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Abstract: We have studied the pulse parameters and peak currents of 17,225 return stroke (RS) events
in the cloud-to-ground lightning flashes observed in Chinese inland areas by a multistation mapping
system called Ningxia Fast Antenna Lightning Mapping Array. There are a total of 685 positive and
16,540 negative RS events, respectively, producing 8280 and 195,860 pulses at multi stations. It is
found that on average, the positive RS pulse appears to have a longer rise time, wider half-peak width,
shorter fall time and longer zero-crossing time than the negative RS pulse. The RS peak currents
are estimated through time-matching with a modest number of RS from the calibrated lightning
location system. The statistical results show that the arithmetic means of positive and negative RS
peak currents are 31.5 and 22.8 kA, respectively. Compared to previously reported studies, both the
RS pulse parameters and peak currents are significantly different. Particularly, we note that in our
dataset, the percentage of positive RSs with peak currents below 10 kA is up to 27%, a significant
number which should be taken into account in such types of statistical studies. Additionally, we
have further used the data from Gifu, Japan, and Ningxia, China, to verify how distance ranges and
observation regions affect the RS characteristics. The results have provided distinct evidence that
the distance ranges and observation regions should be at least two of the factors attributing to the
statistical disparities among different studies.

Keywords: lightning; return stroke (RS); RS pulse parameters; RS peak currents

1. Introduction

Since the late 1980s, several unusual electric features were observed in the summer
thunderstorms in the Chinese inland plateau. These features contain roughly two aspects:
the electric field waveforms and the in-cloud charge structure configurations. Unlike the
dominant negative electric field commonly seen in the summer storms reported in previous
studies [1,2], Wang et al. [3] found that the electric field at the ground was dominantly
positive in Gansu, China, which was also supported or indicated by Liu et al. [4], Qie
et al. [5], Zhang et al. [6] and Wang et al. [7]. Here, the polarity of the electric field
follows the atmospheric electricity sign convention, suggesting that the positive electric
field corresponds to the positive charge overhead. Based on this suggestion, it is natural
to imagine that the charge distribution may be responsible for such a dominant positive
electric field observed in the storms of the Chinese inland plateau areas.

To understand what kind of charge structures should be responsible for the dominant
positive electric field, various observations [8–12] have been carried out during the last
30 years. These studies indicate that in the Chinese inland plateau areas, there is a tripolar
charge structure but with a larger than usual lower positive charge center (LPCC). However,
it should be noted that most of these previous studies were restricted by observational mea-
surements. For example, the deduced charge structure is based on the changing tendency
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of an electric field recorded at one or multiple stations [8] or the sounding system that
measures the electric field only along the propagating path inside the thunderstorm [12].
All of these restrictions make the charge structure in the thunderstorm incompletely re-
vealed. Recently, three-dimensional (3D) mapping systems were developed and widely
used to retrieve the temporal and spatial evolution of charge structures in thunderstorms.
Using this mapping system, Li et al. [13,14] found that in two isolated thunderstorms
occurring in Qinghai province, China, there was an inverted dipole charge structure during
the developing and mature stages. These observation results apparently do not support the
hypothesis of a larger than usual LPCC.

No matter what type of charge structure is the dominant one, the charge structure
configurations in the Chinese inland plateau thunderstorms are indeed different from those
in lowland areas and thus have a significant effect on the lightning discharge processes
such as return stroke (RS). On the one hand, as pointed out by Wang et al. [7], RS in Lhasa
city, Tibet Plateau region of China has larger rise times for both the first and subsequent
strokes. On the other hand, as speculated by Shi et al. [15], the combination of a wide
middle negative charge region and a small LPCC is a favorable condition for an intense first
RS. If so, under the inferred charge structure in plateau thunderstorms, the corresponding
RS characteristics, in terms of both RS pulse parameters and RS currents, should have some
differences from those RSs in lowland areas.

Since March 2019, to better understand the lightning features in Chinese inland areas,
we have deployed a low frequency (LF) mapping system called Fast Antenna Lightning
Mapping Array (FALMA) in Ningxia, China. During the observation of 2019, the Ningxia
FALMA recorded plenty of RSs in the cloud-to-ground lightning flashes, allowing us to
make a statistical study on the RS features. In this paper, we will first study the pulse
parameters and currents of 17,225 RS events observed in two thunderstorm days. The
pulse parameters are characterized by 10-to-90% rise time, half-peak width, fall time, and
zero-crossing time. The RS peak currents are estimated through time-matching with a
modest number of RS from the calibrated lightning location system. Then, we will compare
these statistical results with those previously reported throughout the world, which is
expected to reveal the lightning specificity of Chinese inland areas.

2. Observational Experiment

The FALMA was first developed by the lightning research group in Gifu University,
Japan and used to observe lightning flashes from the summer season of 2017 [16]. Using
the fine structures of waveforms and lightning channel locations, we have completed
several research studies associated with lightning physics. More details can be seen in Wu
et al. [17–23] and Shi et al. [15,24,25].

In March of 2019, with the cooperation of China Science Skyline Tech Co., Ltd., we
started to install a FALMA in Ningxia, China, which is located on the Loess Plateau
adjoining the Qinghai-Tibet Plateau to the west. The geographical location of the Ningxia
FALMA is shown in Figure 1, with the fill color representing the elevation above sea level.
Most of the terrain is at an elevation of 1250–2000 m. There are 24 sites marked by the red
triangles with the neighboring distance ranging from 14 to 375 km. The Ningxia FALMA
covers an area of about 400 km × 300 km.

At each site, there is a fast antenna and a data acquiring system, as shown by an
example scenario of site TJZ in Figure 2a. The equipment is similar to that introduced by
Wu et al. [16]. For example, the fast antennas shown in Figure 2b had a time constant of
about 200 µs and received radio waves in the frequency range of about 500 Hz to 500 kHz.
All of the sites were synchronized by the real-time GPS clock. Other devices such as power
switches and industrial computers are put in the controlling box (Figure 2c). In the data
acquiring process, the Ningxia FALMA is a real-time locating system that differs from the
FALMA deployed in Gifu. To reduce the signal transmission burden, we set the sampling
rate down to 10 megasamples per second (MS/s), indicating that the data time resolution is
0.1 µs. The time-of-arrival technique was applied for locating the pulses on the electric field
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change (E-change) waveforms. More information on the initial locating results in Ningxia
in 2019 can be seen in Gao et al. [26].
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box (c).

3. Data Processing

In the summer of 2017, the Gifu FALMA observed thousands of CG flashes with clear
3D locations, among which the accuracy of RS identification is considered to be up to 100%.

We first extracted the criteria thresholds of RS identification based on these CG flashes
with clear 3D locations, and then used a machine-learning method similar to Zhu et al. [27]
to identify RS in Ningxia CG lightning. However, there may be some differences in RS
waveform characteristics due to different regions. Hence, we needed to manually confirm
multistation RS waveforms after automated programming to ensure identification accuracy.

Eventually, in two thunderstorm days, 2 August and 5 August, during the first ob-
servation year of 2019, we identified more than 200,000 RS pulses from 17,225 RS events.
For each RS pulse, we will analyze pulse parameters (e.g., rise time, half-peak width, and
falling time) and RS peak currents. The specific processing description follows.

3.1. Calculation of Pulse Parameter

The parameter calculation from an example E-change waveform of typical negative
cloud-to-ground (CG) lightning is illustrated in Figure 3. It lasted more than 400 ms,
containing one preliminary breakdown process and three negative RSs. The expanded
waveform of the first negative RS is shown in Figure 3b, with the marking of 0%-, 10%-,
50%-, and 90%-peak crossing points. Similar to definitions of the RS parameters in [28–30],
the following four pulse parameters will be calculated and described:

A. A 10-to-90% rise time (tr): interval rising from 10% to 90% of the RS peak amplitude;
B. Half-peak width (tw/2): 50%-of-peak-crossing time;
C. Fall time (tf): time difference falling from 90% to 10% of the RS peak amplitude;
D. Zero-crossing time (tw): the interval between the zero-crossing points.
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containing three negative RSs; (b) parameter definitions in the expanded view of the first RS. The
abbreviation of DU stands for digital unit.

3.2. Estimation of RS Current

There are two steps for converting from RS peak magnitudes in digital units (DU) to
RS peak currents in kiloamperes (kA). First, a well-known fact is that the radiation field of
RS peak magnitudes are inversely proportional to the distance. Therefore, peak magnitudes
of RS measured at each site can be rang-normalized to 100 km (km), which is calculated
by multiplying RS peak magnitudes by r/100, where r is the horizontal distance in km
between the RS and the specific site. Moreover, r should satisfy the relation r > 50 km
because for r < 50 km, the RS pulse may be distorted by electrostatic and induction electric
fields. The detailed normalization procedure is similar to the method provided in the
supporting information of Shi et al. [15] or Appendix A in Wu et al. [23].

Second, the transformation from the normalized RS peak magnitudes to the estimated
currents is based on time-matching with a modest number of RS from the lightning location
system (LLS) operated by the State Grid Electric Power Research Institute. This LLS
provides plane position and time for each located RS. The performance evaluation for the
LLS has been conducted by Chen et al. [31] through the triggered lightning experiment
in which the currents of RS in triggered lightning flashes were measured accurately. The
results showed that the absolute percentage error of peak currents from LLS was 16.3% on
average, indicating the high reliability of the RS current estimation.

RS events from the Ningxia FALMA and the LLS are matched with a tolerance of 1 µs.
To avoid the other discharge events being misidentified as RS, we manually examined
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all the matched RS events. Eventually, 3,729 RS events in the two thunderstorm days are
selected.

For each site, we estimated the conversion coefficients between the normalized RS
peak magnitudes and RS peak currents, as the examples shown in Figure 4. The black
scattered dots in Figure 4 correspond to each matched RS’s normalized peak amplitude and
LLS current. The red lines represent the fitted regression curves. The conversion coefficients
are estimated through the slope of the red fitted lines. The statistics of RS peak currents
observed by the Ningxia FALMA will be given in Section 5.
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4. Statistics of RS Pulse Parameters

In the two studied thunderstorm days, we observed 17,225 RS events with 685 and
16,540 of them belonging to positive and negative ones, respectively. Each RS can be
detected by multiple FALMA sites. As a result, a total of 8280 positive and 195,860 negative
RS pulses were found and then used to analyze the pulse parameters including 10-to-90%
rise time, half-peak width, 90-to-10% fall time, and zero-crossing time. Note that in our
study, we do not make a distinction between first and subsequent RS due to the huge
number of waveform samples and the extremely wide RS geographic distribution.

4.1. 10-to-90% Rise Time

The histograms of the 10-to-90% rise times in positive and negative RSs are shown
in Figure 5. The arithmetic mean (AM) and geometric mean (GM) values for positive RS
ones are 5.2 and 4.3 µs, respectively. A detailed comparison of rise time in various studies
is given in Table 1. We can see that the average values in this study are larger than that
in Nag and Rakov [32] but apparently smaller than those in Hoko et al. [33], Schumann
et al. [34] and Qie et al. [35].
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Compared to positive ones, 10-to-90% rise times of negative RSs appear to be smaller
with AM and GM values of 3.5 and 3 µs. As seen in Table 1, the mean values obtained
in this study, in general, tend to be one or more times larger than the results in Master
et al. [36] and Ding et al. [37]. The previous studies stated that subsequent RS in both
natural flashes and triggered lightning flashes have relatively shorter rise time with the AM
values of around 1.5 µs (Uman et al. [38]; Mallick et al. [39] and Wang et al. [28]), while the
first RS have longer rise times (Haddad et al. [30]; Ding et al. [37]). As shown in Figure 5,
the rise times in both positive and negative RSs have the largest count in the interval of
[1.5, 2], indicating a high percentage of the subsequent RS. Hence, we speculate that the
mix of first and subsequent RSs in our dataset should be one of the possible reasons for the
differences between our statistical results and previous studies.
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Figure 5. Histograms of rise time for RS pulses: (a) positive RS; (b) negative RS; Here, Min, Max, AM,
GM, and SD are abbreviations for Minimum, Maximum, Arithmetic mean, Geometric mean, and
Standard deviation, respectively.

Table 1. Comparison of 10-to-90% rise time among different studies.

Polarity Reference Distance (km) Number AM (µs) GM (µs)

Positive

Nag and Rakov [32] (NL) 7.8–157 62 4.0 3.4
Qi et al. [35] (NL) / 196 7.77 7.27

Hoko et al. [33] (NL) / 44 6.7 /
Schumann et al. [34] (NL) 3–80 72 5.7 5.2

This study (NL) 0.6–500 8280 5.2 4.3

Negative
Master et al. [36] (NL) 1–20 220 1.5 /
Ding et al. [37] (NL) 35–55 184 2.5 2.2

This study (NL) 0.6–500 195,860 3.5 3

RTL = rocket triggered lightning; NL = Natural lightning; AM = arithmetic mean; GM = geometric mean.

4.2. Half-Peak Width

The statistics of the half-peak width are given in Figure 6. The AM (GM) values for
positive and negative RSs are 7.2 (6.2) µs and 6.4 (5.4) µs, respectively. The mean half-peak
width tends to be slightly wider in the positive RS than in the negative RS.

Similar to Section 4.1, a detailed comparison of the half-peak width among various
studies is shown in Table 2. The average half-peak widths in both positive and negative
RSs are apparently larger than the results in the majority of the previous studies but quite
similar to the results recently obtained by Ding et al. [37]. As found by Ding et al. [37],
natural flashes have a much wider half-peak width than rocket-triggered lightning flashes.
We speculate that the different lightning data sources should be one possible factor that
attributes to the difference of half-peak width among various studies. Other possible factors
will be discussed in Section 6.
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Table 2. Comparison of half-peak width among different studies.

Polarity Reference Distance (km) Number AM (µs) GM (µs)

Positive
Li et al. [40] (NL) / 304 6.2 4.8
This study (NL) 0.6–500 8280 7.2 6.2

Negative

Mallick et al. [39] (RTL) 645 69 2.3 2.2
Li et al. [40] (NL) / 1467 5.3 3.7

Wang et al. [28] (RTL) 68–126 38 2.9 2.9
Ding et al. [37] (NL) 35–55 184 6.3 5.4

This study (NL) 0.6–500 195,860 6.4 5.4
RTL = rocket triggered lightning; NL = Natural lightning; AM = arithmetic mean; GM = geometric mean.

4.3. 90-to-10% Fall Time

Figure 7 shows the histograms of the fall time of positive and negative RSs. The AM
and GM fall times in positive RSs are 15.6 and 12.8 µs. The largest count occurs at the
interval of [10,12]. Compared to positive RSs, the histogram of fall time in negative RSs
distributes much differently. The AM and GM fall times are longer in the negative RSs than
in the positive RSs (AM: 17.5 vs. 15.6 µs; GM: 15.1 vs. 12.8 µs). The largest count occurs at
the interval of [18,20].

A comparison of the fall time among various studies is also shown in Table 3. Overall,
our results of both positive and negative RSs are similar to Li et al. [40] but much smaller
than the statistical results in Liu et al. [41].

Table 3. Comparison of fall time among different studies.

Polarity Reference Distance (km) Number AM (µs) GM (µs)

Positive
Li et al. [40] (first RS in NL) / 304 14.5 /

Li et al. [40] (subsequent RS in NL) / 29 12.6 /
This study (NL) 0.6–500 8280 15.6 12.8

Negative

Liu et al. [41] (NL) / 750 89 /
Li et al. [40] (first RS in NL) / 1467 23.9 /

Li et al. [40] (subsequent RS in NL) / 4109 19.5 /
This study (NL) 0.6–500 195,860 17.5 15.1

RTL = rocket triggered lightning; NL = Natural lightning; AM = arithmetic mean; GM = geometric mean.
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4.4. Zero-Crossing Time

Figure 8 is the statistical results of zero-crossing time in positive and negative RSs.
In general, the positive RS has a longer zero-crossing time than the negative RS (AM:
42.8 vs. 38.5 µs; GM: 37.3 vs. 35.3 µs), which is similar to Lin et al. [42]. If compared to
those previously reported as seen in Table 4, our statistical results tend to be smaller. As
suggested by Haddad et al. [30], the relatively small zero-crossing times should be related
to the insufficiently long instrumental decay time constant. Since the Ningxia FALMA has
a time constant of 200 µs, the obtained zero-crossing times may be underestimated.
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Table 4. Comparison of zero-crossing time among different studies.

Polarity Reference Distance (km) Number AM (µs) GM (µs)

Positive
Nag and Rakov [32] (first RS in NL) 7.8–157 42 69 45

Ishii and Hojo [43] (NL) 100–300 34 151 /
This study (NL) 0.6–500 8280 42.8 37.3

Negative

Lin et al. [42] (NL) 200 77 36 /
Haddad et al. [30] (subsequent RS in NL) 10–330 197 67.6 61.5

Wang et al. [28] (RTL) 68–126 12 50 47
Ding et al. [37] (NL) 35–55 145 58 53

This study (NL) 0.6–500 195,860 38.5 35.3

RTL = rocket triggered lightning; NL = Natural lightning; AM = arithmetic mean; GM = geometric mean.

5. Statistics of RS Peak Currents

The statistics of RS peak currents are shown in Figure 9. The AM value of positive
RS peak currents is 31.5 kA, which is larger than that of negative RS peak currents (AM:
31.5 versus 22.8 kA). It is interesting to note that the GM and median values for positive
and negative RS peak currents are almost the same (GM: 20.7 versus 19.6 kA; Median: 20.1
versus 20.8 kA). In Figure 9a, the largest count of positive RS peak currents distributes at
the interval of [6,8]. Cummins et al. [44] inferred that not all of those events with currents
between 5 and 15 kA are CG flashes and recommend that positive discharge events with
currents smaller than 10 kA should be treated as cloud discharges. However, since all of
the positive RS pulses in this study are examined manually, we are confident enough to
exclude the misclassified in-cloud discharge pulses. In our dataset, the positive RSs with
currents below 10 kA reached up to a percentage of 27% (182/685). Therefore, we are prone
to take the small positive discharge pulses into account seriously.
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The comparison of the RS peak currents is given in Table 5. For positive ones, the AM
values are comparable to that in Zhang et al. [45] and Berger et al. [46] but much smaller
than that in Nag et al. [47]. We suggest that a considerable sample count difference caused
the significant oscillation of the statistical results. As a comparison, the variation of the
statistics for the negative RSs with enough samples is moderate. The AM/Median negative
RS peak currents in our study are apparently larger than subsequent RSs obtained from
previous studies (e.g., [46,48] (AM: 22.8 versus 18.6 kA; Median: 20.8 versus 12 kA;) or the
mixing of first and subsequent RSs from Zhang et al. [45] (22.8 versus 9.5 kA). The median
values of the negative RSs in our data are even comparable to the first RS currents in Nag
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and Cummins. [49] (Median: 20.8 versus 20 kA). Overall, the RS currents recorded in the
Chinese inland regions seem to be relatively larger. To examine this issue, we need to do
more rigorous research in the future.

Table 5. Comparison of RS currents among different studies.

Polarity Reference Number Median(kA) AM (kA) GM (kA)

Positive

Berger et al. [46] 26 35 / /
Zhang et al. [45] (NL) 8184 / 29.7 /

Nag et al. [47] (NL) 48 / 88 75
This study (NL) 685 20.1 31.5 20.7

Negative

Berger et al. [46] (subsequent RS in NL) 135 12 / /
Zhang et al. [45] (NL) 67,022 / 9.5 /

Nag and Cummins. [49] (first RS in NL) 28,328 20 27 /
Cummins et al. [48] (subsequent RS in NL) 886 14.5 18.6 /

This study (NL) 16,540 20.8 22.8 19.6

RTL = rocket triggered lightning; NL = Natural lightning; AM = arithmetic mean; GM = geometric mean.

6. Discussion

As summarized in Figures 5–9 and Tables 1–5, the pulse parameters and peak currents
of RS obviously vary between different studies. Based on comparing the results, it is worth
noting two factors, namely the RS distance range and the regions where RS are recorded.

In terms of the effect of the range distance on the pulse parameter, there always exists a
debate that both the experimental and simulated results have demonstrated the increasing
rise time of RS pulses with the propagation distance of the electric field [50–52], while there
is no clear distance dependence of the rise time for either triggered lightning flashes in
Wang et al. [28] or natural flashes in Haddad et al. [30]. Such a debate motivates us to
examine the RS pulse characteristics as a function of distance.

The statistical results are seen in Figure 10. The red and blue scattered dots represent
the AM values for the positive and negative RSs that are grouped into distance ranges
to show the dependence of pulse parameters on distance. Correspondingly, the red and
blue dotted lines show the fitted curves of pulse parameters by distance, with the equation
and fitting goodness marked on the upper of each subplot. In Figure 10, all of the pulse
parameters containing rise time, half-peak width, fall time, and zero-crossing time appar-
ently exhibit a positive correlation with the distance range. For example, as indicated by
Figure 10a, the rise time of positive (negative) RSs increases by 0.6 (0.2) µs for each 100 km
increase in distance.

Similar to Leal and Rakov [53] and Li et al. [54], we think that one possible factor
contributing to the increasing rise time with distance is the attenuation of high-frequency
components during the propagation of electromagnetic waves on the finite conductivity
and lossy ground. As a result, the pulses tend to be less sharp. The zero-crossing time
shows a slightly decreasing tendency in Leal and Rakov [53] but apparently presents an
increasing tendency with distance in Li et al. [54] which is consistent with our results in
Figure 10. The reason for the diversity of the zero-crossing time is presently not clear. We
speculate that one possible explanation could be the small number of events with a range
larger than 200 km recorded in Leal and Rakov [53]. The other results on the RS pulse
parameters with range distance are similar to what has been found in Li et al. [54].

Additionally, we also give the recorded RS currents with distance in Figure 11. There is
an obvious tendency that the RS recorded from larger distances are toward higher-intensity
discharge events, supporting the suggestion in Nag et al. [32].
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Another factor that would probably attribute to the statistical disparities among
different studies is the observation regions. To verify the RS pulse features as a function
of observation regions, we have made a simple comparison of pulse parameters between
Gifu, Japan and Ningxia, China. The RS in Gifu was recorded on 22 August 2017. Since
positive RSs in Gifu are rarely observed, all of the compared RSs from Gifu and Ningxia
are negative and required to be in the same distance range of [0, 150] km. The statistical
comparison of pulse parameters is shown in Figure 12. We identified 30,171 and 35,297 RS
pulses, respectively in Gifu and Ningxia. On average, RS pulses in Ningxia have longer
rise time (3.4 versus 3.2 µs), narrower half-peak width (4.7 versus 6.3 µs), shorter fall time
(14.7 versus 21.3 µs), and smaller zero-crossing time (35.4 versus 48.4 µs). All of these
statistical disparities between Gifu and Ningxia prove the RS pulse parameters as a function
of observation regions.

Finally, we need to point out that by now, as we have not calibrated the RS peak field
into the current for the Gifu FALMA, the peak current comparison of RS between Gifu and
China is unavailable in this study.
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7. Conclusions

We have studied the pulse parameters and peak currents using 17,225 RS events
observed in the Chinese inland areas by the Ningxia FALMA. Our main conclusions are
summarized as follows.

1. All of the statistical histograms of RS pulse parameters in this study apparently
follow the normal distribution. The comparison between the positive and negative
RSs shows that on average, the positive RS tends to have a longer rise time (AM:
5.3 versus 3.6 µs), wider half-peak width (AM: 7.3 versus 6.4 µs), shorter fall time
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(AM: 15.8 versus 17.5 µs), and longer zero-crossing time (AM: 42.8 versus 38.5 µs).
Compared to the results in other studies, the fall time and zero-crossing time in
this study appear to be shorter, and we suggest that the two parameters should be
underestimated due to the limitation of the short time constant of the fast antenna
used in the FALMA.

2. The AM positive and negative RS currents are 31.5 and 22.8 kA, respectively. Com-
pared to the previously reported results, the RS peak currents in the Chinese inland
areas seem to be relatively larger. In our dataset, the positive RSs with peak currents
below 10 kA account for up to 27% (182/685), indicating that small positive discharge
pulses should be taken into account.

3. The RS pulse characteristics versus distance ranges and regions are verified. The
results show that with increasing distance ranges, pulse parameters and currents
for both positive and negative RSs significantly exhibit an increasing tendency. Take
the rise time as an example, for each 100 km increase in distance, the rise time of
positive (negative) RS increases by 0.6 (0.2) µs. Furthermore, a simple comparison
between Gifu, Japan and Ningxia, China has indicated that pulse parameters differed
significantly in different regions.
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