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Abstract: Sulfur dioxide (SO2) is a major atmospheric pollutant and abiotic stressor. Although 

physiological studies on abiotic stressors have focused on fully expanded leaves, the resistance of 

leaf functional traits to SO2 during individual leaf development has not been studied. Thus, this 

study aimed to conduct SO2 static artificial fumigation experiments to evaluate changes in leaf 

functional traits and resistance to SO2 for three common landscape tree species (Syringa oblata Lindl. 

(S. oblata), Prunus cerasifera var. atropurpurea Jack. (P. cerasifera), and Ulmus pumila ‘Jinye’ (U. pu-

mila)) in Changchun City and ontogeny under SO2 stress. Samples were collected on three days in 

autumn (1 September, 9 September, and 19 September 2019) for two different leaf stages (10 days 

and 40 days). In addition, remote sensing data were combined to explore the resistance mecha-

nisms of broadleaf forests to different SO2 concentration classes during different seasons on a large 

scale. The results showed that the chlorophyll content, leaf temperature, green-peak reflectance, 

and Fv/Fm (maximal photochemical efficiency) at 10 days were significantly lower than that at 40 

days, regardless of sampling date or SO2 concentration. Additionally, in general the SO2 resistance 

for 10 days leaves was consistently smaller than those for 40 days leaves in 3 tree species. On 9 

September, 10 days leaves of the three tree species showed different leaf resistance performances 

under different SO2 concentrations in the order: P. cerasifera > S. oblata > U. pumila. Lastly, the extent 

of resistance decreased with increasing ρ(SO2) classes in different seasons, and the SO2 resistance 

was affected by season. We conclude that mature leaves are more resistant to SO2 stress than young 

leaves are. These results will provide scientific guidance on artificial plant community construction 

and prevention of future vegetation degradation. 

Keywords: tree species; SO2 stress; resistance; plant ontogeny; leaf functional traits; large-scale; 

seasonal differences 

 

1. Introduction 

With rapid urbanization, energy-intensive industries and factories are increasing, 

resulting in a larger consumption of coal than that in the past [1]. Car ownership is 

growing, resulting in increasing amounts of nitrogen oxides and sulfur dioxide emitted 

into the atmosphere. Sulfur dioxide (SO2) is a colorless and pungent pollutant that is 

widely distributed in the atmosphere [2]. It has a significant impact on air conditions and 

is responsible for increasing the acidity of rainfall. SO2 also has a serious impact on the 
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growth of plants in cities [1,3–5], it hinders the development of plants, long-term expo-

sure to sulfur dioxide will damage the epidermis of plants, weaken photosynthesis and 

cause injury spots on the foliage, which will gradually wither until death. 

In polluted environments, sensitive plant species can act as bio-indicators of air 

pollution, whereas tolerant plant species can act as air pollutant sinks [6,7]. A major 

challenge for future research is understanding the resistance and resilience of tropical 

arid forests to alternating severe droughts and major storms [8]. Resistance indicators 

play an important role as standards in the evaluation of plant resistance to air pollution 

and the selection of resistant tree species. This has long been a target of research and 

substantial results have been achieved in this field. Currently, indicators for evaluating 

the resistance of plants to air pollution include leaf anatomical structure, changes in leaf 

fluid values and chlorophyll content, changes in cell membrane permeability, activity, 

and content, measures of the acute injury threshold and tolerance formula, and compre-

hensive evaluations of plant resistance [9–18]. These indicators can reflect the resistance 

and sensitivity of plants to SO2 to a certain extent. The resistance of plants to environ-

mental stress can be affected by many factors; however, the effects of multiple factors are 

different [19,20]. Many researchers have comprehensively evaluated many factors to 

evaluate plant resistance. Currently, the comprehensive evaluation methods for plant 

stress resistance mainly include the membership function method, coordinated compre-

hensive evaluation method, and analytic hierarchy process [20,21]. These methods use 

statistical approaches to analyze several indices related to plant resistance and to sort the 

indices to determine plant resistance. A comprehensive evaluation method can accu-

rately reflect the strength of plant resistance [19]. 

As an important indicator of the continuous life process of leaves from spreading 

through to maturation, aging, and withering, leaf age reflects the development process 

of plant leaves and is the scale of the length of leaf life activities. The resistance of dif-

ferent plants to SO2 varies greatly, as do plant species, varieties, ontogeny, tree parts, 

and leaf age [15–18]. Among them, plant ontogeny may be crucial and is well known in 

the so-called age-related resistance (ARR) [22]. ARR, also known as ontogenetic re-

sistance, describes the ability of an entire plant or plant part to resist or tolerate diseases 

as it ages and matures. ARR occurs in many plant species and is usually broad-spectral 

[23]. Farber and Mundt [24] showed that the disease severity in young plants was sig-

nificantly higher than that in old plants. The average disease severity of inoculated 

plants was 50.4%, 30.1%, and 12.9% for 3-week-old, 4-week-old, and 5-week-old plants, 

respectively. The disease severity decreased from the upper young leaves to the older 

lower leaves of wheat plants. Photosynthetic capacity decreases with increasing leaf age 

and is accompanied by an increase in leaf dry mass per unit area and a decrease in N, P, 

K, and Mg contents [25,26]. Gilmore [27] showed that as leaf age increased in Abies bal-

samea, the number of rows of viable cells in the primordia decreased, thus gradually re-

ducing the ability of the needles to export photosynthetic products. Rapid changes in the 

age-class structure of boreal forests due to intensified forest use and, in some areas, due 

to increased natural disturbance, the proportion of old-growth forests has declined sig-

nificantly, whereas that of young post-harvest and post-natural disturbance forests has 

increased [28]. 

Resistance to tropical storms and the restoration of tropical dry forests after dis-

turbance also depends on other structural and functional characteristics [8]. Plant func-

tional traits are a research hotspot in plant physiological and community ecology and 

are frequently used to predict species distributions, dynamics, and responses to envi-

ronmental change [29]. Chen et al. [30] investigated a series of functional traits of the 

leaves and branches of 20 drought-tolerant broadleaf species planted in an arid lime-

stone habitat in northern China. Plant ecologists have long been interested in elucidating 

the relationships between plant functional traits and the environment. Plant functional 

trait-environment relationships are the result of a combination of climatic, disturbance, 

and biotic conditions [31], and plants develop adaptive strategies under different envi-
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ronmental gradients by changing their functional traits. In addition, environmental con-

ditions vary in communities at different successional stages, and changing environmen-

tal factors drive changes in the functional traits and ecological responses of species to 

adapt to the environment at the community level. 

With the development of new techniques, such as infrared thermography and 

ground-based spectroscopy, these physiological changes can now be directly and 

non-destructively detected before the appearance of obvious signs of injury. Thermal in-

frared imaging is a promising option [32] and is based on the principle that water evap-

otranspiration cools and stomata close to warm leaves. Nilsson [33] predicted that the 

dynamic process of temperature change is important for identifying different levels of 

biotic or abiotic stresses. Hyperspectral remote sensing plays an important role in quan-

titative vegetation monitoring because of its rapid, nondestructive, and high spectral 

resolution [34,35]. This avoids blade damage and tedious workloads. 

Therefore, this study combined biophysical methods such as spectroscopy, ther-

mography with biochemical studies, and indoor simulated infiltration experiments to 

investigate variations in leaf functional traits at different ontogenies under SO2 stress 

and the resistance to SO2 stress. The specific objectives were as follows: (1) to investigate 

the changes in plant analysis development Chlorophyll content SPAD values, leaf tem-

perature, spectral characteristics, and chlorophyll fluorescence characteristics of differ-

ent tree species and ontogeny (10 days and 40 days) under SO2 stress, (2) to comprehen-

sively evaluate the resistance of the three green tree species to SO2 at different on-

togenies, and (3) to explore the resistance mechanisms of broadleaf trees to different SO2 

concentration classes in different seasons on a large scale using the spatial products of 

fraction of photosynthetically active radiation (FPAR), gross primary productivity 

(GPP), and leaf area index (LAI), and normalized difference vegetation index (NDVI). 

Examining variations in functional traits of urban greening trees and environmental 

factors, as well as the response of the functional traits to environmental changes will 

provide a basis for the scientific guidance of artificial plant community construction and 

prevention of future vegetation degradation. 

2. Materials and Methods 

2.1. Laboratory Study on the Effect of SO2 on the Leaves of Three Common Garden Tree Species 

2.1.1. Experimental Materials and Design 

Taking into account the typical local greenery species, as well as aesthetically dif-

ferent colors and different color trees with different stomatal densities. In this study, 

seedlings of three different colored landscape plants (Syringa oblata Lindl. (S. oblata), 

Prunus cerasifera var. atropurpurea Jack. (P. cerasifera), and Ulmus pumila ‘Jinye’ (U. pu-

mila)) commonly used in Jilin Province were selected as the research targets, and a sim-

ulated fumigation test was carried out to compare the differences in SPAD, leaf temper-

ature, spectral characteristics, and chlorophyll fluorescence in different leaf ontogenies 

between the control and SO2 treatments, and to evaluate the resistance of the three plants 

to SO2 stress. 

(1) Seedling culture 

The experiment was conducted at the agriculture base facility of Jilin Agricultural 

University in 2019, and the experimental materials were provided by a local nursery. 

1-year-old seedlings of S. oblate, U. pumila, and P. cerasifera with relatively consistent 

growth were selected as the experimental materials (Table 1). They were potted for 

monoculture in May 2019 with a pot size of 26 cm × 21 cm. The potting soil was a 3:1 

mixture of garden and charcoal soil. After the potted seedlings entered the vigorous 

growth period in the open field, they were placed in a fumigation chamber for one week 

before treatment. 
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(2) Fumigation method 

A static fumigation method was adopted [36,37], in which the fumigation device 

was a three-dimensional (1.5 m × 1.5 m × 1.5 m) plastic film sealed box placed outside in 

a windproof shed, with gas delivered through a suction tube. A 3 V fan was used to 

keep the air circulating in the fumigation box. Considering that the soil has a certain ab-

sorption capacity for SO2, the potted container was sealed with plastic bags during the 

experiment, and only the plant body was fumigated. A sulfur dioxide detector 

(AKBT-SO2-J, Akoote, USA) was used to monitor the SO2 in the fumigation chamber. 

Table 1. Leaf morphology of the three tree species used in this study. 

Time 
 Tree Species  

S. oblata P. cerasifera U. pumila 

Before fumigating 

   

After fumigation 

 
 

 

The SO2 contraction was kept stable. The seedlings of the three tree species were 

placed in three fumigation hoods, with three replicates for each SO2 concentration, and 

each tree species with three pots of the same age, height, basal diameter, and growth. The 

SO2 concentrations in the three hoods were CK (T1, control check), 7 (T2, low) and 14 (T3, 

high) ppm. From 19 August 2019, each plant was placed inside a fumigation chamber for 

one week before treatment. Then, each plant was fumigated for eight days, and fumiga-

tion was performed every two days for 3 h per day. Each index was measured at two-day 

intervals until the end of fumigation on 22 September 2019 when various indices were 

measured. After fumigation, plants were allowed to continue growing under natural 

conditions.  

2.1.2. Experimental Measurement and Data Processing 

During the autumn phenological period, sunny days before and after fumigation 

were selected as the days on which the various indexes would be measured. Table 2 

shows the detailed schedule of the experiment. 

(1) Infrared thermal imaging  

Infrared thermal images were taken with an NEC H2640 (NEC Avio Infrared 

Technologies Co., Ltd., Tokyo, Japan) thermal infrared camera (wavelength 8–13 μm) 

with a temperature measurement range of −40 to 500 °C and a minimum temperature 

sensing capability of 0.03 °C. The ambient temperature for leaf temperature measure-

ment was 30–31 °C. The thermal image temperature was recorded between 09:00 and 

11:00, with the camera held 160 cm from the ground after focusing clearly, and then 
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photographed under natural light. The temperature of the thermal image was then ob-

tained from the average temperature of the entire thermal image. Finally, the thermal 

images and corresponding point leaf temperature values were extracted using the In-

fReC Analyzer NS9500 (NEC Avio Infrared Technologies Co., Ltd., Tokyo, Japan) 

Standard package [38]. The foliar temperature of plants (referred to as leaf temperature) 

is an important physiological characteristic of plants and is a fundamental parameter in 

the physiological and ecological research of crops [39]. The change in leaf temperature is 

the result of a combination of environmental and internal plant factors that affect the leaf 

energy balance [40]. Leaf temperature reflects the physiological state of plants and is 

generally believed to be related to photosynthesis. Changes in leaf temperature affect 

photosynthesis, and environmental conditions also have a considerable impact on leaf 

structure and photosynthetic characteristics [41,42]. On each date, 3 leaves were taken 

from 10 days leaves and 3 leaves were taken from 40 days leaves of each plant to collect 

infrared thermal imaging. The 18 pieces were collected for each concentration and tree 

species, 54 pieces for three concentrations and 162 pieces for three tree species. Collect 5 

times infrared thermal imaging for each leaf, and finally take the average. 

Table 2. Schedule of SO2 stress experiments in 2019. 

Experiment Time Experimental Event 

Before fumigation 

19 May 2019 Potted plants (1-year-old seedlings) 

8 August 2019 Measure the index before placing in the fumigation chamber 

20–26 August 2019 Plants placed into the fumigation chamber for 1 week 

28 August 2019 The indexes were measured after 1 week of adaptation 

During fumigation 

30–31 August 2019 Fumigation 

1 September 2019 Measurement index 

7–8 September 2019 Fumigation 

9 September 2019 Measurement index 

13–14 September 2019 Fumigation 

15 September 2019 Measurement index 

20–21 September 2019 Fumigation 

22 September 2019 Measurement index 

(2) Spectral reflectance of leaves 

The American ASD Fieldspec4 portable ground object spectrometer was used to 

determine leaf spectral reflectance, with a wavelength range of 350–2500 nm and band 

intervals of 1.4 nm at 350–1000 nm and 1.1 nm at 1001–2500 nm. The blades were meas-

ured directly using a handheld blade clamp with an embedded standard light source (50 

W) and a built-in tungsten halogen lamp. Before spectral reflectance measurements, a 

standard white BaSO4 panel calibration was used. During the measurement, ten curves 

were recorded at 0.1 s intervals, and the average value was taken. Standard white BaSO4 

panel correction was performed every 15 min to ensure standardization of the different 

positions and zones of the leaves. Finally, the original spectral data of the leaves were 

extracted using View SpecPro, and the spectrometer resampled the spectral data at 1 nm 

intervals during the output value [43]. On each date, 3 leaves were taken from 10 days 

leaves and 3 leaves were taken from 40 days leaves of each plant to collect spectral 

curves. Eighteen pieces were collected for each concentration and tree species, 54 pieces 

for three concentrations and 162 pieces for three tree species. Ten spectral curves were 

collected for each leaf, and an average was taken. 

(3) Photosynthetic parameters 

A Li-6800 portable photosynthesizer (LI-COR, Lincoln, NE, USA) was used for 

measurements from 10:00–14:00 on a clear and cloudless day. Physiological indicators 
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such as net photosynthetic rate (Pn, μmolm−2s−1), transpiration rate (Tr, μmolm−2s−1), 

stomatal conductance (Gs, μ molm−2s−1), and intercellular CO2 concentration (Ci, 

μmol/mol) were measured. Measurements were taken at the relative middle position of 

new leaves to ensure a consistent leaf position, with one leaf measured per plant. One 

leaf was taken from 10 days leaf on each date to collect photosynthetic parameters. Three 

pieces were collected for each concentration and tree species, 9 pieces for 3 concentra-

tions and 27 pieces for 3 tree species. Photosynthetic parameters was collected once per 

leaf. 

(4) Chlorophyll fluorescence parameters 

Chlorophyll fluorescence was measured by selecting positions corresponding to the 

spectra. Chlorophyll fluorescence parameters and maximal photochemical efficiency 

(Fv/Fm) were measured using a handheld chlorophyll fluorometer OP-30P+ (Optisience, 

USA). The Fv, Fm and Fv/Fm are respectively represent maximal variable fluorescence, 

maximal fluorescence and maximum quantum yield of photosystem II. Leaves were 

dark-adapted for 30 min before determination. Three 10-day leaves of each plant were 

taken on each date to collect fluorescence parameters. Nine pieces were collected for 

each concentration and tree species, 27 pieces for 3 concentrations and 81 pieces for 3 

tree species. A spectral curve for each leaf was collected, and finally the average was 

taken. 

(5) Collection of SPAD values for determining relative chlorophyll content 

At the end of the leaf spectral reflectance measurement experiment, a SPAD-502 

plus (Konica Minolta, Tokyo, Japan) chlorophyll meter was used to evenly select the 

sample area middle position of each tree species leaf. From each date, 3 leaves were 

taken from each plant on 10-day leaves and 3-leaves on 40 days leaves to collect the 

chlorophyll SPAD. Eighteen pieces were collected for each concentration and tree spe-

cies, 54 pieces for three concentrations and 162 pieces for 3 tree species. The measured 

leaves of each sample area were calculated three times and the average value was the 

relative chlorophyll content SPAD value of the sample area. 

2.1.3. Comprehensive Evaluation of Tree Species Resistance to SO2 

The comprehensive assessment method was quantitatively transformed using the 

fuzzy mathematical affiliation [44] formula to calculate the value of the affiliation func-

tion for each tree species. If an indicator was positively correlated with resistance, the 

available Equations (1) and (2) are: 

𝑈(𝑋𝑖) = (𝑋𝑖𝑗 − 𝑋𝑗𝑚𝑖𝑛)/(𝑋𝑗𝑚𝑎𝑥 − 𝑋𝑗𝑚𝑖𝑛) (1) 

∆= ∑ 𝑈(𝑋𝑖) 𝑛⁄  (2) 

If an indicator was negatively correlated with resistance, then the value of the pe-

riod affiliation function was calculated using the inverse affiliation function of Equations 

(3) and (4) as follows. 

𝑈(𝑋𝑖) = 1 − (𝑋𝑖𝑗 − 𝑋𝑗𝑚𝑖𝑛)/(𝑋𝑗𝑚𝑎𝑥 − 𝑋𝑗𝑚𝑖𝑛) (3) 

  ∆= ∑ 𝑈(𝑋𝑖) 𝑛 ⁄  (4) 

where Xij is the jth measurement index of the ith tree species, U(Xi) is the normalized 

value, U(Xi) ∈ [0, 1], ∆ is the comprehensive assessment result of the various indexes of 

each tree species, and Xjmax and Xjmin are the maximum and minimum values of the jth 

index of all tree species. The larger the ∆ value, the stronger the resistance. If the appro-

priate resistance indexes are combined, the resistance of the tree species or varieties can 

be accurately evaluated.  
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2.2. Remote Sensing Data 

Based on the experimental data and resistance indicators, ρ(SO2) product classifica-

tion data were selected as stress indicators and FPAR, GPP, LAI, and NDVI were used as 

resistance indicators. The data on the five products from 2001 to 2020 were used to cal-

culate the SO2 resistance affiliation to broadleaf tree species large-scale assessments in Ji-

lin Province and were classified by season. 

2.2.1. ρ(. SO2) Product Data  

We collected SO2 data on a 0.5° × 0.625° (55.55 km × 69.38 km) grid from the 

monthly time series dataset of the Modern-Era Retrospective Analysis for Research 

(MERRA)-2 satellite, known as M2TMNXAER (V5.12.4), which is available online 

(https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary, accessed on 8 July 

2021). This dataset is the latest atmospheric reanalysis system in modern satellites built 

by the Global Modeling and Assimilation Office, and is generated by the Goddard Earth 

Observing System Atmospheric Data Assimilation System version 5.12.4. For more de-

tailed information on the MERRA-2 dataset, please refer to Randles et al. [45] and Bu-

chard et al. [46] Considering the bias between observations and background predictions, 

the three-dimensional variation (3DVAR) algorithm was used for bias correction, thus 

generating a time series dataset from 1980 to the present, including the target variable 

(SO2 surface mass concentration) in this study [47]. To date, SO2 data from the MERRA-2 

dataset have been widely used in global studies, such as for monitoring the temporal 

and spatial variability of SO2 [48], and the association of SO2 with environmental factors 

and transport [17]. ρ(SO2) was classified into five classes based on the average value of 

ρ(SO2) from 2001 to 2020, namely very low (2–5.2), low (5.2–8.4), moderate (8.4–11.6), 

high (11.6–14.8), and very high (14.8–18). In order to make a correlation with vegetation 

characteristics values, the remote sensing images were resampled using ArcGIS 10.6 

software with a resolution of 500 m. 

2.2.2. Gross Primary Productivity (GPP) 

GPP refers to the amount of energy fixed, or organic matter produced by photo-

synthesis per unit area of green vegetation per unit time [49,50]. This is an important 

link in the carbon exchange between the land and the atmosphere. Mastering the dy-

namic changes in GPP is important for maintaining a global carbon balance; thus, un-

derstanding the impact mechanism of global climate change on land vegetation is nec-

essary. In this study, annual growth changes in different vegetation types were ana-

lyzed. The MOD17A2 dataset was downloaded from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) website (https://modis.gsfc.nasa.gov/, accessed on 8 De-

cember 2021) with a temporal resolution of 8 days and a spatial resolution of 500 m. Us-

ing GPP data, we explored the correlation between SO2 stress and vegetation character-

istics in different months of the season. 

2.2.3. MOD15A2H Data  

This study used MOD15A2H (version 6) data from 2001–2020, which contains two 

scientific datasets, the FPAR and LAI, with a spatial resolution of 500 m and a temporal 

resolution of 8 days. Data were obtained from the USGS (https://lpdaac.usgs.gov, ac-

cessed on 9 December 2021). The 8 days FPAR and LAI data were combined into 

monthly FPAR and LAI data using the maximum synthesis method, and the seasonal 

FPAR and LAI data were obtained using the mean synthesis method. Using FPAR and 

LAI data, we analyzed the relationship between changes in SO2 concentration and 

changes in vegetation FPAR and LAI in different seasons. 
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2.2.4. Normalized Difference Vegetation Index (NDVI) 

The NDVI data were obtained from the MODIS13Q1 product dataset of the MODIS 

Web (https://modis.gsfc.nasa.gov/, accessed on 11 December 2021) with a spatial resolu-

tion of 250 m and a temporal resolution of 16 days. The study period was 2001—2020. 

Remote sensing images of the study area were obtained using the MRT software data 

conversion format, projection coordinates, and ArcGIS software vector cropping. The 16 

day NDVI data were combined into monthly NDVI data using the maximum synthesis 

method, and the seasonal NDVI data were obtained using the mean synthesis method 

[51]. Using NDVI data, we analyzed the relationship between changes in SO2 concentra-

tion and changes in vegetation NDVI in different seasons. 

2.3. Statistical Data and Air Quality Data 

2.3.1. SO2 Emissions 

In order to better understand the SO2 emissions and change trends in urban emis-

sions in Jilin Province, this study obtained the average annual SO2 emissions of 10 cities 

from to 2010–2017 based on the Jilin Provincial Statistical Yearbook and other infor-

mation. The main sources of SO2 emissions from urban emissions were domestic and 

industrial emissions.  

2.3.2. SO2 Concentration Daily Data 

To study the effects of SO2 stress on different types of vegetation, the air quality data 

of 33 state-controlled stations in Jilin Province in 2019 were selected to analyze the cor-

relation between SO2 concentration daily data and GPP. The relationship between SO2 

mass concentration and vegetation characteristics in different seasons from 2015–2020 

was also analyzed. The SO2 online monitoring data for “10 cities” in Jilin Province were 

obtained from the China General Environmental Monitoring Station (GEMS), which has 

made the AQI, PM10, PM2.5, SO2, NO2, CO, and O3 data from more than 2100 air quality 

online monitoring stations nationwide on the national air quality real-time release plat-

form (http: 106.37.208.233, accessed on 15 December 2021) publicly available since 2013. 

2.4. Statistical Analysis and Data Processing 

2.4.1. Pearson’s Correlation 

To study the vegetation change in Jilin Province by SO2 stress, correlation analysis 

was performed to obtain the correlation coefficients between SO2 and vegetation to ex-

press the effect of SO2 stress on vegetation change. The correlation coefficient was calcu-

lated by Equation (5) as 

𝑟𝑥𝑦 =
∑ [(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)]𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2 ∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑖=1

 (5) 

where, �̅� and �̅� the distribution is the average of the sample values of two elements, 𝑟𝑥𝑦 

is the correlation coefficient between elements x and y, a statistical index indicating the 

degree of correlation between the elements, 𝑟𝑥𝑦 > 0 indicates positive correlation, 𝑟𝑥𝑦 < 0 

indicates negative correlation. The greater the correlation coefficient, the stronger the 

correlation between elements. 

2.4.2. Data Processing 

The data were integrated and Pearson correlations were calculated using Excel 2010 

software, and statistical analysis was performed using SPSS 25.0 software (IBM, Armonk, 

NY, USA). One-way ANOVA and Least Significant Difference (LSD) were used for 

ANOVA and multiple ratios (α = 0.05), the OriginPro 2022 SR1 (OriginLab Corporation, 

Northampton, MA, USA) was used for line plotting. 
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3. Results 

3.1. Leaf Chlorophyll SPAD 

Table 3 shows the chlorophyll content characteristics of leaves for each sampling 

date, ontogeny, and SO2 treatment. In general, the chlorophyll content of U. pumila was 

consistently lower than that of S. oblate and P. cerasifera, more vulnerable to SO2 stress. 

Compared with the CK, the T2 treatment concentration promoted the chlorophyll con-

tent of trees, T3 treatment concentration inhibited the chlorophyll content of trees. For 

example, the chlorophyll content of 10 days leaves of S. oblate, P. cerasifera, and U. pumila 

SO2 concentration T2 treatments was more than that of T1, with increases of 12.28%, 

32.54%, and 16.59%, respectively, on 9 September. The T3 treatments was less than that of 

T1, with decreases of 15.35%, 16.42%, and 36.68%, respectively. The chlorophyll content 

of 10 days leaves was consistently lower than that of 40 days leaves. The chlorophyll 

content of 19 September was consistently lower than that of 1 September and 9 Septem-

ber, more vulnerable to SO2 stress. The magnitude of individual differences was influ-

enced by the sampling date and SO2 treatment.  

Table 3. Leaf chlorophyll SPAD for three different SO2 treatments (T1–T3) on 1 September, 9 Sep-

tember, and 19 September 2019 for S. oblate, P. cerasifera and U. pumila. Bars sharing a common letter 

are not significantly different (p < 0.05). Bars represent means ± SE (n = 9). 

Time Tree Species Treatment 10 Days 40 Days 

1-Sep 

S. oblate 

T1 37.83 ± 5.53 b 41.63 ± 2.04 b 

T2 48.1 ± 3.05 a 49.5 ± 2.16 a 

T3 20.06 ± 7.08 c 34.73 ± 6.35 c 

P. cerasifera  

T1 32.26 ± 0.40 ab 47.23 ± 2.61 a 

T2 36.4 ± 1.15 a 51.9 ± 12.5 a 

T3 29.93 ± 0.49 b 40.96 ± 3.00 a 

U. pumila 

T1 18.56 ± 1.01 a 23.1 ± 0.62 b 

T2 19.23 ± 3.72 a 29.8 ± 2.95 a 

T3 6.9 ± 2.62 b 18.16 ± 0.66 c 

9-Sep 

S. oblate 

T1 45.63 ± 1.11 b 46.8 ± 5.53 ab 

T2 51.2 ± 4.08 a 54.7 ± 2.49 a 

T3 38.6 ± 4.15 c 42.53 ± 3.80 b 

P. cerasifera  

T1 33.53 ± 0.46 b 43.76± b 

T2 44.4 ± 1.80 a 55.73 ± 0.51 a 

T3 28 ± 1.05 c 41.4 ± 0.96 c 

U. pumila 

T1 22.93 ± 2.55 a 27.63 ± 2.44 a 

T2 26.73 ± 1.90 a 28.13 ± 2.10 a 

T3 14.56 ± 0.60 b 24.8 ± 6.21 a 

19-Sep 

S. oblate 

T1 28.06 ± 2.45 b 31.76 ± 5.00 ab 

T2 34.13 ± 1.85 a 39.26 ± 4.74 a 

T3 22.26 ± 3.00 c 20.73 ± 8.50 c 

P. cerasifera  

T1 27.7 ± 0.26 a 35.26 ± 4.74 a 

T2 30.63 ± 2.70 a 36.76 ± 1.27 a 

T3 18.83 ± 2.27 b 21.5 ± 2.26 b 

U. pumila 

T1 18.9 ± 2.78 b 27.13 ± 1.18 b 

T2 26.26 ± 2.45 a 36.23 ± 10.8 a 

T3 18.53 ± 1.00 b 19.83 ± 5.84 b 
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3.2. Leaf Temperature 

Table 4 shows the leaf temperature characteristics for each sampling date, ontogeny, 

and SO2 treatment. On 9 September and 19 September, the 10 days mean leaf tempera-

tures of S. oblate, P. cerasifera, and U. pumila were 30.16, 30.48, and 29.38, and 28.44, 26.83, 

and 28.17, respectively. The 40 days mean leaf temperatures were 27.23, 28.12, and 26.73, 

and 25.33, 23.26, and 23.00, respectively. On 9 September, SO2 concentration treatments 

had a significant effect on leaf temperature at both leaf ages, with S. oblate, P. cerasifera, 

and U. pumila having higher leaf temperatures in the SO2 concentration T3 treatment than 

in T1 and T2, with increases of 6.66%, 10.07%, and 6.53%, 0.22%, 0.33%, and 0.22%; 

18.15%, 10.67%, and 16.41%, and 0.62%, 0.40%, and 0.58%, respectively. On 19th Sep-

tember, SO2 concentration treatments had a significant effect on leaf temperature at both 

leaf ages, with S. oblate, P. cerasifera, and U. pumila having higher leaf temperatures in the 

SO2 concentration T3 treatment than in T1 and T2, with increases of 13.03%, 25.01%, and 

10.30%; 0.48%, 0.85%, and 0.38%; 10.93%, 10.00%, and 6.82%; and 0.48%, 0.85%, and 

0.38%, respectively. As mentioned above, the leaf temperatures of 10-day leaves were 

consistently higher than that of 40-day leaves. 

Table 4. Leaf temperature for three different SO2 treatments (T1—T3) on 9 September and 19 Sep-

tember 2019 for S. oblate, P. cerasifera and U. pumila. Bars sharing a common letter are not signifi-

cantly different (p < 0.05). Bars represent means ± SE (n = 9). 

Time Tree Species Treatment 10 Days 40 Days 
 

S. oblate 

T1 28.87 ± 0.48 c 25.39 ± 0.92 c 

9-Sep 

T2 30.77 ± 0.50 b 26.99 ± 0.40 b 

T3 31.77 ± 0.15 a 28.10 ± 0.42 a 

P. cerasifera  

T1 29.22 ± 0.80 c 25.76 ± 0.53 c 

T2 30.06 ± 0.48 b 29.10 ± 1.04 b 

T3 31.17 ± 1.30 a 30.44 ± 0.77 a 

U. pumila 

T1 28.49 ± 2.52 c 25.92 ± 0.47 c 

T2 29.31 ± 0.44 b 28.40 ± 0.48 b 

T3 30.35 ± 0.88 a 30.18 ± 0.18 a 

19-Sep 

S. oblate 

T1 24.38 ± 0.43 c 22.22 ± 0.22 c 

T2 29.50 ± 0.81 b 23.09 ± 0.48 b 

T3 30.48 ± 0.46 a 24.45 ± 0.39 a 

P. cerasifera  

T1 25.47 ± 0.87 c 24.15 ± 0.73 c 

T2 27.43 ± 0.14 b 25.05 ± 1.35 b 

T3 28.79 ± 0.40 a 26.79 ± 1.00 a 

U. pumila 

T1 25.36 ± 0.21 c 22.33 ± 1.92 c 

T2 26.85 ± 0.77 b 22.8 ± 0.43 b 

T3 27.97 ± 0.74 a 23.85 ± 1.20 a 

3.3. Leaf Spectral Reflectance 

Figure 1 shows the characteristics of the leaf spectral reflectance curves for each 

sampling date, ontogeny, and SO2 treatment. In general, the green-peak and red-valley 

reflectance values of P. cerasifera was consistently lower than that of S. oblate and U. pu-

mila, and more vulnerable to SO2 stress. Compared with the CK, the T2 and T3 treatment 

inhibited the green-peak and red-valley reflectance value of trees. For example, the 

green-peak and red-valley reflectance value of 10 days leaves of S. oblate, P. cerasifera, and 

U. pumila, SO2 concentration T2 and T3 treatments was less than that of T1, with de-

creases of 2.62%, 3.16%, and 1.13%, 9.96%, 6.92%, and 4.85%; 2.71%, 3.05%, and 1.66%, 

4.41%, 5.80%, and 6.01%, respectively, on 9th September. The green-peak and red-valley 

reflectance value of 10-day leaves was consistently lower than that of 40 days leaves. The 
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green-peak and red-valley reflectance of 19 September was consistently lower than that 

of 1 September and 9 September and was more vulnerable to SO2 stress. The magnitude 

of individual differences was influenced by the sampling date and SO2 treatment. 

1 September 

   

9 September 

   

19 September 

   

Figure 1. Mean leaf spectral reflectance for three different SO2 treatments (T1–T3) on 1 September, 9 

September, and 19 September 2019 for S. oblate (a,b), P. cerasifera (c,d) and U. pumila (e,f). Bars 

sharing a common letter are not significantly different (p < 0.05). Bars represent means ± SE (n = 9). 

Figure parts (a,c,e) represent the upper 10 days old leaves, and (b,d,f) are the lower 40 days old 

leaves. 

3.4. Chlorophyll Fluorescence 

Table 5 shows the leaf chlorophyll fluorescence (Fv/Fm) characteristics for each 

sampling date, ontogeny, and SO2 treatment. In general, the Fv/Fm value of U. pumila 

was consistently lower than that of S. oblate and P. cerasifera, more vulnerable to SO2 

stress. Compared with the CK, the T2 treatment concentration promoted the Fv/Fm value 

of trees, T3 treatment concentration inhibited the Fv/Fm value of trees. For example, the 

Fv/Fm value of 10 days leaves of S. oblate, P. cerasifera, and U. pumila SO2 concentration T2 
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treatments was more than that of T1, with increases of 7.5%, 6%, and 12%, respectively. 

The T3 treatments was less than that of T1, with decreases of 0.4%, 7%, and −3%, respec-

tively, on 9th September. The Fv/Fm value of 10-day leaves was consistently lower than 

that of 40-day leaves. The Fv/Fm value of 19 September was consistently lower than that 

of 1st September and 9th September, more vulnerable to SO2 stress. 

Table 5. Maximum quantum yield of photosystem II (Fv/Fm) for 10 days old leaves and the lower 

40 days old leaves on 1 September, 9 September, and 19 September 2019 for S. oblate, P. cerasifera and 

U. pumila grown under three different SO2 treatments (T1–T3). Within each treatment and date, 

statistical differences between 10 days and 40 days (p < 0.05) are denoted with the lower case letters 

a, b, and c. Data represent means ± SE (n = 9). 

Tree Species Treatment 
1-Sep 9-Sep 19-Sep 

10 Days 40 Days 10 Days 40 Days 10 Days 40 Days 

S. oblata 

T1 0.61 ± 0.11 b 0.65 ± 0.08 b 0.66 ± 0.10 b 0.71 ± 0.04 b 0.61 ± 0.11 b 0.65 ± 0.08 b 

T2 0.66 ± 0.11 a 0.69 ± 0.06 a 0.74 ± 0.01 a 0.77 ± 0.01 a 0.66 ± 0.11 a 0.69 ± 0.06 a 

T3 0.46 ± 0.08 c 0.49 ± 0.13 c 0.66 ± 0.00 b 0.66 ± 0.04 c 0.46 ± 0.08 c 0.49 ± 0.13 c 

P. cerasifera 

T1 0.49 ± 0.05 b 0.59 ± 0.08 b 0.66 ± 0.07 b 0.74 ± 0.00 a 0.49 ± 0.05 b 0.59 ± 0.08 b 

T2 0.66 ± 0.03 a 0.70 ± 0.01 a 0.72 ± 0.03 a 0.74 ± 0.02 a 0.65 ± 0.01 a 0.66 ± 0.03 a 

T3 0.35 ± 0.08 c 0.39 ± 0.09 c 0.59 ± 0.11 c 0.69 ± 0.04 b 0.33 ± 0.02 c 0.35 ± 0.08 c 

U. pumila 

T1 0.39 ± 0.06 b 0.46 ± 0.09 b 0.47 ± 0.14 c 0.58 ± 0.00 b 0.39 ± 0.06 b 0.46 ± 0.09 b 

T2 0.43 ± 0.11 a 0.51 ± 0.01 a 0.59 ± 0.04 a 0.61 ± 0.04 a 0.43 ± 0.11 a 0.51 ± 0.01 a 

T3 0.20 ± 0.13 c 0.34 ± 0.05 c 0.50 ± 0.06 b 0.51 ± 0.03 c 0.39 ± 0.04 b 0.39 ± 0.13 c 

3.5. Different Tree Species Resistance Assessment 

In this study, five monitoring indices (chlorophyll SPAD, leaf temperature, 

green-peak, red-valley, and Fv/Fm) were selected to comprehensively assess the SO2 re-

sistance of S. oblate, P. cerasifera, and U. pumila. To accomplish this, the most widely used 

affiliation function method was selected (Table 6). Regardless of the sampling date or SO2 

concentration treatment, the 10-day resistance affiliation values were significantly lower 

than the 40-day affiliation values. In other words, 10 day-old leaves have a low resistance 

and are easily damaged. The resistance of the three tree species was evaluated based on 

the combined 10 day and 40 day trait values under SO2 stress. On 1st September, 9th 

September, and 19th September, the 10-day leaf resistance performance of the three tree 

species under different SO2 concentrations was as follows: S. oblate > U. pumila > P. 

cerasifera, P. cerasifera > S. oblate > U. pumila, S. oblate > P. cerasifera > U. pumila. The 40-day 

leaf resistance performance was as follows: S. oblate > P. cerasifera > U. pumila, U. pumila > 

S. oblate > P. cerasifera, and U. pumila >P. cerasifera > S. oblate. As mentioned above, SO2 

resistance for 10-day leaves was consistently lower than those for 40-day leaves, but the 

magnitude of individual differences was influenced by the sampling date and SO2 

treatment.  

3.6. Stomatal Apertures and Photosynthetic Characteristics Characteristics of 10-Day Old Leaves 

from Different Tree Species 

Based on the high SO2 concentration treatment groups of the three tree species, the 

physiological indexes such as leaf transpiration intensity, stomatal conductance and 

photosynthetic intensity were analyzed. In the present study, the stomatal aperture val-

ues of different tree species in the same leaf zone did not show significant patterns and 

were roughly as follows: P. cerasifera > S. oblate > U. pumila (Table 7). The average sto-

matal apertures of the red-leaved tree species were significantly greater than those of the 

green-leaved species. These red leaf species tend to be vulnerable to habitat stressors, in-

cluding atmospheric pollution. Current theories of atmospheric pollution damage sug-

gest that gases such as SO2 and NO tend to enter through the stomata and exert toxic ef-
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fects on the plant. On 9th September, the 10-day leaf resistance performance of the three 

tree species under different SO2 concentrations was as follows: P. cerasifera > S. oblate > U. 

pumila. 

Table 6. Function value of subordination and the comprehensive judgment on SO2 resistance of the 

three tree species. 

Sampling 

Time 

Tree Species S. oblata P. cerasifera U. pumila  

Leaf Age 10 Days 40 Days 10 Days 40 Days 10 Days 40 Days 

1-Sep 

T1 0.67 0.82 0.7 0.81 0.85 0.64 

T2 0.5 0.63 0.5 0.85 0.59 0.75 

T3 0.49 0.25 0.16 0 0 0.25 

Average 0.55 0.57 0.45 0.56 0.48 0.55 

Resistance Order 1 1 3 2 2 3 

9-Sep 

T1 0.83 0.74 0.88 0.76 0.71 0.91 

T2 0.62 0.81 0.65 0.82 0.69 0.77 

T3 0 0.05 0 0 0 0 

Average 0.48 0.53 0.51 0.53 0.47 0.56 

Resistance Order 2 2 1 3 3 1 

19-Sep 

T1 0.54 0.48 0.45 0.71 0.5 0.52 

T2 0.89 0.63 0.88 0.57 0.67 0.94 

T3 0.4 0.2 0.35 0.2 0.2 0.06 

Average 0.61 0.44 0.56 0.49 0.46 0.5 

Resistance Order 1 3 2 2 3 1 

Table 7. Stomatal aperture characteristics of all three tree species in different leaf zones (9 Sep-

tember). Within each treatment and date, statistical differences between 10 days and 40 days (p < 

0.05) are denoted with lower case letters a, b, and c. Data represent means ± SE (n = 9). 

Tree Species Stomatal Indicators Leaf Tip Leaf Middle Leaf Base 

S. oblata 

SL 

22.20 ± 8.37 c 29.84 ± 9.37 b 35.18 ± 4.95 a 

P. cerasifera 25.12 ± 3.38 22.90 ± 7.72 23.89 ± 4.28 

U. pumila 20.46 ± 8.71 24.45 ± 7.68 23.28 ± 8.02 

S. oblata 

SW 

4.13 ± 1.40 4.00 ± 1.28 5.80 ± 1.59 

P. cerasifera 5.25 ± 1.14 5.27 ± 1.86 5.66 ± 2.01 

U. pumila 2.23 ± 1.24 b 3.34 ± 1.39 3.63 ± 1.26 a 

S. oblata 
SA 

0.20 ± 0.07 a 0.14 ± 0.04 c 0.16 ± 0.03 b 

P. cerasifera 0.21 ± 0.04 0.24 ± 0.08 0.23 ± 0.06 

SL, stomatal length; SW, stomatal width; SA, stomatal aperture. 

As shown in Figure 2, Ci increased as Pn decreased, indicating that reduced photo-

synthesis was due to non-stomatal limitation. The photosynthetic performances of the 

three tree species were as follows: S. oblate > P. cerasifera > U. pumila. In terms of leaf color, 

S. oblate leaves are usually green, U. pumila leaves tend to be yellow or yellow-green, and 

P. cerasifera leaves are usually red. The reddening of the leaf color in many tree species is 

a protective response induced by persistent water and energy imbalance [52]. Tree spe-

cies with yellowing leaves are accompanied by increased stressors, such as water and 

higher leaf temperatures, which can be alleviated by high leaf temperatures after rapid 

chlorophyll breakdown. The process of chlorophyll imbalance is associated with water 

and energy imbalances, such as drought and high temperatures, in many non-red-leaved 

tree species. In this study, the overall leaf temperature performance of different tree spe-

cies after stress was ranked as follows: P. cerasifera > U. pumila. > S. oblate. Photosynthetic 

performance was ranked as follows: S. oblate > P. cerasifera > U. pumila. According to these 
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results, along with the change in leaf color, leaf temperature often increased while sto-

matal conductance decreased, transpiration intensity decreased, and photosynthesis 

impaired.  

  

  

Figure 2. Light response curves under SO2 stress (9 Sept). (a) Intercellular CO2 concentration, Ci; (b) 

stomatal conductance, Gs; (c) net photosynthetic rate, Pn and (d) transpiration rate, Tr. 

3.7. Seasonal and Annual Variation Characteristics of SO2 Stress on Different Tree Species 

As can be seen from Figure 3, there was a significant difference in the overall de-

creasing trend of the two types of pollution emissions between 2010–2017. Among them, 

domestic emissions changed more moderately, while industrial SO2 emissions changed 

more drastically. During the study period, industrial emissions in most cities showed an 

increase from 2010 to 2011 and reached a peak in 2011, then showed a fluctuating de-

cline and reached a minimum in 2017. Industrial emissions decreased by 79.02% in 2017 

compared to 2010. Compared with industrial emissions, domestic SO2 emissions in most 

cities in Jilin Province changed relatively slowly. The domestic SO2 emissions showed a 

rapid decline from 2010 to 2011, and a slow decreasing trend after 2011. The decreasing 

trend in emission intensity can be attributed to changes in industrial structure, techno-

logical progress in emission reduction, and international trade activities in China. 
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Figure 3. SO2 emissions from urban emissions in Jilin Province. 

Figure 4 shows the seasonal variation of SO2 concentration in different cities. There 

is a pattern in the seasonal variation of the SO2 concentration across all the cities, where 

the SO2 concentration values follow the order of winter > autumn > spring > summer. 

Overall, a decreasing trend with the annual fluctuations was observed, and the variation 

was the lowest after 2018. 

 

Figure 4. Variation of SO2 concentration in different seasons from 2015–2020. 

Table 8 shows the relationship between the SO2 concentration and the vegetation 

parameters across the different seasons from 2015–2020. The results show that there is a 

significant negative correlation between the SO2 concentration and FPAR, LAI, and 

NDVI values in each city. This means that the values of the vegetation parameters de-

creased with an increase in the SO2 concentration. The pattern of SO2 concentration and 

the vegetation parameters across the different cities and seasons from 2015–2020 re-

mained just about constant. To highlight the comparability among the different indica-

tors, normalization was first performed. Figure 5 shows the trends in the SO2 concentra-

tion and vegetation parameters during the different seasons in Changchun and Baishan 

City from 2015–2020. The results show that there was an opposite trend between SO2 

concentration and the vegetation parameters with changes in seasons. 
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Table 9 shows the relationship between domestic and industrial SO2 emissions and 

characteristic vegetation values for 2015–2020, from which it can be seen that there was a 

negative relationship between industrial SO2 emissions and the vegetation parameters in 

Jilin and Liaoyuan City, where the vegetation parameters decreased as the SO2 concen-

tration increased.  

Table 8. Relationship between SO2 concentration and vegetation characteristic in different seasons 

from 2015–2020. 

Forest Para Changchun Jilin Siping Liaoyuan Tonghua Baishan Songyuan Baicheng Yanbian 

FPAR −0.62 (*)  −0.68 (*)  −0.59 (*)  −0.67 (*)  −0.66 (*)  −0.67 (*) −0.55 (*)  −0.59 (*)  −0.78 (*)  

LAI −0.56 (*)  −0.62 (*)  −0.56 (*)  −0.59 (*)  −0.58 (*)  −0.59 (*)  −0.51 (*)  −0.56 (*)  −0.72 (*)  

NDVI −0.67 (*)  −0.72 (*)  −0.62 (*)  −0.71 (*)  −0.72 (*)  −0.73 (*)  −0.58 (*)  −0.62 (*)  −0.83 (*)  

FPAR: fraction of photosynthetically active radiation, LAI: leaf area index, NDVI: normalized dif-

ference vegetation index; *: p < 0.05. 

  

Figure 5. Trends of SO2 concentration and vegetation characteristics in different seasons from 2015–

2020 ((a). Changchun, (b). Baishan). 

In contrast, there was a significant positive correlation between domestic SO2 emis-

sions and the vegetation parameters in Jilin City, where the values of the vegetation pa-

rameters increased with increasing SO2 concentrations, which may play a contributing 

role. Figure 6 shows the trends of domestic and industrial SO2 emissions and vegetation 

characteristics for 2015–2020 in Jilin and Liaoyuan cities. With the exception of domestic 

SO2 emissions in Jilin, there is an opposite trend between SO2 emissions and the annual 

FPAR, LAI, and NDVI values. The decrease in FPAR, LAI, and NDVI with increasing 

SO2 emissions shows that industrial SO2 emissions have a greater impact on vegetation 

than do domestic emissions. 

Table 9. Relationship between domestic, industrial SO2 emissions and vegetation characteristic 

values in 2015–2020. 

Study SO2 Emission Types FPAR LAI NDVI 

Jilin 
industrial −0.85 (*) −0.86 (*) −0.90 (*) 

domestic 0.90 (*) 0.86 (*) 0.85 (*) 

Liaoyuan 
industrial −0.69 −0.75 −0.78 

domestic −0.84 (*) −0.90 (*) −0.90 (*) 

*: p < 0.05. 
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Figure 6. Trends in domestic and industrial SO2 emissions and vegetation characteristics in 2015–

2020 ((a). Jilin, (b). Liaoyuan). 

In order to distinguish the seasonal effect and the impact of ρ(SO2) in the air on 

vegetation, the distribution of correlation coefficient between different ρ(SO2) and GPP 

in the same season from 2015 to 2020 is discussed (Figure 7). It can be seen that there is a 

negative spatial correlation between GPP and ρ(SO2) in most regions. In summer, in the 

middle-east region with a high forest land density in Jilin Province, the central Jilin and 

Tonghua with high concentrations tend to be more negatively correlated, while the east-

ern Yanbian with a low concentration tends to be more positively correlated. 
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Figure 7. Spatial distribution of the correlation between GPP and ρ(SO2) in different months in 

Spring, Summer and Autumn of 2015–2020. ((a). Mar., (b). Apr., (c). May., (d). Jun., (e). Jul., (f). 

Aug., (g). Sept., (h). Oct., (i). Nov., (j). Dec., (k). Jan., (l). Feb.). 

4. Discussion 

As an important physiological indicator of plants, variations in chlorophyll SPAD, 

leaf temperature, green-peak and red-valley reflectance, and Fv/Fm are closely related to 

changes in stomatal aperture, leaf water content, photosynthetic activity, and enzyme 

activity [49,53]. As plants are exposed to SO2, photosynthesis is inhibited and chlorophyll 

is converted to demagnetized chlorophyll [54]. The limitation of photosynthesis can be 

divided into stomatal and non-stomatal factors [55,56], with the stomatal factor showing 

a decrease in Gs (stomatal conductance) and insufficient CO2 supply and the 

non-stomatal factor, demonstrating a reduction in the activity of key enzymes for pho-

tosynthesis. If Pn decreases along with Gs and Ci, stomatal factors are likely responsible, 

and if Pn decreases as Ci increases, the main limiting factors for photosynthesis seem to 

be non-stomatal factors. The chlorophyll content, leaf temperature, green-peak reflec-

tance, and Fv/Fm at 10 days were significantly lower than those at 40 days, regardless of 

the sampling date or SO2 concentration. The SO2 resistance for the 10-day leaves was 

consistently lower than for the 40-day leaves.  

Juveniles of most plants are more sensitive to environmental changes and extremes, 

even in resilient species. This is because they require a more suitable environment to 

re-establish a fully independent SPAC system from a dormant state that is isolated from 

the soil and atmosphere. Some plants are salt-tolerant to the point of being salt-loving, 

and moderate salinity is beneficial to their growth [18]. However, the seed germination of 

these plants is sensitive to salt, and rainfall and other salinity-eluting environments are 

more conducive to seed germination. The fragile tissue structure and low lignification of 

seedlings of some tree species makes them vulnerable to adverse effects, such as extreme 

low temperatures and summer droughts. 

The stomatal opening of red-leaved P. cerasifera was the largest and the least vul-

nerable to SO2 damage. Omasa [57] also found that the stomata of the lightly damaged 

parts of leaves were more open during the examination of the damage caused by SO2 on 

plants. This study also concluded that red leaves of P. cerasifera were slightly damaged, 

followed by S. oblate with green leaves, while U. pumila with yellow leaves were the 

most damaged. Significant differences in the stomatal aperture values were also ob-

served. Red-leaved tree species with large stomatal aperture values have a stable meta-

bolic balance of water and energy, excellent growth conditions, resistance to adversity, 

and ability to resist atmospheric pollution. 

4.1. Effect of SO2 Stress on Vegetation Characteristics  

SO2 concentrations in summer, spring (autumn), and winter were differently re-

garded as T1, T2, and T3, respectively. As the SO2 treatment concentration increased, the 

values of the vegetation parameters first increased and then decreased. That is, the 

highest SO2 concentration and the lowest values for the vegetation parameters were ob-

served in the winter, the lowest SO2 concentration and the highest FPAR, LAI, and 
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NDVI values were observed in the summer, and the SO2 concentration and FPAR, LAI, 

and NDVI values were in the middle of summer and winter in spring and autumn. The 

SO2 concentration in autumn is higher than that in spring, and the values of the vegeta-

tion parameters are also higher, which may be related to the vegetation characteristics 

during the growing season. These coincide with the results previously obtained from 

this study. The results in Tables 3 and 5 suggest that a medium dose (T2) of SO2 had a 

positive effect on the studied trees; the reduction in SO2 concentration resulted in an in-

creased reduction in SO2 emissions. This resulted in an increased frequency of S defi-

ciency in the crops and thus increased S fertilization. It is clear that excessive emissions 

of SO2 (T3) result in the destruction of pine forests and acid rain, but the complete re-

duction of these emissions has certain disadvantages [58]. 

4.2. Broadleaf Tree Resistance to SO2 Stress in Different Seasons 

According to results of laboratory study, the 10-day leaf resistance performance of 

the three tree species under different SO2 stress concentrations was as follows: P. cerasifera 

> S. oblate > U. pumila, on 9th Sept. As leaf age increased, chlorophyll content and the net 

photosynthetic rate of the leaf gradually increased, which is closely related to the physi-

ological changes that occur in the leaf during development [59]. Different leaf growth 

conditions lead to differences in leaf pigment, moisture content, nitrogen, phosphorus, 

potassium, and other trace elements, as well as differences in cell structure and function. 

These changes affect the absorption and reflection of light, and ultimately lead to greater 

differences in the internal chemical composition and tolerance at different locations on 

the same leaf [60–63]. In addition to the phenological variations between the upper and 

lower plant parts, phenological differences between leaves in sun and those in shade 

have also been found in the canopy or branches [13,64,65]. 

The resistance of different plants to SO2 is known to vary significantly [18]. In gen-

eral, herbaceous plants are more sensitive than woody plants, coniferous trees are more 

sensitive than broad-leaved trees, and deciduous broad-leaved trees are more sensitive 

than evergreen trees. In addition, previous studies have investigated the resistance and 

purification ability of evergreen and deciduous plants [66–68]. In this study, broadleaf 

trees differed in their resistance to different concentrations of SO2. Figure 8 shows 

broadleaf tree resistance to SO2 stress during different seasons. Resistance decreased with 

increasing ρ(SO2) class in different seasons. In the same ρ(SO2) class, the resistance in 

different seasons was in the following order: summer > autumn > spring > winter. The 

resistance of different tree species to SO2 is affected by season. In this study, the order of 

ρ(SO2) in different seasons was winter > autumn > summer > spring; however, the dif-

ference was not significant (Figure 9). When SO2 is absorbed by a plant leaf, it can form 

sulfites, which are then oxidized to sulfates and turned into nutrients useful for plant 

growth. As the leaves age and wither, they can then continuously transfer sulfur dioxide 

from the air to the soil, creating a cycle that allows the air to be continuously purified [69]. 

The leaves renew in the spring, which results in a reduction in sulfur dioxide emissions in 

the spring. Notably, although the amount of FP (fine particle) collected by vegetation is 

affected by the season [18], the current study has determined that the seasonal differ-

ences was not statistically significant. One study conducted in a high-traffic area in Nan-

jing, China, showed that the order of different seasons in which dust was retained by 

trees could be ranked as winter > autumn > summer > spring [70]. Another study con-

ducted in Qingdao, China, reported that the dust retention capacity of ground cover 

plants showed seasonal variation in the order of winter > spring > autumn > summer 

[18]. This may be due to the dry winter climate, a greater FP content in the air, and a 

lesser effect of rainfall. In the summer rainfall, a high relative humidity of the air, a lesser 

FP content in the air, and SO2 pollution is also the same. Song et al. [71] found that the 

season with the highest concentration of PM 2.5 in 2013 was winter (112.30 mg/m3), 

while the cleanest season was summer (44.63 mg/m3). 
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Figure 8. Broadleaf tree resistance to SO2 stress in different seasons. The figure parts (a–e) represent the ρ(SO2) class. The affiliation values of different ρ(SO2) 

levels of resistance in the same season ((a). very low, (b). low, (c). moderate, (d). high, (e). very high) are shown horizontally, and the affiliation values of the same 

ρ(SO2) level of resistance in different seasons are shown vertically. 
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Figure 9. The spatial distribution of ρ(SO2) in different seasons in 2015–2020. ((a). Spring, (b). 

Summer, (c). Autumn, (d). Winter). 

4.3. Correlation between GPP and ρ(SO2) in Different Vegetation Types 

The resistance and resilience of deciduous broad-leaf forest and rational needleleaf 

forests differ under different continuous drought events [72]. Changes in vegetation GPP 

can be affected by the concentration of air pollutants. Therefore, by analyzing the rela-

tionship between GPP and SO2 concentration at the time corresponding to the experi-

ment, we can better reveal the relationship between GPP changes and SO2 concentrations. 

In this study, a correlation analysis was performed between the GPP of different vegeta-

tion types and their corresponding urban air SO2 concentrations for the previous 30 days. 

Figure 10 shows a plot of the correlation coefficients between vegetation GPP and urban 

air SO2 concentrations from that day to the previous 30 days in 2019. The correlation co-

efficients were found to be more significant with the SO2 concentrations in the previous 

four days, and the correlations between GPP and SO2 concentrations on other dates were 

unstable, with highly significant negative correlations with the SO2 concentrations in the 

previous four days. The relationship between the change in GPP and the change in SO2 

concentration from the current day to the previous 30 days was compared to reveal the 

influence of SO2 concentration on GPP rhythm. From the results, the GPP change was 

consistent with the SO2 concentration change in the previous four days, indicating a lag 

in GPP change in SO2 in the previous four days. The correlation between different vege-

tation types, GPP, and SO2 concentrations in the previous four days could be ranked in 

the following order: temperate deciduous shrub > temperate deciduous broadleaf forest > 

temperate leaflet deciduous forest > temperate and cold temperate mountain coniferous 

forest > temperate coniferous and broadleaf mixed forest > temperate coniferous forests. 
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The high concentration of SO2 inhibits the growth of vegetation, which can be ex-

plained by the effect of SO2 pollution on plants, which is macroscopically manifested as 

interference with the normal growth and development of vegetation, leading to dwarf-

ing, a smaller leaf area, a lower pollination rate and a lower yield, which results in lower 

plant GPP. Winter is affected by the seasonal effect, which leads to a more abnormal 

correlation coefficient. Urban development boundaries and industrial parks mostly 

showed negative correlations, indicating that human activities have an impact on urban 

green tree growth. Some study areas, including primary forests in the northeast and low 

vegetation cover areas in the northwest and south, showed positive correlations because 

primary forests have a stable vegetation cover [73] and stronger ecological functions, 

while low vegetation cover areas contain more building sites and lower SO2 concentra-

tions. Based on this, it is difficult for low SO2 concentrations to affect vegetation GPP. 

The amount of precipitation in an area affects the type and growth state of vegetation, 

which in turn affects its ability to resist SO2 pollution. 

 

Figure 10. Relationship between GPP and urban air SO2 concentration for the different vegetation 

types in 2019. 

5. Conclusions 

The results demonstrated that the chlorophyll content, leaf temperature, green-peak 

reflectance, and Fv/Fm at 10 days were significantly lower than those at 40 days, regard-

less of the sampling date or SO2 concentration. Based on this, the resistance of the three 

green tree species to SO2 at different ontogenies was comprehensively evaluated. The 

SO2 resistance for the 10-day leaves was consistently lower than that for the 40 days 

leaves. On 9th September, the 10-day leaf resistance performance of the three tree spe-

cies under different SO2 stress concentrations was as follows: P. cerasifera > S. oblate > U. 

pumila. Finally, the spatial products of FPAR, GPP, LAI, and NDVI were combined to 

explore the resistance mechanisms of broadleaf trees to different SO2 concentration clas-

ses during varied seasons on a large scale. Resistance decreased with the increasing 

ρ(SO2) class in different seasons. The resistance of different tree species to SO2 was af-

fected by season. In addition, the GPP change was consistent with the SO2 concentration 

change in the previous four days, indicating a lag in GPP change in SO2 in the previous 

four days. We conclude that mature leaves are more resistant to SO2 stress than young 
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leaves are. The results of this study on changes in the functional traits of urban greening 

trees and environmental factors, as well as the response of functional traits to environ-

mental changes, will provide a basis for the scientific guidance of artificial plant com-

munity construction and the prevention of vegetation degradation in the future. 
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