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Abstract: Anthropogenic interferences through various intensive social-economic activities within
construction land have induced and strengthened the Urban Heat Island (UHI) effects in global
cities. Focused on the relative heat effect produced by different social-economic functions, this
study established a general framework for functional construction land zones (FCLZs) mapping and
investigated their heterogeneous contribution to the urban thermal environment, and then the thermal
responses in FCLZs with 12 environmental indicators were analyzed. Taking Shenzhen as an example
city, the results show that the total contribution and thermal effects within FCLZs are significantly
different. Specifically, the FCLZs contribution to UHI regions highly exceeds the corresponding
proportions of their area. The median warming capacity order of FCLZs is: Manufacture function
(3.99 ◦C) > Warehousing and logistics function (3.69 ◦C) > Street and transportation function (3.61 ◦C)
> Business services function (3.06 ◦C) > Administration and public services function (2.54 ◦C) > Green
spaces and squares function (2.40 ◦C) > Residential function (2.21 ◦C). Both difference and consistency
coexist in the responses of differential surface temperature (DST) to environmental indicators in
FCLZs. The thermal responses of DST to biophysical and building indicators in groups of FCLZs
are approximately consistent linear relationships with different intercepts, while the saturation
effects shown in location and social-economic indicators indicate that distance and social-economic
development control UHI effects in a non-linear way. This study could extend the understanding of
urban thermal warming mechanisms and help to scientifically adjust environmental indicators in
urban planning.

Keywords: functional construction land zones; urban thermal environment; differential surface
temperature; environmental indicators; Shenzhen

1. Introduction

Intensive social-economic activities in urban areas have produced severe and irre-
versible interferences on natural landscape patterns and climate conditions in the urbaniza-
tion processes [1–3]. According to [4], more than two-thirds of the world population will
live in cities and modern towns by 2050. Over the decades, Urban Heat Islands (UHI) has
already received critical attention [5,6]. Due to the induced heat threats and health risks to
urban residents [7,8], UHI has become one of the key issues in the realization of sustainable
urban development goals (SDG11) [9,10].

As a proxy in the social-ecological process of human activities on the natural envi-
ronment, land use and land cover change (LUCC) have been considered the main drivers
of UHI effects. The existing literature on UHI has revealed that urban land use and the
resulting changes in surface biophysical properties of the landscape have led to the energy
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unbalance of the thermal environment [11–13], and the thermal difference between urban
and rural areas in local regions have been the main object in UHI studies. To date, var-
ious studies have investigated the relationship between UHI and urban climate-related
properties from different perspectives from urban land cover and land use differences. For
example, the local climate zones (LCZ) framework [14] provides a basic framework to map
land surface into 17 types of urban climate zones according to urban physical structure
parameters [15–17] and evaluate UHI effects [18–20]. Urban Function Zones (UFZ) [21] is
another LUCC scheme in UHI studies that divides the whole urban area into sub-zones
in consideration of similar social-economic activities in the local blocks. General findings
that the causes and characteristics of UHI are closely related to the landscape patterns
and environmental parameters of the land surface have been demonstrated in many aca-
demic publications [22]. It has been argued that the spatial heterogeneity of land surface
temperature (LST) across LCZ or UFZ is influenced by scale [5], composition [23], and
patterns [24,25] in categories of the surface landscape. Conclusions about differentiated
thermal effects between impervious surfaces [26] and green-blue landscapes [27] have been
applied to provide empirical planning strategies to alleviate UHI effects.

However, there are still limitations in UHI planning practice and research. Landscape
with natural cooling effects such as the waterbody [28], vegetation [29], and artificial green
infrastructures (GI) [13,27,30,31] could help to alleviate urban heat island effects with
natural-based solutions, while the fixed location and scale of areas of forests, rivers, and
lakes mean that these methods are only locally effective and show a lack of extensibility in
the whole area. The effects and causes of UHI have already been investigated at the block
level in recent studies, however, blocks divided by road networks are frequently used as
the basic research units in LCZ and UFZ frameworks, researchers may lose the delicate
insight into the construction land of different functions in a single block caused by different
sizes of the blocks in the real world. In addition, the quantitative distinction between
anthropogenic and environmental heat in UHI studies remains unclear. The difference
between anthropogenic and natural heat still needs further study. Therefore, it is crucial to
measure the thermal contribution in urban construction land.

Understanding human activities in urban land and the resulting quantitative thermal
effects would help to regulate human behaviors to control artificial heating effects on the
urban environment. Nowadays, crowdsourced data like points of interest (POIs) are gradu-
ally used to promote urban mapping due to its directivity to specific social and economic
activities and the lower cost and more convenient access than field surveys [32,33]. Com-
pared to the visual features in remote sensing images [17,34–36], categories or tags of POIs,
which are collected in the searching requirements of daily life and travel activities, could
better quantify the patterns of human activities in the region [37,38] and provide a good
option for anthropogenic heat measurement. However, they are established in different
classification systems by commercial firms, e.g., AMap [39], Baidu Map [40], and Google
Maps [41]. They are also usually inconsistent with the land use standards in the urban
planning field. Moreover, the absolute difference in quantity across different categories of
POIs and different research objectives make it a problem to determine the function in the
research unit just by the quantities or densities [42]. Thus, we still need to integrate the
advantages of POIs for the mapping of social-economic functions of construction land for
urban planning and management in a more spatial-continuous way. When relocating and
resizing the natural cooling area is diseconomy and impossible for the whole city [43], rea-
sonable allocation of the function of construction land, after understanding its diversified
thermal capacity and contribution to the urban thermal environment, may provide new
scientific pathways for heat island effect reduction.

After more than 40 years of rapid development under the Reform and Opening
policy, the urbanization rate of Shenzhen has continued to take the lead in China in the
recent decade [44]. Thus, Shenzhen has become a megacity with high risks of the UHI
effects [45] and limited natural cooling areas [46,47]. Taking Shenzhen as an example city,
three questions are focused on: (1) Are there differential thermal effects within urban
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construction land among various social-economic functions? (2) What are the contributions
of construction land with different social-economic functions to the UHI effect? (3) What
are the response processes of thermal effects to the environmental factors in construction
land? In this study, we proposed an extensible framework to map urban construction
land for social-economic functions at the grid level into functional construction land zones
(FCLZs) using POIs and then evaluated the relative thermal effects based on differential
surface temperature (DST) among urban areas to the surrounding areas. This study aims to
provide implications for the regulation of the anthropogenic influences in UHI reduction in
both the natural and social solutions for urban social-ecological problems.

2. Materials and Methods
2.1. Study Area

Shenzhen is a hilly megacity (21◦25′N~24◦30′N, 111◦12′E~115◦35′E) with a population
of 17.56 million. Situated on the south coastline of China’s mainland and adjutant to the
Peral River in the west, Shenzhen has a subtropical monsoon climate with a rainy and hot
summer for 8 months and dry winter of less than 1 month during average recent years.
The highly utilized construction land with a wide range of functional types is now widely
distributed around woody hills and water bodies in the city (Figure 1), even if under the
control of the urban master plan. Therefore, Shenzhen is one of the first cities to face
not only insufficient space for urban development but also many severe urban ecological
problems, e.g., an urban heat island.
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Figure 1. Location of Shenzhen: limited hilly woodland and waterbody distribution in the city.

2.2. Data Sources

In this study, we used points of interest (POIs) data collected from AMap [48] in June
2019 to recognize FCLZ types. The Landsat 8 Collection 2 Level 2 Science Product (L2SP)
data processed based on Landsat 8 OLI/TIRS images (Table 1) were downloaded from the
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USGS website [49] due to similar higher air temperature and less cloud cover (<5%). To
obtain the natural land surface temperature in non-construction areas, we extracted the
waterbody and woodland cover from GlobeLand30 (2020) dataset [50]. Building survey
data with shape and floor were provided by the Planning and Natural Resources Bureau of
Shenzhen [51]. DEM data from ASTER GDEMV2 [52], night light data from Visible Infrared
Imaging Radiometer [53], and population data from Landscan [54] were also employed to
take into account the influences of building, topography, urban economic development,
and demographic factors to the urban thermal environment, respectively.

Table 1. Information about the Landsat images used in this study.

Scene ID Path/Row Air Temperature of
the Day (◦C)

Average Air
Temperature for Ten

Days (◦C)

Satellite Transit Time
(UTC + 8)

LC81220442021035LGN00 122/44 16/24 18 10:45:33.11 a.m.
LC81210442019071LGN00 121/44 19/24 20 10:52:14.37 a.m.

2.3. Methods

As shown in Figure 2, based on social sourced and remote sensing data, the research
framework of this study consisted of three main steps.
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First, functional construction land zoning (FCLZ) was implemented through the pro-
cess of data cleaning, division of study area, spatial term frequency-inversed patches
frequency (STF-IPF) model evaluation, and a results validation. Then, urban surface indica-
tors including land surface temperature and four groups of environmental parameters, i.e.,
biophysical indicators, building indicators, location, and social-economic indicators, were
retrieved and reprocessed across FCLZS using domain-based approaches. Finally, statistical
analysis methods were used to explore the relationship between DST and environmental
parameters in FCLZs. Next, those key processes are described in detail.

2.3.1. Functional Construction Land Zoning

1. Division of study area

To depict the actual functional construction land in a more precise way, the first step
was to divide the whole urban space into continuous grids at a certain scale to break the
traditional boundary divided by road networks (Figure 3). An appropriate grid scale
should be able to make the recognition results of functional constructional land as close as
possible to reflect the spatial distribution and the focused problems. It was considered that
500 m might be enough distance to capture neighboring POIs in cities [55,56]. Therefore,
we divided Shenzhen into 8575 grids at a scale of 500 m.
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2. Matching POIs attributions to functional construction land zones

To facilitate the FCLZs to guide urban planning and construction land use, we reclas-
sified the POIs collected from AMap according to [57] into 7 types of construction land
use by their defined categories and tags (Table A1), i.e., Residential function (R), Adminis-
tration and public services function (A), Business services function (B), Green spaces and
squares function (G), Street and transportation function (S), Manufacture function (M), and
Warehousing and logistics function (W).

3. Calculation of POIs representativeness in patches

Different types of POIs usually correspond to various degrees of public awareness
although they have differences in quantity. For instance, the commercial service facilities
such as stores, supermarkets, catering, and so on, are always around some places in large
numbers while the more concerned POIs in urban planning, e.g., railway stations, logistics
parks, or large-scale residential communities may have only one or several POIs. As
a consequence, density and frequency methods [42,58] (Equation (1)) often mistakenly
identify the functional construction land zone type based on biased quantity observation
caused by differences in the number of collected points.

POI_Densityi,j =
Count o f POI matched to f unction j in Patch i

Total Count o f POI in Patch i
(1)

Inspired by the Term Frequency-Inversed Document Frequency (TF-IDF) model
(Equation (2)) [59] in the field of Natural Language Process (NLP), we proposed a Spatial
Term Frequency-Inversed Patches Frequency (STF-IPF) model in consideration of both the
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amount and the global significance to recognize representative functional construction land
types (Equation (3)).

TF_IDF =
Count o f word occurances
Total words in document

× log
Total number o f docs

Number o f docs word is in
(2)

STF_IPF = Count o f POI matched to speci f ic f unction
Total number o f POI in patches

×log Total number o f patches
Number o f patches where speci f ic POI are in

(3)

Given a study area divided into patches with a total number of m and a set of POIs
matched to m kinds of functional construction land, then the vector UNumpj and the
matrix NU could be defined as the following Equations (4) and (5), where Nui,j is the
number of POIs in the patch i matched functional construction land type j.

UNumpj = (Nu1,j, Nu2,j, . . . , Num−1,j, Num,j

)
(4)

NU = (UNump1
T , UNump1

T , . . . , UNumpn−1
T , UNumpn

T
)

(5)

Then the normalized STF-IPF value for function j in patch i could be calculated
according to Equation (6), which takes both numbers and repetitiveness into account by
combining Equations (1) and (3).

STF_IPFi,j =
Nui,j ∗

Nui,j

∑n
j=1 Nui,j

∗ log m
COUNT(UNumpj ,Num,j>0)

∑m
i=1 Nus

i,j ∗
Nui,j

∑n
j=1 Nui,j

∗ log m
COUNT(UNumpj ,Num,j>0)

(6)

where COUNT(UNumpj, Num,j > 0) calculates the counts of patches where the func-
tional construction land zone type j is not null. Higher normalized STF_IPFi,j means that
functional construction land zone type j in patch i is more dominant and distinct from
other types.

4. Recognition vectors evaluation

As shown in Equation (7), an FCLZ recognition vector for patch i could be constructed
after sorting the value of normalized STF_IPF values in the descending order with the
corresponding functional zone type index j′.

Rec_veci =
(

STF_IPFmax
i,j, STF_IPFsecondary

i,j′ , . . . , STF_IPFmin
i,j′′

)
(7)

The corresponding functions in the vector whose cumulative percentage is greater than
a threshold value ε (0~100%) are defined as the functions of the patches, and the function
with the maximal value is the main function in the patch. If there is no POI in the patch, the
type is set to a non-construction area (N). According to suggestions on compatible types
and proportions of urban construction land [57], ε was set to 70%. Therefore, we could infer
the FCLZs types in each patch by evaluating the recognition vectors, and then describe the
mixed status of FCLZs by calculating the mixed entropy in each patch by Equation (8).

Mixed_entropy =
n

∑
j=1

(STF_IPFj ∗ ln STF_IPFj) (8)

In this study, we implemented the above processes in python scripts.

2.3.2. Urban Surface Temperature Retrieval

The land surface temperature (LST) data were derived from Landsat 8 Collection 2
Level 2 Science Product (L2SP) [49]. This product provides thermal infrared bands using
the Radiative Transfer Equation method [60] after radiometric calibration and atmospheric



Remote Sens. 2022, 14, 1851 7 of 23

correction. Digital numbers (DN) were converted to land surface temperature (LST) using
Equation (9).

LST = DN × SF + AF− 273.15 (9)

where DN is the digital number for a given pixel. SF and AF are the multiplicative and
additive scale factors of ST products, and their values are 0.00341802 and 149, respectively.
The item −273.15 is the additive factor that converts LST value from Kelvin to Celsius.

As there is no rural area in this concept but many forests in Shenzhen, we used the
average LST in the woodland (LSTwood) to reflect the natural surface land temperature
because of the low impact of human activities. Then DST could be calculated using
Equation (10), which is a more reprehensive and comparable indicator to quantify the
urban thermal environment change induced by human activities.

DST = LST − LSTwood (10)

2.3.3. Urban Environmental Indicators Retrieval

5. Biophysical indicators

L2SP also provides surface reflectance (SR) data in 9 bands processed by the LaSRC
algorithm after calibration and atmospheric correction routines [61]. Similar to Equation (9),
the SR data was converted from DN value to reflectance using Equation (11).

SRi = DN × SF + AF (11)

where SRi is the digital number for a given pixel in band i. SF = 0.0000275, AF = −0.2.
The valid value range for each band except band 6 (1~65,535) is from 7272 to 43,636.

Then based on the previous findings, the normalized difference vegetation index
(NDVI), normalized difference water index (NDWI), and normalized building index (NDBI)
were calculated as indicators to quantify the surface bio-physical characters considering
vegetation cover [26,62], moisture content [28,63], and building materials [64,65] in the
land surface.

6. Building indicators

Buildings are still the most important feature in the construction area [25,66,67], thus
we designed four building indicators (Table 2) using building survey data to quantify the
building characters in the land grid.

Table 2. Definition of building indicators in construction land grid.

Indicator Definition Diagram Explanation

Floor_avg

The ratio of the sum of the
total area of buildings to the

sum of the base area of
buildings
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Indicator Definition Diagram Explanation 

Floor_avg 

The ratio of the sum of the total area of 

buildings to the sum of the base area of 

buildings 

 

𝐹𝑙𝑜𝑜𝑟_𝑎𝑣𝑔 =
𝐻1 × 𝑆1 + 𝐻2 × 𝑆2

𝑆1 + 𝑆2
 

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑆1 + 𝑆2

𝑆0
 

Building_density 
The ratio of the sum of the base area of 

buildings to the area of the grid. 

Building_intensit

y 

The ratio of the sum of the total 

building area of buildings to the area of 

the grid. 

Floor_avg = H1×S1+H2×S2
S1+S2

Building_density = S1+S2
S0

Building_intensity = H1×S1+H2×S2
S0

Building_density
The ratio of the sum of the

base area of buildings to the
area of the grid.

Building_intensity

The ratio of the sum of the
total building area of

buildings to the area of the
grid.

Note: S0 means the area of the land grid. S1,S2, . . . means the projected area of the buildings, while H1,H2, . . .
means the average height of the corresponding building.
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7. Location and social-economic indicators

DEM, Euclidean distance from the waterbody (Eud_Water) and wood (Eud_Wood)
were used as location and neighborhood factors that would influence the urban thermal
environment [19,68,69]. Night light data (VIIRS_Value) and Landscan data (Population)
were indirect but explicit indicators to reflect the intensity of the economic development
density and social activities intensity [70,71].

They were all extracted or calculated, resampled, and matched to the grids under the
ArcGIS 10.2 platform.

2.3.4. Statistical Analysis

The Shapiro-Wilk normality test [72] was used to explore the distributions of DST
among FCLZs, and the Kruskal-Wallis H test [73] was applied to find if there was a signifi-
cant thermal difference between FCLZs. The Dunn test with Holm-Bofferoni correction [74]
was used as a post hoc method in multiple comparisons to verify the specific difference
in each pair of FCLZs. Then Spearman coefficients [75] between DST and environmental
indicators among various types of FCLZs were calculated to figure out factors influencing
the difference in thermal contribution capacity. Finally, multiple simple regression analyses
were conducted to quantify the response processes of DST on environmental indicators.

3. Results
3.1. Mapping of FCLZs

According to the main functional type in each grid, grids with functional construction
land of the 7 types are unevenly distributed in the 10 districts in Shenzhen (Figure 4).
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Figure 4. The main type of functional construction land zone recognition results at a 500 m grid
scale. A: Administration and public services function; B: Business services function; G: Green spaces
and squares function; S: Street and transportation function; M: Manufacture function; R: Residential
function; W: Warehousing and logistics function.

To be more specific, the function of the most widely distributed grids which are
agglomerated and distributed in clusters and strips is the Business services function (B),
accounting for 41.62% of the total area of construction land. Grids of Administration
and public services function (A), Street and transportation function (S), and Manufacture
function (M) are clustered in patches of different sizes and show the aggregated distribution
in each district, which takes up 19.77%, 14.90%, and 11.98% in the construction area,
respectively. Residential function (R) and Green spaces and squares function (G) grids hold
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lesser area proportions of 6.94% and 4.16%, while they both show scattered distribution
across districts. Warehousing and logistics function (W) grids with an area proportion of
only 0.64% are significantly lower than others, which are distributed mainly at the edge
and the center of every district.

As Figure 5 shows, the mixed entropy (ME) of functional construction land in each
grid was calculated and showed obvious spatial aggregation. The natural breaks (Jenks)
method [76] was used to divide the mixing entropy values into three groups (0–0.62,
0.62–0.98, >0.98), representing the mixed degree of low, medium, and high, respectively.
Most grids with a high mixed degree are concentrated in Futian, Luohu, Nanshan, and
southern Baoan, which shows a similar distribution as grids of Business services function
(B) and Street and transportation function (S).
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Figure 5. Mixed entropy distribution of functional construction land zones at 500 m grid scale.

In addition, the grids along the center of other districts are also with a high-level
mixed degree, as it can be inferred that the grids with a high mixed degree are usually the
regions with mature commercial activities and convenient traffic lines. Meanwhile, the
grids with a medium mixed degree are mainly distributed in northern Baoan, Longhua,
Pingshan, Longgang, and Yantian, where there is Manufacture function (M) and Residential
function (R) grids are mainly distributed. Besides, the grids with a low mixed degree are
mainly concentrated in mountainous areas, e.g., northern Yantian, Dapeng, and northern
Nanshan, where there is less construction land but more ecological land (woodland and
waterbody) distributed.

3.2. Differential Surface Temperature in FCLZs

The LSTP images cannot cover the study area in a single scene due to the satellite orbits
across both the two paths in different periods (Figure 6a,b), thus we scattered the retrieved
LST values in the overlapping areas to find the relationship between them. The fitting
curve and regression coefficient (Figure 6c) showed a high degree of linear consistency
between the two images. Therefore, we finally obtained the DST data (Figure 6d) covering
the whole area of Shenzhen computed based on mosaicking the two LST images after
linear adjustment.

To reflect the DST difference in more detail, the mean-standard deviation method [77,78]
was used to classify the DST data into five urban thermal effect levels, which correspond to
the significant cooling effect region (SCR), the unnoticeable thermal difference region (UTR),
the weak heat effect region (WHR), the moderate heat effect region (MHR), and the significant
heat effect region (SHR) in Table 3 and Figure 7. It could be seen from the comparison between
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Figures 6 and 7 that the regions with different levels of heat effect (WHR, MHR, and SHR)
show a spatial distribution of high similarity to that of FCLZs. While SCR presents a spatial
conjugate relationship to heat effect regions, UTR is mainly distributed in the mountainous
woodland area and places adjacent to the waterbody areas.
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Figure 6. Urban surface temperature results in Shenzhen. (a) land surface temperature re-
trieved from scene LC81220442021035LGN00; (b) land surface temperature retrieved from scene
LC81210442019071LGN00; (c) scatter plot and regression between (land surface temperature) LST of
the overlap region in 2019 and 2021. (d) Distribution of differential surface temperature (DST) (◦C).

Table 3. Area Proportion (%) of functional construction land zones (FCLZs) in each thermal effect
level region.

Thermal Effect
Region DST Range (◦C)

Region
Area

Functional Construction Land Zones Non-
Construction

AreasA B G M R S W

SCR DST < −2.96 5.21 5.29 2.66 0.00 0.00 0.24 0.29 0.00 91.53
UTR −2.96 ≤ DST < −0.23 17.87 6.35 5.80 1.33 0.14 1.46 1.07 0.00 83.85
WHR −0.23 ≤ DST < 2.51 33.40 11.11 27.64 2.77 3.86 3.38 6.16 0.17 44.91
MHR 2.51 ≤ DST < 5.25 34.75 13.84 43.96 3.17 11.46 3.66 8.79 0.57 14.54
SHR 5.25 ≤ DST 8.77 10.69 32.63 1.98 20.01 2.26 13.49 1.57 17.37
Total / 100 10.87 28.54 2.44 7.05 2.87 6.50 0.39 41.33

Note: SCR: significant cooling effect region; UTR: unnoticeable thermal difference region; WHR: weak heat effect
region; MFR: moderate heat effect region; SHR: significant heat effect region.
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Figure 7. Thermal effect levels distribution in Shenzhen. SCR: significant cooling effect region; UTR:
unnoticeable thermal difference region; WHR: weak heat effect region; MFR: moderate heat effect
region; SHR: significant heat effect region.

Meanwhile, we calculated the area proportion of heat effect regions in both construc-
tion land and non-construction areas to explore the contribution of various types of FCLZs
to the urban thermal environment. Results (Table 3) show that although it is clear that
construction land contributes more to heat effect regions than non-construction areas, both
the different degree of contribution between various FCLZs and the contribution from
non-construction areas (at least >14.54%) cannot be ignored.

The Shapiro-Wilk test results (Table 4) show all DSTs in each functional construction
land zone and non-construction areas were not statistically normal distributions except for
functions G and R. The results of the Kruskal-Wallis H test and the multiple comparisons
(Table 5) prove significant differences of DST among different FCLZs.

Table 4. The statistics and Shapiro-Wilk test of DST in urban land (◦C).

Statistics
Functional Construction Land Zone Non-

Construction
AreasA B G M R S W

Avg 2.33 2.98 2.27 3.97 2.22 3.42 4.00 0.18
Std 2.27 1.91 2.10 1.77 1.95 2.14 2.44 2.73

Med 2.54 3.06 2.40 3.99 2.21 3.61 3.69 −0.06

p-value 0.000
***

0.000
** 0.5816 0.000

*** 0.1345 0.000 ** 0.0229 * 0.000 ***

Note: *** indicates p < 0.001; ** indicates p < 0.01; * indicates p < 0.05.

Table 5. Dunn test of DST with Holm-Bofferoni correction among FCLZs.

Functional Land
Type A B G M R S W

A / / / / / / /
B 0.000 *** / / / / / /
G 0.876 0.000 / / / / /
M 0.000 *** 0.000 0.000 / / / /
R 0.354 0.000 1.000 0.000 / / /
S 0.000 *** 0.000 0.000 0.000 0.000 / /
W 0.006 ** 0.334 0.004 1.000 0.001 0.568 /

Note: *** indicates p < 0.001; ** indicates p < 0.01.
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Although there were no significant differences in DST between functional land G and
R, either W or M; it was significantly different for most pairs of construction land types.
The above results indicate that the DST distribution in functional land G and R is similar to
that in functional A, while the functional land W showed similar characteristics in DST of
functional B, M, and S.

3.3. DST Relationships with Surface Environmental Indictors

Figure 8 shows that the coefficients in functions A, G, and R are more consistent with
non-construction areas while the building factors in function types B, M, S, and W present
opposite effects to those in non-construction areas at a significant level of 0.05, which also
supports the results in Table 5 from another quantitative perspective. Similar coefficients
suggest similar relationships between DST to environmental indicators, while the different
sizes of the coefficients indicate there are diversified differences in thermal capacity in
construction land. Furthermore, according to the results of statistical differences (Table 5)
and coefficients (Figure 8), we divided 7 types of construction land functional areas into 2
groups (group A, G, and R; group B, M, S, and W).

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 25 
 

 

3.3. DST Relationships with Surface Environmental Indictors 

Figure 8 shows that the coefficients in functions A, G, and R are more consistent with 

non-construction areas while the building factors in function types B, M, S, and W present 

opposite effects to those in non-construction areas at a significant level of 0.05, which also 

supports the results in Table 5 from another quantitative perspective. Similar coefficients 

suggest similar relationships between DST to environmental indicators, while the differ-

ent sizes of the coefficients indicate there are diversified differences in thermal capacity in 

construction land. Furthermore, according to the results of statistical differences (Table 5) 

and coefficients (Figure 8), we divided 7 types of construction land functional areas into 2 

groups (group A, G, and R; group B, M, S, and W). 

 

Figure 8. Spearman correlation coefficients of DST with 12 biophysical and social-economic indica-

tors in seven types of functional construction land zones and non-construction areas. 

With different intercepts in the linear and approximate linear relationships between 

thermal responses of the three biophysical indicators to DST, it is found that the main 

differences are in the degree rather than the mode. 

DST in two groups of FCLZs shows a downward trend on the whole (Figure 9a,b), 

even if an insignificant upward trend is shown when the NDVI value is small (<0.2). In 

the non-construction areas, the first-increase and then-decreasing trends are more obvious 

(Figure 9c). As for NDWI in both groups FCLZs and non-construction areas, a consistent 

linear decline appears simultaneously. Although the increase of NDWI reduces the size 

of DST in group B, M, S, and W, it is consistently found that the increase of NDWI cannot 

offset the warming effect (Figure 9e). While the cooling effect (DST < 0 °C) of NDWI is 

found both in the group for functions of A, G, and R and in non-construction areas when 

the values are larger than 0.15 and 0.1, respectively (Figure 9d,f). Similar findings are ob-

served in the warming effect of NDBI. DST presents similar linear growing trends in both 

groups of FCLZs and the non-construction areas (Figure 9g–i) with the increase of NDBI. 

However, the same value of NDBI has different warming effects in the two groups, while 

in non-construction areas, the warming effect (DST > 0 °C) is coexisting with the cooling 

effect (DST > 0 °C) with a boundary value ~−0.25. 

Figure 8. Spearman correlation coefficients of DST with 12 biophysical and social-economic indicators
in seven types of functional construction land zones and non-construction areas.

With different intercepts in the linear and approximate linear relationships between
thermal responses of the three biophysical indicators to DST, it is found that the main
differences are in the degree rather than the mode.

DST in two groups of FCLZs shows a downward trend on the whole (Figure 9a,b),
even if an insignificant upward trend is shown when the NDVI value is small (<0.2). In
the non-construction areas, the first-increase and then-decreasing trends are more obvious
(Figure 9c). As for NDWI in both groups FCLZs and non-construction areas, a consistent
linear decline appears simultaneously. Although the increase of NDWI reduces the size
of DST in group B, M, S, and W, it is consistently found that the increase of NDWI cannot
offset the warming effect (Figure 9e). While the cooling effect (DST < 0 ◦C) of NDWI is
found both in the group for functions of A, G, and R and in non-construction areas when
the values are larger than 0.15 and 0.1, respectively (Figure 9d,f). Similar findings are
observed in the warming effect of NDBI. DST presents similar linear growing trends in
both groups of FCLZs and the non-construction areas (Figure 9g–i) with the increase of
NDBI. However, the same value of NDBI has different warming effects in the two groups,
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while in non-construction areas, the warming effect (DST > 0 ◦C) is coexisting with the
cooling effect (DST > 0 ◦C) with a boundary value ~−0.25.
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Figure 9. Single-factor scatter plots and fitting curves of DST to three surface biophysical indicators.
Subgraphs (a,d,g) are for the group of functions for A, G and R; (b,e,h) are for the group of functions
for B, M, S and W; (c,f,i) are for Non-construction areas. The vertical blue dotted line is the median
value and the black one is the mean value of the corresponding independent variables; the horizontal
red dotted line is the zero value of DST.

Figure 10 shows that the responses of DST to building indicators present different
trends between the group of functions for A, G, and R and the group of functions for
B, M, S, and W. The increases in Building_density and Building_intensity finally display
stable warming effects with DST above 2.0 ◦C, however, the trends of curves indicate that
intensifying and heightening buildings weaken the warm effects in the group of functions
for B, M, S, and W (Figure 10b,e) but makes little significant contribution to the DST change
in the group of function for A, G, and R (Figure 10a,d). A slight reduction of warming
effects is also shown with the increase of Floor_avg in the group of functions for B, M, S,
and W while in the group of functions for A, G, and R, the increase of Floor_avg leads to
the DST increase first and then tends to be stable.

As is shown in Figure 11c, DST in the two groups both presents a short rising stage
with the increase of elevation (DEM) before the altitude is less than average values (~25 m)
and the cooling effect appears in the non-construction areas with the increase of DEM value.
When the elevation is larger than median values (~30 m), the DST in the group of functions
for A, G, and R shows a declining trend of warming effect and finally presents cooling
effects when the elevation is larger than ~150 m. However, a stable state of warming effect
at 2.75 ◦C after a rapid decline is also shown in the group of functions for B, M, S, and W.
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Figure 10. Single-factor scatter plots and fitting curves of DST to three surface building indicators.
Subgraphs (a,d,g) are for the group of functions for A, G and R; (b,e,h) are for the group of functions
for B, M, S and W; (c,f,i) are for Non-construction areas. The vertical blue dotted line is the median
value and the black one is the mean value of the corresponding independent variables; the horizontal
red dotted line is the zero value of DST.
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Figure 11. Single-factor scatter plots and fitting curves of DST to three surface location indicators.
Subgraphs (a,d,g) are for the group of functions for A, G and R; (b,e,h) are for the group of functions
for B, M, S and W; (c,f,i) are for Non-construction areas. The vertical blue dotted line is the median
value and the black one is the mean value of the corresponding independent variables; the horizontal
red dotted line is the zero value of DST.
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The comparison of the other two location indicators (Eud_Water and Eud_Wood)
represents the responses of DST to the distances from these two types of cooling areas.
Different from the natural distance effects in non-construction areas (Figure 11f,i), DST
increases then tend to be stable after different values as the increase of distance from cooling
areas in different groups of FCLZs, showing that the limited spatial ranges of cooling effect
are diversified (Figure 11d–h). Besides, the stable points of Eud_Water and Eud_Wood to
the group functions for A, G, and R and B, M, S, and W are close to the median distances
with values of ~1000 m and ~300 m, respectively.

Further analysis revealed there is a saturation effect with similar trends in social-
economic indicators like that with location indicators and the thresholds for saturation
likewise varied between the groups of FCLZs (Figure 12). As with the increases of VI-
IRS_Value, DST increases at first and then tends to be stable below 4.0 ◦C for all FCLZs
(Figure 12a,b) and in the non-construction areas, there is a linear increase trend (Figure 12c).
The stable points are ~30 in the group of functions for B, M, S, and W, and ~60 in the
group of functions for A, G, R. The increase in population (Figure 12d–f) would cause
the warming effect to reach saturation points (3~4 ◦C for construction land and 2.5 ◦C
for non-construction areas) at about 3000~5000 people per grid (0.25 square kilometers).
Curves in Figure 12g,h indicate that even the same level of the mixed utilization of urban
construction land (Unit_MixedEntropy) could lead to a stronger warming effect in FCLZs.
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Figure 12. Single-factor scatter plots and fitting curves of DST to three surface social-economic
indicators. Subgraphs (a,d,g) are for the group of functions for A, G and R; (b,e,h) are for the group
of functions for B, M, S and W; (c,f,i) are for Non-construction areas. The vertical blue dotted line is
the median value and the black one is the mean value of the corresponding independent variables;
the horizontal red dotted line is the zero value of DST.

4. Discussion
4.1. Consistency Analysis of Recognized FCLZs

In this study, 4755 grids were identified as functional construction land zones and 3820
are non-construction areas (Figure 4). Comparing the total amount of construction land and
manual discrimination of random samples could evaluate the effectiveness of recognized
FCLZs quantitatively and qualitatively. Calculated with the functional proportion in each
grid, the total area of functional construction land zones is 1171.1 square kilometers, of
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which the difference is 16.4% from the construction land area (1005.9 square kilometers)
in the official report by the Planning and Natural Resources Bureau and Statistics Bureau
of Shenzhen [51]. In addition, considering that the area of new construction land in 2019
was likely to increase according to the government’s land supply plan and development
demands, the actual smaller difference suggests the method of FCLZs could measure the
construction land total amount with relative quantity accuracy at a low cost and in a fast
way. Moreover, the degree of mixed functional construction land zones in Shenzhen is
closely related to the development status of the region, i.e., the higher the mixed degree
of the grid indicates the more diverse human activities and land use patterns (Figure 5).
Through random sampling and manual interpretation (Figure A1), we verified that different
social-economic functions and the characteristic of mixed-use of construction land within
the indistinguishable image features could be identified and reflected through FCLZs.

FCLZs map the attributes of POIs to the corresponding social function on a particular
unit of space, which is different from land use and land cover types because the classification
of construction land is more research-goal oriented due to the diversity and versatility
of human activities in urban construction land. POIs or any other data with location
information referring to functional land could be used and patches could be any spatial
unit with valid meaning and shape besides grids or blocks. However, the grid size has a
great influence on the final recognition result of urban functional land because the functional
types of each grid unit are determined through the spatial distribution and quantities of
POIs contained in each grid. Due to the limited number of POIs in real life, if the grid scale
is too small or lower than the precision of the coordinates of POIs, the functional types
inferred will not be meaningful due to collection errors. At the same time, too large a grid
scale will make it difficult to show the transition and differences of regional changes in
different types of functional construction land zones.

4.2. Differential Thermal Contribution in FCLZs

The non-parametric methods were used in the difference test, as the DST distributions
in FCLZs except G and R followed left-skew distribution rather than a normal distribu-
tion [79]. FCLZs were divided into two groups according to the Dunn test (Table 5) and
environmental indicators correlation validation (Figure 8), which indicates similarity and
difference coexist in the thermal effects of urban construction land among various func-
tional types. The results proved that the UHI is not only caused by construction land [66,80]
but also has significant inner differences due to functions [70,79]. Although LCZ could
divide the urban land through buildings and image characteristics [16], it lacks the detailed
reflection of social-economic functions and is usually applied to study the problems caused
by the physical environment in the heat island issues [14,15].

The thermal contribution proportions of different FCLZs are usually affected by the
area size in terms of the total contribution, however, the thermal contribution at urban
thermal effect levels is not completely consistent with the area. We found that the Business
services function (B) contributes most with proportions of 32.63~43.96% to the considerable
heat effect regions (MHR and SHR), which should be given priority in UHI control and
mitigation in Shenzhen. Meanwhile, the non-construction areas (N) cannot be ignored,
of which the contribution to WHR is 44.91%. All of the contribution proportions to heat
effect regions for Street and transportation function (S), Manufacture function (M), and
Warehousing and logistics function (W) increase rapidly from weak thermal effect to
significant thermal effect.

DST between the FCLZs shows significantly different thermal capacity in construction
land. The thermal difference in degrees among various FCLZs (Table 4) caused by social
functions was measured. We found that the median thermal effects ranked from strong
to weak are as follows: M (3.99 ◦C)> W (3.69 ◦C) > S (3.61 ◦C) > B (3.06 ◦C) > A (2.54 ◦C)
> G (2.40 ◦C) > R (2.21 ◦C) > N (−0.06 ◦C), in which the ranks are similar to a case study
conducted in Beijing [36] and thus it shows consistency in the degree of the thermal effect
of social functions between cities in different climate zones [79]. In addition, it is noticeable
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that the minimum warming effect (R) is about 36.8 times that of non-construction areas in
degrees, which indicates that regardless of the intensity and the way, the relative change
of urban surface temperature induced by human activities is huge enough to increase hot
extremes [81].

4.3. Differential Responses of DST to Environmental Indicators

Response processes of DST to environmental indicators have been key points to
understand and regulate urban thermal effects. The indicators including the fraction of
impervious surface have been discussed in previous studies [34,63,82], but the similarities
and differences within construction land have not been clarified in detail. Our research
investigated and refined the difference and consistency of various environmental indicators
on DST in FCLZs. To further figure out the impacts of indicators on DST, we used the
median resampled values to reduce random errors rather than the mean values because of
the non-normality of DST data [79]. Equivalent repeated observation experiments were
constructed by reorganizing the original grid-level data to ordered DST and corresponding
indicator pairs. Scatter plots and single factor regression analyses were carried out on
each pair of resampled values in the two groups of FCLZs with non-construction areas as
the controlled group, to preliminarily explore the effect of each indicator on DST. On the
whole, most of the indicators show similar trends but distinguished degrees of the effects
on DST in the two groups, which proves that these indicators have similar effect modes [65]
across the scale from a single city to global cities [26]. Non-linear relationships suggest
the saturation effects exhibit in both distance and corresponding values of social-economic
levels, for location indicators and social-economic indicators, respectively.

4.4. Potential Implication and Future Directions

This study investigated the thermal effects in construction land through a continuous
division of social-economic functions at a 500-m grid-level using the FCLZs framework,
which could extend the UHI analyses routine based on LUCC with more details about
human-induced thermal contribution to the urban environment [10]. Our results show
that urban heat island is not only mostly caused by the amount of different land use or
land cover types, but there are also still significant differences within construction land
induced by their social functions. Both similarities and differences exist in the responses
to environmental indicators among FCLZs. Therefore, when the cooling capacities of
GITs and [47,68,69] are insufficient or there are limits in maintaining and appropriately
increasing green space and water bodies [27,68], except for controlling the expansion of
urban areas [44], the relocation of the construction land with different social-economic
functions and configuration with cooling and warming indicators at appropriate thresholds
may be helpful ways to alleviate urban heat island problems.

The limitation of this work is that FCLZs do not have clear boundaries in reality
because of fuzzy positions of POIs, and it is hard to get an absolute ground truth map
to calculate a confusion matrix for absolute accuracy comparison. Random sampling for
verification and comparison with official statics is the currently limited method to compare
relative accuracy. Due to the different response processes among FCLZs, the tradeoff
and synergies between environment indicators in construction should be the focus of
future research.

5. Conclusions

This research established a general framework for functional construction land zones
(FCLZs) mapping based on multi-sourced data to investigate their different contribution to
the urban thermal environment in Shenzhen, China. The thermal environment is character-
ized by DST extracted from land surface temperature data. Based on the difference test of
DST, FCLZs were then divided into groups of functions for A, G, and R and groups of func-
tions for B, M, S, and W to analyze the thermal response with 12 environmental indicators
considering surface biophysics, buildings, location, and social-economic development.
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We found that: (1) The thermal effect and total contribution FCLZs are significantly
different. Although construction land leads to an obvious warming effect with a median
value of 2.94 ◦C in the urban environment, thermal contribution in FCLZs is significantly
different. FCLZs contribute to MHR and SHR (moderate and significant heat regions)
with a proportion of 82.63~85.46%, which highly exceeds the corresponding proportion
in non-construction areas. As for weaker warming effect regions, the contribution of non-
construction areas cannot be ignored because of the size (44.91%). The median thermal
effects of various FCLZs are as follows: M (3.99 ◦C)> W (3.69 ◦C) > S (3.61 ◦C) > B (3.06 ◦C)
> A (2.54 ◦C) > G (2.40 ◦C) > R (2.21 ◦C), and the minimum thermal warming effect of R is
about 36.8 times than unnoticeable thermal effect (−0.06 ◦C) in the non-construction areas.
(2) Difference and consistency coexist in responses of DST to various environmental indica-
tors in FCLZs. Different intercepts in the consistent linear and approximate linear relation-
ships indicated the differences between thermal responses of biophysical indicators (NDBI,
NDVI, and NDWI) in FCLZs were mainly in degree rather than mode. Buildings indicators
(Building_density, Building_intensity, and Floor_avg) showed weak inversed relationships
with DST in the two groups. The saturation effects shown in response of DST to location
(DEM, Eud_Water, and Eud_Wood) and social-economic indicators (Unit_MixedEnropy,
VIIRS_Value, and Population) proved that distance and social-economic development
contribute to the nonlinear change of urban thermal environment. The stable points for
the two groups are ~1000 m and ~300 m, respectively, both of which are almost double
the distances from the cooling region than the truing points in non-construction areas.
Social-economic indicators would have no more impact on the thermal environment when
reaching stable points.

It is an attempt to measure the differences in thermal environment in view of functional
construction land zones. The findings of this research could extend the understanding of
urban thermal warming mechanisms from the different social-economic activities reflected
by the agent of FLCZs and provide new macroscopic perspectives on reducing the nega-
tive impacts of urban heat islands by combining scientific adjustment of environmental
indicators according to their responses processes with the allocation of construction land in
urban planning.
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Appendix A

Table A1. Reclassification system of POIs to functional construction land zones.

Functional Class Sub-Functional Class Class Code Tag of POIs

Residential Function — R Residential community, villas, community centers

Administration and public
services Function

Administration A1

Government agency, Industrial and commercial
bureau, public security bureau, procuratorates, courts,

democratic Parties, social organization, public
institutions

Cultural facilities A2
Public library, museum, science, and technology

museum, art gallery, archives center, exhibition center,
convention center



Remote Sens. 2022, 14, 1851 19 of 23

Table A1. Cont.

Functional Class Sub-Functional Class Class Code Tag of POIs

Administration and public
services Function

Education and
research development A3

Colleges and universities, technical secondary school,
high school, middle school, primary school, research,

and development institution
Sports A4 Gymnasium, court, sports training sites

Medical Treatment and
Public Health A5

Health care services, general hospital, specialized
hospital, clinic, emergency center, disease prevention

agency

Public welfare A6 Welfare house, nursing home, orphanage

Conservation of
historic landmarks and

sites
A7 Scenic spots and historical sites, tourist attractions,

revolutionary site

Religious facilities A9 Church, mosque, temple

Business
Services Function

(B)

Commercial Facilities B1

Retail business (shopping malls, supermarkets, shops,
etc.)

Wholesale market

Catering services (restaurant, bar, tea house, cake
shop, cafe, cold drink, and dessert shop)

Accommodation services (hotels, guest houses, and
resorts)

Business Facilities B2

Financial insurance (banking and insurance company,
ATM, securities company, financial and insurance

service organization)

Art Media (Media organizations such as music, fine
arts, film, television, advertising, network media, art

groups)

Other business facilities companies

Recreation facilities B3

Entertainment facilities (theatre, concert hall, cinema,
song, dance hall, Internet cafe, amusement park)

Recreation and Sports facilities (Golf Driving Range
Racecourse Skating Rink Skydiving Range Motorcycle

Range Shooting Range)

Public utilities B4

Refueling and filling stations (refueling and filling
stations and other energy stations)

Public facilities business outlets (telecommunications,
postal service, water supply, gas supply, heat supply,

etc.)

Others B9

Scientific, educational and cultural services (training
institutions) medical and health services (clinics,

medical and health sales shops, animal medical places)
automobile services life services funeral services

Green spaces and squares (G)
park green space G1 Park, zoo, botanical garden

street and square
green area G3 City square
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Table A1. Cont.

Functional Class Sub-Functional Class Class Code Tag of POIs

Street and transport function
(S)

Transport hub S3 Railway station, long distance bus station, port and
pier

Transport stations S4 Transport facilities (car parks, bus stops, MTR stations)

Others S9 Car training ground

Manufacture Function
(M) – – Industrial park, factory

Warehousing and logistics
Function (W) – – Logistics warehouseRemote Sens. 2022, 14, x FOR PEER REVIEW 22 of 25 
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