- U��� 

In our case, U���  corresponds to the uncertainty of the Argo salinity. As we only use 

Argo data with a quality index of 1 or 2, these uncertainties are small, in the order of 0.01 

or less [26]. They are expected to be much smaller than the other uncertainties in Equation 

(1) and are neglected in the following. 

- U��� 

To estimate the uncertainties due to sampling mismatch, we first compute the 

variability of SSS from Mercator GLORYS reanalysis at a resolution of 1/12° (Umis_glo). 

We approximate the sampling mismatch as the standard deviation of GLORYS SSS 

within a radius of R km (R = 25 km) and a temporal range of dt/2, corresponding to the 

spatio-temporal integration of CCI products of 50 km and of 3.5 days for weekly fields 

and 15 days for monthly fields. Since the Pi-MEP matchups consider only the closest 

matchups, this sub-pixel variability slightly overestimates the variability. We performed 

tests considering various spatio-temporal R, and dt radii, and we concluded that the 

overestimate is less than 5%, with the major effect arising from the spatio-temporal 

smoothing of the CCI products relatively to non-averaged SSS; the spatio-temporal 

distance between the center of the CCI product and the individual in-situ measurements 

is a second order effect. 

As our study focuses on the comparison between in-situ data taken at 5 m depth, we 

compute the standard deviation of the GLORYS model data at 5 m depth. CCI+SSS v3.21 

fields are adjusted from the instantaneous rain effect, based on earlier comparisons 

between SMOS SSS in rainy conditions and Argo salinities [19], hence reducing the 

difference expected between satellite SSS in the upper 1cm depth and the Argo salinity at 

~5 m depth. 

We calculate the sampling mismatch for each day over three years (2016–2018). 

The above estimate of Umis_glo is limited, however, by the resolution of the GLORYS 

reanalysis (1/12°). This means that the variability at scales smaller than 1/6° present in the 

point measurements will not be well represented in GLORYS simulations. We take this 

limitation into account by estimating the variability missed by the GLORYS reanalysis 

following a wavenumber spectral analysis [12], as summarized below and described with 

more details in Appendix A. 

The variance of a signal between a chosen wavelength and the Nyquist wavelength 

can be inferred assuming that the slope of the spectrum between the two wavelengths is 

reasonably known. This variance is given by the following formula, which follows from 

the integration of the power spectral density (PSD): 

�� = �
2��

� − 2
����� − ��

���� (2) 

where � corresponds to the slope of the PSD when viewed as a log-log plot, � is the y-

intercept of the PSD, � is the wavelength below which we calculate the variance and  �� 

is the Nyquist wavelength. 

What we want to estimate is the influence of a change in Nyquist wavelength on the 

variance of salinity below a wavenumber of 50 km. We therefore calculate ��� for �� =

20 km, which corresponds to the STD actually measured by GLORYS, and ��� for �� =

0 km, which corresponds to a perfect case where all the signal power is considered. 

Spectral studies in the Arabian Sea and in the western Pacific [12], as well as in the 

tropical and subtropical Atlantic Ocean [22], suggest that at the scale of interest, for a 

wavelength below 50 km, the salinity PSD has a slope close to � = 3.3. This is quite close 

to a k−3 power law expected for a passive tracer under the influence of advection, with the 

slightly steeper slope being likely attributable to atmospheric processes [12]. Even though 

this slope is likely to vary slightly from time to time and place to place, we use it to infer 

an order of magnitude of the ratio between the variability expected in the case where all 
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wavelengths below 50 km are considered, Umis, and the variability estimated with 

GLORYS reanalysis resolution, Umis_glo, using Equation (2). We find the following relation: 

U��� = 1.1985U���_���  (3) 

The results are given thereafter with and without this adjustment. 

We evaluate the Gaussian shape of the normalized differences distributions 

(Equation (1)) following two methods: 

- When considering large regions (global ocean or in boxes represented on Figure 2 

and defined in Table 1), we approximate the statistical distributions of the 

normalized differences with a Gaussian fit and we compare the fitted STD with the 

expected value of 1. 

- In order to make local analysis, we also compute STD of normalized differences in 2° 

boxes. However, due to the reduced number of colocations in 2° boxes (as will be 

seen in Section 3.2.2), they are noisy and it is not possible to estimate a reliable fit of 

the normalized differences distribution in each box. Nevertheless, we look at to 

which extent the statistical distribution of STD estimated in 2° boxes is consistent 

with Gaussian distributions of the normalized differences in each box. This is 

performed by considering the histograms of the variances, STD2, multiplied by the 

number of measurements. Indeed, given �1, ⋯, �� a random sample from a Gaussian 

distribution (with a � average and a � standard deviation) �(�,�2), in any of the 2° boxes, 

with �� =
�

���
∑ (�� − ��)�

� , the random variable Y = (�−1)�2/�2 = n Var(X)/�2 follows a 

�2n−1 distribution (See p. 211 of [27]). This choice of representation allows us to compare 

the histograms obtained to a theoretical curve that Y should follow if the normalized 

differences distributions in each box followed a �(0,1) distribution, as is expected if 

the uncertainties are correctly estimated. The theoretical curve is deduced by 

cumulating the distributions of the Y term expected for each of the 2° boxes, 

considering � = 1. 

The reliability of the salinity variability derived from GLORYS reanalysis will be 

discussed, based on comparisons with the salinity variabilities measured in-situ by 

sensors onboard ships. 

Actually, Ship ThermoSalinoGraph (TSG) measurements are sampled at a few 

kilometers resolution along ship transects, hence allowing for an estimate of the variability 

at a higher resolution than GLORYS. We use the TSG-LEGOS-DM delayed mode data set 

derived from voluntarily observing ships collected, validated, archived and made freely 

available by the French Sea Surface Salinity Observation Service [28]. For that, we select 

adjusted values when available and only TSG data with quality flags = 1 and 2 (‘good’ or 

‘probably good’). 

As the SSS variability along a line is different from the SSS variability over a surface, 

for this exercise, a one-dimensional GLORYS variability is computed along ship lines: the 

standard deviation of salinity values from GLORYS reanalysis along 50 km-long lines, 

with a direction close to ship transects (with a precision of ±22.5°). Fitting the variability 

to the direction of the ship transect allows for the possible anisotropy of the SSS field. 

3. Results 

We first consider global maps of the main terms in the uncertainties balance 

(Equation (1)) after integrating them over the 2016–2018 period by taking their quadratic 

mean. After this qualitative and raw analysis (temporal correlations between the various 

terms are neglected in that analysis), a thorough analysis is presented based on an exact 

computation of Equation (1). 
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3.1. The Different Contributions to the Uncertainty Balance 

Before analyzing the observed differences between CCI+SSS and Argo salinities 

normalized by the uncertainties for each collocated matchup, we focus on the main 

contributors to Equation (1), temporally integrated over the 2016–2018 period (Figure 3). 

Qualitatively, the STD differences between Argo and CCI salinities (STD (CCI7-Argo), 

Figure 3a) and the quadratic mean of Usat from CCI data (Figure 3b) are similar in most 

open ocean regions, where the natural variability of salinity is expected to be low (below 

0.2). The STD of CCI7-Argo SSS seems therefore bounded by the value of the satellite 

uncertainty Usat in regions of low variability. High values of STD (CCI7-Argo) (>0.5, going 

up to 1) are observed in Figure 3a in regions where natural variability is important, for 

example, in river plumes (notably the Amazon, Congo, Malvinas, Ganga Brahmaputra 

and Mississippi) and in areas of important fronts (Gulf Stream region, Agulhas return 

current and Kurushio). In these regions, Usat is also higher than in low variability regions 

due to an increased uncertainty in the CCI weekly SSS field related to the temporal 

undersampling of SMOS and SMAP, but Usat remains, in these regions, lower than the 

STD(CCI7-Argo). The difference between the squared terms (STD2(CCI7-Argo)—mean 

(Usat2), Figure 3c) and Umis2 (Figure 3d) agree qualitatively well, even though Umis appears 

higher in river plumes between 20°N and 20°S. In a few regions, notably near Japan and 

in the Labrador Current region, we observe large values of STD(CCI7-Argo) that are 

stronger than Usat and Umis. These differences are likely due to the frequent presence of 

RFIs in these regions [26]. 

3.2. Detailed Analysis of Uncertainties Balance 

3.2.1. Distribution of Reduced Differences 

We first analyze the distribution of all differences taken between 2016 and 2018. 

Figure 4 shows the distribution obtained over the global ocean, and Figure 5 shows the 

distributions obtained in the various areas indicated on Figure 2 and Table 1. The 

corresponding STD of the distributions are in Table 2. 

 

Figure 4. Distribution of differences between Argo floats and CCI data normalized with Usat 

(orange), with Usat and Umis_glo (red) and with Usat and Umis (blue), and corresponding Gaussian fits, 

over the global ocean. The black line corresponds to a theoretical Gaussian distribution with a 

standard deviation of 1. Corresponding STD are reported in Table 2. 
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Figure 5. Same as Figure 4 for regions defined on Table 1: (a) Pacific; (b) Aghulas Current; (c) 

Amazon; (d) Gulf Stream. Corresponding STD are reported in Table 2. 

Table 2. STD of the distributions of the normalized differences between Argo and CCI v3.2 weekly 

products, in the regions defined in Table 1. 

Region Usat Usat + Umis_glo Usat + Umis 

Global 1.158 1.029 0.988 

Gulf Stream 1.424 0.904  1.138 

Amazon plume 1.050 1.202  0.859 

Agulhas return current 1.163 1.059 1.022 

South Pacific Ocean 1.017 0.978  0.964 

In order to estimate the impact of the uncertainty mismatch Umis_glo on the 

comparisons between in-situ Argo values and CCI products, we analyze the STD of the 

differences normalized by: 

(a) The satellite uncertainty Usat only (orange curves); 

(b) The quadratic mean of Usat and Umis_glo (red curves); and 

(c) The quadratic mean of Usat and Umis (blue curves). 

We then test the closeness of the distribution of the error-reduced salinity differences 

to a Gaussian distribution with a STD equal to 1 as proposed by [6]. 

A Gaussian fit (mean and STD estimated using Matlab Non-Linear Least Squares 

fitting method) is superimposed on the different histograms, and we consider the 

standard deviation of this fit in each case. If the uncertainties are correctly estimated, we 

expect the normalized difference to follow a Gaussian distribution with a standard 

deviation of 1 and mean of 0; such a distribution is represented in the black dotted lines. 

This Gaussian distribution is calculated by considering the same number of 



Remote Sens. 2022, 14, 1878 12 of 21 
 

 

measurements as the populations studied, i.e., the distributions have the same integral 

value. The outliers at the ends of the histograms have been gathered into a single class. 

These figures show a clear improvement of the distributions when the sampling 

mismatch uncertainty is taken into account: over the global ocean, the standard deviation 

goes from a value of 1.16 with Usat only (orange curve), which is too large, to a value of 

1.03 much closer to unity with the quadratic sum of Usat and Umis_glo (red curve). Using Umis 

(blue curve) results in a STD of 0.99, very close to the value of 1 we are looking for. 

In addition, taking into account Umis_glo considerably reduces the distribution tails: 

the values higher than 3.9 are reduced by about one half, and even more with Umis. 

More relevant comparisons can be made by focusing on regions of particularly high 

or low variability. First, in the low variability region of the eastern South Pacific, we 

observe that the uncertainty that plays a major role is Usat, and that the addition of Umis_glo 

has little impact on the distribution of differences. On Figure 5a, the STD of the red and 

blue curves taking into account Umis_glo are slightly too low, which means that Umis_glo or 

Usat is slightly overestimated in this region. 

In the variable regions, the improvement is not homogeneous. In the region of the 

Agulhas current retroflection (Figure 5b), we obtain good results, taking into account 

Umis_glo and Umis allows one to obtain a STD of 1.05 and 1.02, respectively. 

In the Gulf Stream region, Figure 5d, the histograms are under the black curve 

meaning that Umis_glo or Usat are too low. Taking into account Umis_glo or Umis allows one to 

get closer to a Gaussian of standard deviation of 1, going from a STD = 1.42 for the orange 

curve to a STD = 1.20 or STD = 1.13 with Umis_glo and with Umis, respectively. This 

corresponds to an improvement of about 30% but remains imperfect. This may be related 

to remaining seasonal biases observed in this region in the CCI data whose origin remains 

under study. 

In the Amazon plume (Figure 5c), on the other hand, the orange curve is already close 

to a Gaussian distribution with STD = 1, and adding Umis_glo and Umis has a too strong 

impact. This could be related to uncertainty in GLORYS derived variability, as discussed 

in next section. 

To highlight the potential of the method to validate Usat, we compare the standard 

deviation values to the distributions obtained with the previous version of the CCI 

products (v2.3), for the global ocean, in which Usat was estimated with a simplified 

approach. 

With version 2.3 at global scale, the STD obtained was less than 1 (standard deviation 

of 0.93 with Umis_glo and 0.89 with Umis). In version 2.3, the errors were therefore 

overestimated by about 12% and particularly too high in regions of low variability. This has 

been corrected in version 3.2. Histograms for version 2.3 are available in supplementary 

materials. 

For monthly products (figures available in supplementary materials), the 

superposition of histograms shows a clear improvement in the distribution of reduced 

differences when mismatch uncertainty is taken into account, both at the global level and 

in the variable regions. Indeed, this shifts from a STD always higher than 1 (1.55 at the 

global scale) to a STD close to 1 (1.1 with Umis_glo, 1.003 with Umis). In the Pacific region, the 

importance of mismatch uncertainty is less, but taking it into account also allows one to 

approach the STD = 1 curve. The histograms on the variable regions yield the same 

conclusions as with the weekly products. 

3.2.2. Global Distributions 

We now investigate further the spatial distribution of STD computed in 2° boxes. In 

this section, we focus on the validation of the CCI v3.2 weekly SSS and associated 

uncertainties, taking into account, step by step, the different sources of uncertainties 

involved in Equation (1) (Figure 6) and in 2° boxes to provide a better understanding of 

the geographical variations of the different sources of uncertainty. As in the previous 

section, the three normalization methods are evaluated here. 
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Figure 7 shows histograms of the variances multiplied by the number of 

measurements in the 2° boxes shown in Figure 6a,c,d. The black dashed curve represents 

the theoretical curve that these histograms should follow if the normalized differences 

distributions in each box follow a �(0,1) distribution, as we expect when the uncertainties 

are correctly estimated. 

 

Figure 6. Standard deviations of CCI-Argo differences normalized by the various sources of 

uncertainties, in 2° boxes. Only boxes with more than three Argo measurements are considered. 

(a,c,d) Maps of the STD of the differences normalized (Equation (1)) by (a) Usat; (c) Usat and Umis_glo; 

and (d) Usat and Umis. (b) Number of collocated points in each 2° box. 

 

Figure 7. Histograms (bar graph) of number of points multiplied by variance in the pixels shown 

in Figure 6: (a) (orange), (c) (red) and (d) (blue). Points above 300 are grouped in one single class. 
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This histogram is expected to follow a Chi2 distribution (dashed line) if Equation (1) holds for each 

pixel of the maps. 

The introduction of Umis_glo (Figure 6c) reduces the very large STD in highly variable 

regions such as the Gulf Stream or the Agulhas Current retroflection. This reduction is 

even stronger with Umis (Figure 6d). This can be seen in the histograms (Figure 7), where 

the red and blue histograms, which take into account Umis_glo and Umis, respectively, are 

much closer to the black theoretical curve for high values (above 50) corresponding to 

high variances than the orange histogram, where the differences are normalized by Usat 

only. Quantitatively, the correlation coefficient between the χ2 theoretical distribution and 

the one obtained with Usat only is 0.95, and, respectively, 0.97 and 0.98 when taking into 

account Umis_glo or Umis. 

This result is similar and more pronounced for monthly products (see maps in 

Supplementary Materials). By normalizing the differences by Usat only, the STD obtained 

is clearly greater than 1 and often even greater than 2 in a large majority of the 2° boxes. 

Taking into account Umis_glo or Umis gives quite similar maps (Figure 6c,d), which again 

shows the importance of mismatch uncertainties in the validations, especially for monthly 

products. The histograms obtained for the monthly products also show this clear 

improvement, which is strengthened with Umis. The correlation coefficient between the χ2 

theoretical distribution and the one obtained with Usat only is 0.81, and, respectively, 0.97 

and 0.98 when taking into account Umis_glo or Umis. 

When the same study was conducted on the CCI version 2 weekly products, the 

results were further from the calculated theoretical χ2 curve, with a very large number of 

points at low values of n Var(X) indicating that the Usat of version 2 was overestimated, 

mostly because of the simplified propagation of errors in version 2 instead of the full least 

square propagation of the errors implemented in version 3. The correlation coefficient 

between the χ2 theoretical distribution and the one obtained with Usat only is 0.71 and, 

respectively, 0.75 and 0.76 when taking into account Umis_glo or Umis for CCI v2. 

4. Discussion 

4.1. Estimation of the Sampling Mismatch Uncertainty 

The issue of quantitative comparison between datasets with different spatio-

temporal resolution is common to other research areas, such as the ocean model 

community, and methodologies of different complexities have been proposed to address 

it (e.g., [9]). In this study, we estimate the sampling mismatch uncertainty with a classical 

methodology, with our focus being not on the development of original methods for 

estimating sub-pixel SSS heterogeneity but rather on demonstrating possible 

improvements in satellite SSS validation by including a quantification of sampling 

mismatch effects in routine SSS validation exercises. In particular, the Pi-MEP validation 

platform does not yet include representativity uncertainties between satellite and in situ 

SSS, but it is planned to include different ways of taking them into account in the coming 

years. 

One can question the legitimacy to use the GLORYS reanalysis to represent the in-

situ point measurement. This product has several limitations. 

The first limitation is the spatial resolution of the model, 1/12°, which corresponds to 

about 10 km near the equator, which is a higher resolution than the satellite salinity data 

but is still far from a point data. Nominally, this grid resolution corresponds to a Nyquist 

cutoff wavelength of about 20 km. It was not feasible in this study to use higher resolution 

simulations due to numerical computation limitations. It would nevertheless be of 

importance in further studies to look at the spectral information content of both GLORYS 

and CCI SSS products to confirm the nominal product resolutions considered in our 

study. 

To counter this limitation, we have multiplied our uncertainties mismatch estimates 

by a coefficient, in order to adjust these values by taking into account the finer scales. This 
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coefficient is calculated by assuming a PSD slope in k−3.3 constant in time and space, but 

this slope could vary slightly according to regions and time. We note, however, a weak 

variation of the coefficient according to the slope of the spectrum: +(−)2% for a spectrum 

of slope of k−3.2 (k−3.4), compared to the used spectrum of slope k−3.3. 

To validate the sampling mismatch derived from GLORYS simulations, we have 

compared model variability to in-situ variability derived along ship tracks available 

between 2016 and 2018. 

The GLORYS variability compared to TSG variability derived along merchant ships 

lines (Figure 8a,b) indicates that the differences are small, less than 0.02 for most 

measurements, with the GLORYS variability being generally slightly higher than the in-

situ variability. The difference is greater in regions of high variability such as fronts or 

river flows but remains below ~20%, as shown in the histogram in Figure 8c. This result 

seems counter-intuitive as one would expect the GLORYS salinity variability to be lower 

since the resolution of the reanalysis is lower than the resolution of the ships 

measurements and since we did not add contribution for the small scales not resolved by 

GLORYS in these comparisons. 

 

Figure 8. Comparison between GLORYS data standard deviation and in-situ variability. (a) 

Merchant ships averaged over 1° boxes; (b,c) histograms of Merchant ships STD (blue) and 

GLORYS STD (red) (b) globally, and (c) in very variable areas defined Table 1. 

The observed discrepancies near river plumes may be due to a limitation of the GLORYS 

reanalysis, which uses climatological river run-offs as a forcing [29] (as explained in [23]) and 

thus does not take into account interannual variability in river discharge. The study [30] 

shows that the RMSD of the GLORYS model relative to Argo data decreases near the 

Amazon and Congo estuaries when assimilated with SMOS satellite data. This suggests 
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that the spatial variability of the model is overestimated in the river plume regions, 

confirming the biases observed in the comparisons to merchant ships in these regions. 

Another study [31] shows that sub-mesoscale structures are poorly represented in 

the GLORYS model, due to the too coarse spatial resolution. This could explain the 

differences observed in the Gulf Stream. 

Overall, however, the observed differences between the TSG and GLORYS model 

variabilities are relatively small. We consider the GLORYS reanalysis variability to be a 

sufficiently good representation of the natural variability on a global scale, although we 

note that the differences are greater in regions of high variability. 

The way we estimate Umis_glo is close to the one used by [13] to estimate the 

Representation Error (RE), except that [13] uses higher resolution (1/48°) simulations. We 

have compared both estimates, made within an area of 50 km radius for Umis_glo and within 

40 km for RE. Maps of the median of Umis_glo over the 3 years of our study (available in 

Supplementary Materials) are qualitatively in agreement with the 40 km RE (Table S5 of 

[13]). 

4.2. Sampling Mismatch Uncertainty and Representativity Uncertainty Included in Usat 

Usat quantifies the uncertainty on the weekly-50 km smoothed SSS related to the 

temporal undersampling of SMOS and SMAP. This temporal variability, taken into 

account in the CCI temporal optimal interpolation, is deduced from the GLORYS SSS 

fields smoothed to 50 km. Therefore, Usat does not include information on the spatial 

variability at scales smaller than 50 km nor on the expected variability between a point in 

time measurement and a weekly field, contrary to Umis. Nevertheless, a flaw in GLORYS 

SSS fields that would affect SSS fields at scales both larger and smaller than 50 km would 

lead to correlated errors in Usat and Umis. We cannot rule out this kind of error near river 

plumes between 20°N and 20°S. 

4.3. Vertical Near-Surface Variability 

As indicated in the methods section, we used the 5 m depth layer of the GLORYS 

model to take into account the fact that the majority of the ARGO data are taken at 5 m 

depth, and that the CCI data are corrected for a ‘nearly-instantaneous’ effect of rain. 

However, rain is not the only element generating a salinity gradient in the surface layer. 

To quantify the vertical variability of salinity and its influence on comparisons between 

Argo at 5 m and satellite surface salinity, we have calculated the GLORYS sub-footprint 

variability at the surface as well. Figure 9 shows the GLORYS STD at the surface minus 

the GLORYS STD at 5 m, averaged over 3 years. 
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Figure 9. Difference between STD of GLORYS at surface minus STD of GLORYS at 5 m, computed 

over 2016–2018 period. 

The differences obtained can reach 0.1, in regions where salinity is highly variable. 

We can distinguish three types of regions in Figure 9. In regions strongly impacted by 

rainfall, the variability of measurements at 5 m depth is lower than the surface variability. 

The observed differences are indeed very close to the impact of rain on salinity calculated 

by [32], from SMOS data, and this effect is corrected in the CCI products. Large differences 

between SSS and a few meters depth salinity are also expected in river plumes 

characterized by strong vertical stratification (e.g., [33]). However, in areas off the mouth 

of the river, the variability calculated at 5 m is often higher than the surface variability. 

The origin of these patterns is not well known; 5 m depth could be close to the halocline 

depth and surface fresh waters could be isolated from the variability of the layers below, 

but the assimilation of in situ data often performed close 5 m depth could also generate 

some additional variability. Finally, in regions of low variability, the difference between 

the variability at 5 m and the surface variability is close to zero. 

As the CCI version 3.2 product contains a correction for rainfall effects, it is wise to 

calculate a STD at 5 m depth in rainy regions. On the other hand, to be completely 

consistent, it would be necessary to use an STD based on a comparison of individual 

points at 5 m against a surface average value in regions where a large difference in 

variability between the surface and 5 m is observed but not affected by rain, such as close 

to fronts or river plumes. However, since the variability derived from GLORYS at 5 m 

depth is most of the time higher than the one obtained with in situ measurements (Figure 

8), this effect is likely within the uncertainty of the STD derived from GLORYS 

simulations. 

5. Conclusions 

We find a remarkable agreement between CCI version 3.21 products (SSS and SSS 

uncertainties) and Argo upper salinities once the uncertainty due to sampling mismatch 

between CCI+SSS satellite products and in-situ Argo measurements is taken into account. 

This is particularly striking for the distributions of the differences between satellite and in 

situ salinities normalized by the sum of the uncertainties associated with each satellite-in 

situ colocation (Equation (1)): at global scale, when mismatch uncertainties are taken into 
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account, the normalized distribution is very close to a Gaussian distribution with a unit 

sigma contrary to the one normalized with the satellite salinity uncertainty only (Figure 

4). The role of the sampling mismatch is particularly important in regions with high 

variability, as shown in Figure 6. In regions with low variability, on the other hand, the 

contribution of the sampling mismatch uncertainty is very small compared to the satellite 

uncertainty. Taking into account Umis_glo or Umis in the validation allows the STD of the 

normalized differences to get very close to a χ2 theoretical distribution (Figure 7; 

correlation coefficient of 0.95 with Usat only and of 0.98 when taking into account sampling 

mismatches). 

Even though the spatial resolution of the GLORYS reanalysis does not resolve very 

fine scale phenomena (<20 km), we find that they should also be taken into consideration 

to approximate the sampling mismatch uncertainties. At global scale, the STD of the 

normalized differences is 1.15 when only the satellite SSS uncertainty is considered and 

1.03 when the GLORYS derived mismatch is taken into account. Moreover, we find that 

an efficient way to counter the limited spatial resolution of GLORYS is to adjust the 

GLORYS derived variabilities by a spectral analysis as proposed by [12]. With this 

correction, the global scale STD of the normalized differences equals 0.99. 

The analyses shown in this main paper have been obtained with weekly CCI fields. 

Analyses of monthly CCI v3 data compared with Argo data (in Supplementary 

Information) give similar results but with a reinforced importance of the mismatch 

uncertainty compared to the uncertainty of the monthly satellite SSS (which is reduced 

with respect to the uncertainty of the weekly fields). Again, the spectral correction of 

GLORYS variability improves the comparisons. 

The results obtained at global scale are corroborated by analyses of distributions over 

large regions. The standard deviation of the distribution of differences reduced by the 

quadratic sum of the uncertainties Usat and Umis has a standard deviation very close to 1 

over the global ocean, slightly too high (1.05) in the variable regions and a little too low 

(0.98) in the region of low variability of the Pacific. These results are significantly better, 

up to 30% better in the Gulf Stream, than when the sampling mismatch uncertainty is not 

taken into account. 

These results highlight the consistency of satellite uncertainties of CCI version 3 

products at the global scale, considering the validation method proposed by [7]. We 

observe an overly pitted distribution of reduced differences in the Amazon region, 

corresponding to a 15% overestimate of the total variability. Although this could indicate 

an overestimation of Usat, as was commented on in the discussion, the calculation of Umis_glo 

in the river plume regions may be too high. Future studies should address this issue by 

comparing the variabilities obtained from GLORYS to the ones estimated from other 

models or with other in situ datasets. 

Conversely, in the Gulf Stream region, the distribution of reduced differences is too 

wide, and the STD is too high by about 15%, which suggests that Usat is too low there. This 

could be related to remaining seasonal variation of biases at high northern latitudes 

possibly linked to ice contamination, and to calibration flaws related to sun or antenna 

temperature or RFIs impacts, which are not well represented in the Usat values. 

The interest of this method is also to carry out comparative validations between 

different products. The results of these tests on the previous version of the CCI products 

(version 2) highlights the clear improvement of uncertainty estimates in the new version 

related to modifications in the error propagation in the optimal interpolation 

methodology. This shows the importance of carrying such tests for the validation of 

satellite products and their uncertainties. 

For reasons of data availability and computational time, we have restricted the study 

to three years during the period common to SMOS and SMAP. It would be interesting for 

complete validations to conduct a similar study for the whole period of the CCI products. 

Indeed, the information used to derive Usat, the satellite measurements uncertainties and 

the representativity uncertainties is specific to each instrument and strongly differs for the 
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Aquarius measurements. Aquarius SSS’ uncertainties are lower than the uncertainties of 

SMOS and SMAP level 2 SSS, while its representativity uncertainties are larger due to the 

spatial integration over 100–150 km relative to 50 km and to a narrower swath leading to 

an increased undersampling. The work on level 4 CCI+SSS data presented here could also 

be applied to other types of data, by adapting the spatio-temporal scales on which the 

uncertainties due to sampling mismatches are calculated. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/rs14081878/s1. Figure S1: Monthly GLORYS SSS SFV, 15 February 

2017. Figure S2: Same as Figures 4 and 5 of main paper, for CCI v3.2 monthly products. Figure S3: 

Same as Figures 4 and 5 of main paper, for CCI v2.3 weekly products. Figure S4: Same as Figures 4 

and 5 of main paper, for CCI v2.3 monthly products. Figure S5: Same as Figures 6 and 7 of main 

paper, for CCI v3.2 monthly products. Figure S6: Same as Figures 6 and 7 of main paper, for CCI 

v2.3 weekly products. Figure S7: Same as Figures 6 and 7 of main paper, for CCI v2.3 monthly 

products. Table S1: Median SSS SFV, computed from GLORYS for a 50 km footprint for the all the 

months of the year, for comparison with Bingham 2021 results. Unitless color scale, with the colors 

scaling with the base 10 logarithm of the SFV. The month is given at the top of each panel.  
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Appendix A 

In this appendix, we describe the method for calculating Umis, based on a spectral 

analysis of surface salinity. This method has been developed in [12], Appendix A. 

The variance of a signal between a chosen wavelength and the Nyquist wavelength 

can be inferred assuming that the slope of the spectrum between the two wavelengths is 

reasonably known. 

The variance of a signal is defined as the integral of its PSD: 

�� = �� � ���������(�)�����
�

��

��

�

 (A1)

where � = ���
� + ��

� and kn is the Nyquist wavenumber. 

We consider the power spectral density of salinity to have a power-law scaling [12,20] 

�(�) = � ∗ ��� (A2)

where � corresponds to the slope of the PSD when viewed as a log-log plot and � is the 

y-intercept of the PSD. 

Introducing (A1) into (A2) gives 

�� = �� � � ∗ ��������
�

��

��

�

 (A3)

Additionally, integrating with respect to �, 
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And with respect to k, 

�� = �
2��

� − 2
����� − ��

���� (A5)

We can express this formula as a function of wavelength: 

�� = �
2��

� − 2
����� − ��

���� (A6)

In this equation, � is the wavelength below which we calculate the variance and  �� 

is the Nyquist wavelength. 
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