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Abstract: Accurate and reliable building footprint maps are of great interest in many applications, e.g.,
urban monitoring, 3D building modeling, and geographical database updating. When compared to
traditional methods, the deep-learning-based semantic segmentation networks have largely boosted
the performance of building footprint generation. However, they still are not capable of delineating
structured building footprints. Most existing studies dealing with this issue are based on two steps,
which regularize building boundaries after the semantic segmentation networks are implemented,
making the whole pipeline inefficient. To address this, we propose an end-to-end network for
the building footprint generation with boundary regularization, which is termed RegGAN. Our
method is based on a generative adversarial network (GAN). Specifically, a multiscale discriminator
is proposed to distinguish the input between false and true, and a generator is utilized to learn from
the discriminator’s response to generate more realistic building footprints. We propose to incorporate
regularized loss in the objective function of RegGAN, in order to further enhance sharp building
boundaries. The proposed method is evaluated on two datasets with varying spatial resolutions: the
INRIA dataset (30 cm/pixel) and the ISPRS dataset (5 cm/pixel). Experimental results show that
RegGAN is able to well preserve regular shapes and sharp building boundaries, which outperforms
other competitors.

Keywords: building footprint; semantic segmentation; generative adversarial network; regularization

1. Introduction

Building footprint generation is of great interest in remote sensing, which involves nu-
merous applications, e.g., facilitating urban planning, identifying undocumented buildings,
and assessing building damage after natural disasters. High-resolution remote sensing
imagery, which provides huge opportunities for meaningful geospatial target extraction
at a large scale, becomes a fundamental data source for mapping buildings. Nevertheless,
reliable and accurate building footprint generation is still challenging because of several
factors. On the one hand, the complex and heterogeneous appearance of buildings leads to
internal variability. On the other hand, mixed backgrounds and other objects with similar
spectral signatures further limit the class separability.

Early methods focus on the design of hand-crafted features that can best depict buildings.
For instance, Ref. [1] proposed to utilize spectral and texture features to extract urban buildings
from satellite imagery. Nonetheless, the empirical feature design was satisfactory only under
specific requirements or on specific data and lacked good generalization capabilities.

Remote Sens. 2022, 14, 1835. https://doi.org/10.3390/rs14081835 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14081835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5805-8892
https://orcid.org/ 0000-0001-5530-3613
https://doi.org/10.3390/rs14081835
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14081835?type=check_update&version=1


Remote Sens. 2022, 14, 1835 2 of 16

Nowadays, convolutional neural networks (CNNs) are extensively utilized for remote
sensing tasks [2], as they surpass conventional methods in terms of accuracy of efficiency.
CNNs directly learn hierarchical contextual features from raw inputs, which offer greater
generalization capabilities for the task of building footprint generation than traditional
methods. Although building footprint maps provided by existing CNNs seem to be
impressive at a large scale (Figure 1), it is observed that such results are not that perfect
when we zoom in (see results from FC-DenseNet [3] in Figure 1). The extracted buildings
show irregular shapes, which are far from their exact geometry.

Ours

FC-DenseNet FC-DenseNetours ours

Figure 1. The building masks extracted by FC-DenseNet [3] and RegGAN at large scale and two
zoomed-in areas.

There are also some studies focused on delineating structured building footprint maps
from remote sensing data. Their pipeline usually is composed of two steps, where the
first step is building segmentation and the second step is building regularization. For the
building regularization that aims to refine the semantic segmentation results, early efforts
utilized low-level features [4] or manually defined constraints [5] for the optimization of
building boundaries. However, such the hand-crafted features and rules utilized in these
methods limit their generalization capability. Recently, a two stage method [6] was pro-
posed to regularize building boundaries using deep learning networks. Nevertheless, their
boundary regularization results heavily relied on the input building segmentation maps,
thus, the potential of this method is restricted. Moreover, the separation of building seg-
mentation and boundary regularization makes the whole pipeline inefficient in large-scale
processing. Therefore, we propose RegGAN, which is an end-to-end network to produce
regularized building footprint masks directly from remote sensing imagery. In particular,
building segmentation results are not required as input data in RegGAN, making our
method more efficient and robust. RegGAN is composed of two modules: the generator
and the discriminator. More specifically, the generator has two paths. The regularization
path takes remote sensing imagery as input and aims at producing regularized building
footprints. The ideal input mask is encoded and decoded in the reconstruction path and
then is taken as input to the discriminator. The generator is learned with four loss functions:
semantic loss, adversarial loss, reconstruction loss, and regularized loss. It is notable that
the regularized loss is beneficial to refining building boundaries in our method. Finally,
a multiscale discriminator is proposed to distinguish between ideal building masks and
regularized ones, which can leverage the information in different scales to improve the
final results.

This work’s contributions are threefold.
(1) We propose to combine building mask segmentation and boundary regularization

in an end-to-end network. The proposed method can generate building footprint maps
directly from remote sensing imagery, and optimize building shapes while preserving
semantic correctness.

(2) Our approach is a novel generative adversarial network (GAN). By designing
a multiscale discriminator and incorporating the regularized loss in the full objective
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function, the proposed network can enhance building boundaries to generate structured
building footprints.

(3) In terms of mask and boundary accuracy metrics, RegGAN is superior to other
competitors in remote sensing imagery with different spatial resolutions.

2. Related Work

A lot of methods have been proposed to address the task of building footprint gen-
eration. According to the types of tasks, they can be classified into two types: semantic
segmentation and regularization of building footprints.

2.1. Semantic Segmentation of Building Footprints

Semantic segmentation of building footprints can be regarded as a task of semantic
segmentation that assigns each pixel in the image with the label of “building” or “non-
building”.

Traditional methodologies include four general types: (1) index-based, (2) segmentation-
based, (3) geometrical-primitives-based, and (4) classification-based methods. Index-
based methods aim to directly extract buildings with a designed feature index. The
morphological building index (MBI) [7] is a favored index to depict the built-up pres-
ence, which is calculated by a series of multiscale and multidirectional morphological
operators. The segmentation-based methods generate building footprints based on im-
age segmentation methods. For example, a region-based level set segmentation method
was proposed in [8] for building extraction from remote sensing imagery. Geometrical-
primitives-based algorithms delineate buildings based on the geometrical primitives of
buildings such as corners or boundaries. In [9], the corner points of buildings were first
detected by a Harris corner detector and then connected to construct polygonal represen-
tations. The objective of classification-based methods is to implement machine learning
classifiers, assigning a label to each pixel. For instance, [10] generated building footprints
by utilizing multiple classifiers and fusing them under a hierarchic architecture. However,
these early works have a general limitation: a poor generalization due to the use of prior
information and hand-crafted features.

Instead of the complex feature engineering exploited in traditional methods, deep
learning methods can directly learn features from raw inputs, thus having a better general-
ization capability. With the introduction of deep learning architectures, recent studies can
provide impressive building mapping results by utilizing semantic segmentation networks,
which are usually referred to as fully convolutional network (FCN) [11] or encoder–decoder
architectures. The commonly used networks are SegNet [12], U-Net [13], FC-DenseNet [3],
and HRNet [14]. As a predecessor of semantic segmentation, FCN substitutes the trans-
posed convolutions for fully connected layers, which effectively alters popular classification
models to make pixel-level predictions. In [15], FCN was firstly initialized by using a large
volume of possibly inaccurate OpenStreetMap building semantic masks and then was
refined on a small number of accurately labeled datasets to generate large-scale building
footprint maps. Encoder–decoder architectures are another favored variant. In the encoder,
the spatial resolution of the image is gradually reduced to efficiently map features, which
are then upsampled into a segmentation map with the original resolution in the decoder.
A new cascaded multitask loss was introduced in the training of a SegNet model for the
semantic segmentation of building footprints in [16]. From experiments conducted in [17],
FC-DenseNet has been proved to achieve state-of-the-art performances in datasets with
varied spatial resolutions.

2.2. Regularization of Building Footprints

Considering that the predicted building footprints from semantic segmentation net-
works usually have irregular shapes, the regularization methods aim to obtain refined
building shapes with geometric constraints.
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Most works adopt a two-stage pipeline, where the semantic segmentation of build-
ings is performed first, and then the boundary regularization is applied to the generated
building footprint maps. Early efforts rely heavily on the heuristic design of features or
constraint rules to do the regularization of building footprints. In order to obtain regular-
ized boundaries, morphological filtering was applied in [18] to restrict the area and the
number of building corners within a certain range. In [5,19,20], the length of the building
boundary and its angle with respect to the principal orientation constraint were taken into
consideration in the regularization step. However, it is still difficult for these manually
designed regularization strategies to achieve satisfactory results when building shapes
are diversified. Moreover, the accuracy metrics even decreased after the regularization
algorithm was implemented [20]. Instead of manually defined criteria, a GAN with the
combination of three loss functions (regularized loss, reconstruction loss, and adversar-
ial loss) was proposed in [6] for the automatic regularization of the building footprints
obtained from an FCN.

Recently, several studies have proposed to learn regularized building boundaries
from remote sensing imagery in one framework. One study used deep structured active
contours (DSAC) [21], which learn active contour models (ACM) [22] parameterizations
with a CNN model. The other research proposed a deep active ray network (DARNet) [23]
to learn ACM based on polar coordinates, which can avoid self-intersection. Although they
encoded building regularization as a learnable problem, the results still did not strictly
adhere to the realistic building boundaries. In addition, the initialization of both methods
relied on some instance segmentation methods that were not incorporated into the learning
process. Another framework that can directly generate regular building outlines from aerial
images is PolygonCNN [24]. This end-to-end learning framework consists of two parts:
an FCN for building semantic segmentation and a modified PointNet [25] for building
regularization. However, these above methods still have a limitation in that these methods
focus on only one building in each patch.

3. Methodology
3.1. Overview of RegGAN

Our goal is to achieve semantic labeling of each pixel with the aim of improving the
boundary regularization results simultaneously. Recently, many semantic segmentation
networks have achieved great success in this task, as they are able to automatically learn
strong feature representations rather than manually engineered features. However, some
problems have also emerged, such as irregular shapes, blurred boundaries, and so on. In
parallel with semantic segmentation networks, boundary regularization networks, which
produce regularized and visually pleasing boundaries, have also been shown to effectively
improve semantic segmentation results. To improve the quality of building footprint maps
without losing semantic accuracy, we propose to integrate semantic segmentation and
boundary regularization in an end-to-end network.

As shown in Figure 2, RegGAN is a GAN network consisting of two modules: the
generator G and the discriminator D. G aims to learn regularized building masks. D
distinguishes between generated and ideal building masks. G tries to fool D, thus, these
two modules compete with each other in a game. By doing so, G and D are capable of
coadapting for the generation of the optimal output. The final output from the G is a more
realistic version of buildings masks with sharp boundaries and corners.

The generator G has two paths: the regularization path and the reconstruction path.
The regularization path aims at learning a function that maps ideal building masks y from
the remote sensing imagery z. The regularization is accomplished by an encoder–decoder
structure. It takes remote sensing imagery as input and generates the regularized building
footprints from the encoder E1 and decoder F. It should be noted that the discriminator
does not directly estimate the ideal mask. Instead, the ideal building footprints are encoded
and decoded by the encoder E2 and the common decoder F in the reconstruction path.
The design of the reconstruction path is for deriving a reconstructed version of y, which



Remote Sens. 2022, 14, 1835 5 of 16

contributes to the training of the whole framework on two aspects. On the one hand,
since the ideal mask consists of zeros and ones which will be easily distinguished by D,
the output of the decoder with real values between zero and one can help to avoid the
situation where D wins. On the other hand, the common decoder F is jointly trained with
two encoders in the regularized and reconstructed path, thus the representation learning of
F can be enhanced.

Figure 2. Overview of the RegGAN.

As the scale information is essential to the remote sensing imagery, a multiscale de-
cision fusion is proposed in the discriminator D. D aims to distinguish if the presented
building footprints are regularized masks from the regularization path or the reconstructed
version from the reconstruction path. Specifically, D is separated into D1 and D2, which
distinguish between ideal masks and regularized ones at two scales, respectively. By comb-
ing the decision information of each scale, a more comprehensive understanding of the
difference between regularized and reconstructed building footprints can be assured.

Note that the ground reference y is only utilized in the training stage. In the inference
stage, the remote sensing imagery z is taken as input through the regularization path
(encoder E1 and decoder F) for outputting the final building masks.

3.2. Objective Function of RegGAN

We use an end-to-end training pipeline for the supervised learning of RegGAN.
The whole network is trained by the following loss function:

L = LG + LD , (1)

where LG and LD are two loss functions for optimizing G and D, respectively.
G is learned with four loss functions: adversarial loss LGAN , reconstruction loss LREC,

semantic loss LSEG, and regularized loss LREG, which are expressed as:

LG = α · LGAN + β · LREC + γ · LSEG + δ · LREG , (2)

where α, β, γ, and δ are hyperparameters to introduce relative weights on each loss.
The adversarial loss learns the mapping function from z to y, motivating E1 and F to

generate building masks that are similar to the ideal ones. It is defined as:

LGAN = −Ez[D1(F(E1(z)))]−Ez[D2(D1(F(E1(z))))] . (3)

The output features of D1 are taken as input for D2.
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The reconstruction loss ensures the correctness of the reconstructed version of ideal
samples from the reconstruction path. This term can be calculated as:

LREC = −Ey[y · log(F(E2(y)))] . (4)

The semantic loss alleviates the information loss in the regularization path, enabling
semantic correctness in the regularized building masks, and is defined as:

LSEG = −Ez[y · log(F(E1(z)))] . (5)

Apart from the aforementioned losses, regularized loss is exploited to leverage more
information from the images, which is an important loss term to further improve the
building regularization results. It consists of two types of loss, i.e., Potts loss [26] LPotts and
normalized cut loss [27] Lncut:

LREG = LPotts + ζ · LNcut , (6)

where ζ is a hyperparameter to add a weight on the LNcut. Note that LPotts and LNcut are
loss functions based on Potts [28] and normalized cut [29] models, respectively, which are
graph clustering algorithms for image segmentation. The goal of these two loss terms is
to accurately capture fine local details, helping to accurately localize building boundaries.
Specifically, LPotts and LNcut are defined as:

LPotts = Ez[∑
k

Sk>W(1− Sk)] , (7)

LNcut = Ez[∑
k

Sk>Ŵ(1− Sk)]

1>ŴSk
, (8)

where S = F(E1(z)) is a k-way softmax output from the regularization path and Sk rep-
resents the kth channel in S. In our case, k = 2 as we have two classes, i.e., building and
non-building. W and Ŵ are affinity matrices that measure weights between neighboring
pixels and are computed with Gaussian kernels over the RGBXY space (z and S) [27].

D1 and D2 are trained to distinguish from regularized and reconstructed building
masks at two scales, and the objective function is defined as:

LD = −Ey[D1(F(E2(y)))] +Ez[D1(F(E1(z)))]

−Ey[D2(D1(F(E2(y))))] +Ez[D2(D1(F(E1(z))))]
(9)

It is worth noting that an approximation of the Wasserstein distance is used in Equa-
tion (9) as it helps to stabilize and improve the training and achieves higher quality re-
sults [30].

4. Experiments
4.1. Dataset

In our experiment, we used two datasets with varying spatial resolutions, i.e., the IS-
PRS dataset [31] and the INRIA dataset [32].

(1) ISPRS dataset: The ISPRS dataset consists of 38 tiles of aerial imagery (Figure 3),
which were acquired from Potsdam. Each aerial image has a size of 6000× 6000 pixels.
The ground sampling distance (GSD) is 5 cm/pixel. The corresponding ground truth map
includes six land cover classes. In our experiment, aerial images with RGB bands were
utilized as remote sensing imagery. For data preparation, we selected the class of building
in the original ground reference as the positive class. The training/validation/test split
followed [33]. Specifically, the training set had 20 tiles (id: 7-7, 7-9, 7-10, 7-11, 7-12, 6-7, 6-8,
6-9, 6-10, 6-11, 6-12, 5-10, 5-11, 4-11, 4-12, 3-10, 3-11, 3-12, 2-10, 2-12), the validation set had
4 tiles (id: 7-8, 5-11, 4-10, 2-11), and the test set consisted of the remaining 14 tiles.
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(2) INRIA dataset: The INRIA dataset [32] comprises images captured by airborne
sensors and consists of 360 tiles of aerial images. Each aerial image (Figure 4) has 5000×
5000 pixels at a GSD of 30 cm/pixel. In this dataset, only the ground reference data of five
regions (Austin, Chicago, Kitsap County, Western Tyrol, and Vienna) are made publicly
available, and hence we only conducted experiments on these regions. According to
the set up in [16], the data were split into training and validation sets in our research.
The training set had 155 images, and 31 images with ids 6-36 were collected from each
region, respectively. The validation set had 25 images, and 5 images with ids 1-5 were
collected from each region, respectively. The statistics were derived from the validation set.

Figure 3. Aerial images in the ISPRS dataset (GSD: 5 cm/pixel).

Figure 4. Aerial imagery from the INRIA dataset (GSD: 30 cm/pixel).

4.2. Experiment Setup

In this research, we compared our approach with different semantic segmentation and
boundary regularization methods. We first trained eight different semantic segmentation
networks: FCN-8s [11], U-Net [13], SegNet [12], FC-DenseNet [3], HRNet [14], HA U-
Net [34], EPUNet [35], and ESFNet [36]. Afterward, we selected the semantic segmentation
network that had relatively better performance on two datasets, in order to provide the
preliminary result for the two-stage method [6], a method recently proposed as a boundary
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regularization network of buildings. Finally, we compared the proposed method and the
two-stage method [6].

4.3. Training Details

For network training, all images and ground-truth masks were cropped into small
patches with a size of 256× 256 pixels. All models were implemented on the PyTorch
framework and trained on an NVIDIA Quadro P4000 GPU with 8 GB memory. PyTorch is a
framework that provides an efficient and easy way for the development and deployment of
machine learning models. For the network training, we used the Adam [37] optimization
algorithm, which can minimize error functions by adaptively estimating first-order and
second-order moments [37]. The learning rate of Adam was set as 0.0001. The training
batch size of all models was set as 4. For RegGAN, we utilized ResNet34 [38] in the
encoders E1 and E2. The decoder F had the same architecture as that in the two-stage
method [6]. The discriminators D1 and D2 shared the same layer combinations, which
included a sequence of convolutional layers and two max-pooling operations. α, β, γ, and δ
in Equation (2) were empirically set as 0.5, 1, 10, and 100, respectively. ζ in Equation (6)
was empirically set as 0.01.

4.4. Evaluation Metrics

In this research, the performance of different models was evaluated in two aspects.
The mask metrics were exploited to assess building masks. The boundary metrics were
focused on the measurement of the quality of building boundaries.

4.4.1. Mask Metrics

In our experiments, two metrics including the F1 score and intersection over union
(IoU) were chosen to evaluate the accuracy of the predicted semantic masks [39].

F1 score =
2× precision× recall

precision + recall
, (10)

IoU =
TP

TP + FP + FN
, (11)

precision =
TP

TP + FP
, (12)

recall =
TP

TP + FN
, (13)

where TP, FN, and FP represent the numbers of true positives, false negatives, and false
positives.

4.4.2. Boundary Metrics

For the assessment of building boundaries, we selected the F-measure [40] and simi-
larity index metric (SIM) as the two evaluation criteria in our experiments.

In order to derive the F-measure, we first used the Sobel edge operator [41] to extract
building boundaries from predicted and ground reference building masks, respectively.
The F-measure is defined as the geometric mean of the precision and recall of the extracted
boundaries [39].

SIM measures the polygon similarity between the building polygons in two im-
ages [42]. For a set of ground reference polygons G = {g1, . . . , gN} and predicted building
polygons P = {p1, . . . , pM}, SIM is defined as:

SIM =
1

∑N
i |gi|

N

∑
i
|gi| max

1≤j≤M
IoU(gi, pj) ·GeoSim(gi, pj) , (14)
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where IoU(gi, pj) and GeoSim(gi, pj) are the IoU and geometric similarity between the
jth predicted polygon and the ith ground reference polygon. GeoSim [42] measures the
turning functions [43] between the ground truth and predicted polygons. GeoSim [42] can
be utilized to assess the quality of building boundaries [44].

5. Results

This section presents the comparisons among RegGAN, semantic segmentation net-
works (i.e., FCN-8s [11], U-Net [13], SegNet [12], FC-DenseNet [3], HRNet [14], HA U-
Net [34], EPUNet [35], and ESFNet [36]), and boundary regularization networks (i.e.,
two-stage method [6]). Their quantitative (Tables 1 and 2) and qualitative results (see
Figures 5 and 6) were derived from the ISPRS and INRIA datasets.

Among all naive semantic segmentation networks, FC-DenseNet [3] performed rela-
tively better on both datasets. The superiority in both mask and boundary results can be
attributed to the dense block in the FC-DenseNet [3], which has greater feature extraction
capability [17]. Therefore, we took the segmentation masks obtained by FC-DenseNet [3]
as prior knowledge for the boundary regularization network: the two-stage method [6].
In other words, FC-DenseNet [3] was exploited to perform the initial semantic segmenta-
tion of buildings, and then this result was further processed by the regularization network
proposed in [6] to generate the structured building footprints. Afterward, we made a
further investigation of RegGAN, FC-DenseNet [3], and the two-stage method [6].

Table 1. Accuracymetrics (%) of different methods on the ISPRS dataset (GSD: 5 cm/pixel).

Mask Boundary

Method F1-Score IoU SIM F-Measure

FCN-8s [11] 81.82 69.23 52.80 18.71
U-Net [13] 85.37 74.48 58.11 19.32
SegNet [12] 87.81 78.28 54.84 17.11

FC-DenseNet [3] 88.34 79.11 58.91 20.76
HRNet [14] 85.82 75.16 55.77 17.96

HA U-Net [34] 88.09 79.00 59.20 20.59
EPUNet [35] 88.52 79.41 58.63 16.77
ESFNet [36] 88.65 80.23 57.76 19.67

Two-stage method [6] 87.86 78.35 64.01 19.56
RegGAN 90.40 82.48 65.94 22.27

Table 2. Accuracy metrics (%) of different methods on the INRIA dataset (GSD: 30 cm/pixel).

Mask Boundary

Method F1-Score IoU SIM F-Measure

FCN-8s [11] 84.79 73.60 68.96 27.01
U-Net [13] 84.83 73.66 69.48 28.98
SegNet [12] 84.43 73.05 68.68 28.16

FC-DenseNet [3] 84.66 73.41 67.94 28.96
HRNet [14] 81.52 68.81 66.02 23.75

HA U-Net [34] 84.28 72.82 69.18 26.64
EPUNet [35] 83.90 72.26 68.38 25.21
ESFNet [36] 83.65 71.90 68.35 24.63

Two-stage method [6] 84.59 73.29 69.73 29.56
RegGAN 86.74 76.50 71.44 32.17

We first compared the results against those of semantic segmentation networks.
From the statistical results in Table 1, RegGAN not only obtains increments on mask
metrics (e.g., above 2% in IoU), but also improves on boundary metrics (e.g., above 6% in



Remote Sens. 2022, 14, 1835 10 of 16

SIM). On the INRIA dataset (cf. Table 2), RegGAN surpasses other semantic segmentation
networks by more than 3% in IoU. Moreover, the boundary metrics provided by our method
are much higher. For instance, RegGAN shows about 3% improvement (71.44% vs. 67.94%
in SIM, and 32.17% vs. 28.96% in F-measure) when compared to FC-DenseNet [3]. This
confirms that RegGAN is superior to naive semantic segmentation networks. On the one
hand, the proposed method can significantly boost performance in both mask and bound-
aries metrics. On the other hand, RegGAN is able to realize the semantic segmentation and
regularization of buildings simultaneously in an end-to-end manner.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5. Results obtained from (a) FCN-8s [11], (b) U-Net [13], (c) SegNet [12], (d) FC-DenseNet [3],
(e) HRNet [14], (f) HA U-Net [34], (g) EPUNet [35], (h) ESFNet [36], (i) two-stage method [6], and (j)
RegGAN. (k,l) are the corresponding remote sensing image and ground reference on the ISPRS
dataset (GSD: 5 cm/pixel).

The quantitative results obtained by the two-stage method [6] on the ISPRS and INRIA
datasets were further compared with that obtained by RegGAN. It was observed from both
boundary and mask metrics on both datasets that RegGAN achieved better performance.
In particular, on both datasets, the IOU of our approach was increased by more than 3%,
and the SIM was improved by more than 1.5%. This demonstrates the effectiveness and
robustness of RegGAN for the task of building footprint generation, as our approach can
improve boundary regularization results while preserving semantic correctness.

Figure 5 presents a visual comparison among various methods on the ISPRS dataset.
The building footprints generated by RegGAN are more accurate and reliable, as they coin-
cide better with the ground reference when compared with the other two methods. The re-
sults provided by FC-DenseNet [3] were taken as the input of the two-stage method [6] for
boundary regularization. However, if the results provided by FC-DenseNet [3] were not
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good, this also limited the potential of the two-stage method [6]. For instance, in Figure 5,
some building structures are omitted by FC-DenseNet [3] negatively affecting the perfor-
mance of the two-stage method [6]. In contrast, RegGAN is capable of accurately capturing
more geometric details. It can be clearly seen that more refined boundary representations
and detailed building structures can be acquired by our approach. This is due to the fact
that RegGAN guides the network to initially learn more regular shapes of buildings from
the raw images and get rid of results from other methods as preliminary inputs.

The results obtained by the different methods (Figure 6) correspond to the example
area selected on the INRIA dataset. This scene belongs to a residential region where nearly
connected buildings are detected as large buildings by most naive semantic segmenta-
tion networks (e.g., FCN-8s [11], HRNet [14], and HA U-Net [34]). It is notable that in
Figure 6j, RegGAN is able to effectively distinguish consecutive buildings. Moreover,
building boundaries delineated by the proposed approach are more rectilinear and precise
when compared to other methods. This suggests that RegGAN is still promising in such
challenging situations.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Results obtained from (a) FCN-8s [11], (b) U-Net [13], (c) SegNet [12], (d) FC-DenseNet [3],
(e) HRNet [14], (f) HA U-Net [34], (g) EPUNet [35], (h) ESFNet [36], (i) two-stage method [6], and (j)
RegGAN. (k,l) are the corresponding remote sensing image and ground reference on the INRIA
dataset (GSD: 30 cm/pixel).

6. Discussion
6.1. Ablation Study

In RegGAN, regularized loss and a multiscale discriminator are employed to further
improve the building regularization results. In order to investigate the effectiveness of both
designs, we performed ablation studies with two competitors, i.e., RegGAN (no regularized
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loss) and RegGAN (no multiscale discriminator), where the regularized loss and multiscale
discriminator were removed from the proposed method, respectively. In the RegGAN (no
regularized loss), δ = 0. For RegGAN (no multiscale discriminator), the LD in Equation (9)
is defined as LD = −Ey[D2(D1(F(E2(y))))] + Ez[D2(D1(F(E1(z))))]. That is to say, we
only differentiate from regularized and reconstructed building footprints at one scale.

The statistical results are shown in Tables 3 and 4, and visual results are illustrated
in Figures 7 and 8. As can be seen from the statistical results, the regularized loss and
a multiscale discriminator both bring a significant improvement in mask and boundary
metrics, leading to a positive influence on the performance of RegGAN. When compared
to the RegGAN (no regularized loss), the use of both designs brings a 2.45% improvement
in IoU and a 2.54% improvement in SIM on the ISPRS dataset, respectively. On the INRIA
dataset, the proposed method with both designs outperforms RegGAN (no multiscale
discriminator) by 4.73% in IoU and 1.66% in SIM, respectively.

Table 3. Accuracy Metrics (%) of ablation studies on the ISPRS dataset (GSD: 5 cm/pixel).

Mask Boundary

Method F1-Score IoU SIM F-Measure

RegGAN (no regularized loss) 88.91 80.03 63.40 21.51
RegGAN (no multiscale

discriminator)
87.71 78.12 63.29 17.18

RegGAN 90.40 82.48 65.94 22.27

Table 4. Accuracy metrics (%) of ablation studies on the INRIA dataset (GSD: 30 cm/pixel).

Mask Boundary

Method F1-Score IoU SIM F-Measure

RegGAN (no regularized loss) 85.60 74.83 69.51 29.20
RegGAN (no multiscale

discriminator)
83.56 71.77 69.78 27.49

RegGAN 86.74 76.50 71.44 32.17

(a) (b) (c) (d) (e)

Figure 7. Results obtained from (a) RegGAN (no regularized loss), (b) RegGAN (no multiscale
discriminator), and (c) RegGAN. (d,e) are the corresponding remote sensing image and ground
reference on the ISPRS dataset (GSD: 5 cm/pixel).

Figures 7 and 8 show visual comparisons of the segmentation results, which demon-
strate that the performance of RegGAN is further boosted by the leverage of the regularized
loss and a multiscale discriminator simultaneously. In Figure 7, the methods without these
two designs wrongly identify impervious surfaces as buildings. This is because, impervious
surfaces have similar appearances to buildings, leading to a misjudgment. In the example
area presented in Figure 8, many buildings are occluded by trees and the methods without
these two designs are not capable of providing accurate building boundaries. On the
contrary, the use of these two designs is able to not only avoid such false alarms but also
obtain refined building boundaries.
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(a) (b) (c) (d) (e)

Figure 8. Results obtained from (a) RegGAN (no regularized loss), (b) RegGAN (no multiscale
discriminator), and (c) RegGAN. (d,e) are the corresponding remote sensing image and ground
reference on the INRIA dataset (GSD: 30 cm/pixel).

Thanks to both designs, RegGAN is capable of more effectively leveraging the in-
formation to improve results. Specifically, the regularized loss makes use of the RGB
information of neighboring pixels, which helps to obtain refined building segmentation
masks. The multiscale discriminator takes advantage of decision information at different
scales to enhance the semantic correctness of learned masks. This is beneficial for the
generator to learn more regularized building footprints.

6.2. Time Efficiency of Different Methods

Apart from the accuracy of the generated building footprint maps, the time efficiency
of different methods is also of great interest in practical applications. In this regard, we
investigated the training and inference time of the different methods (Figure 9). Specifically,
the training time refers to the time cost of one iteration (batch size was 4), while the inference
time measures the time cost of a single batch.

Figure 9. Time efficiency of different methods.

Among all naive semantic segmentation networks, FCN-8s [11] and ESFNet [36] are
superior to other methods in terms of the time costs for training and inference. Nevertheless,
FCN-8s [11] performs much worse than other approaches on the ISPRS dataset (Table 1).
Similarly, the accuracy metrics of ESFNet [36] are much lower than those of other methods
on the INRIA dataset (Table 2).
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Although the two-stage method [6] is able to obtain increments on both datasets in
terms of boundary metrics, its time cost for both training and inference is the highest among
all methods. One important reason is that it requires the predicted segmentation maps as
input. In other words, another semantic segmentation network should be trained separately,
leading to low time efficiency. Compared with the two-stage method [6], RegGAN has not
only largely improved the mask and boundary accuracy, but also significantly reduced the
time cost for both training and inference. This suggests that RegGAN can achieve a good
trade-off between computational time and accuracy metrics.

7. Conclusions

In this paper, RegGAN, a new end-to-end semantic segmentation and boundary reg-
ularization network, was proposed to generate building footprint maps. RegGAN is a
GAN model comprising two modules: a generator and a discriminator. More specifically,
two paths in the generator were designed to learn regularized and reconstructed building
footprints, respectively. Afterward, a multiscale discriminator was proposed to differentiate
between them. In addition, we demonstrated that the regularized loss could boost the
performance of the method, as it helped to obtain refined building boundaries. The perfor-
mance of the RegGAN was validated on two datasets with varying resolutions: the INRIA
dataset (30 cm/pixel) and the ISPRS dataset (5 cm/pixel). Experimental results demon-
strated that RegGAN had the potential to generate more satisfying building footprints.
On the one hand, building boundaries were more refined. On the other hand, false alarms
where non-building classes are incorrectly identified as “building”, were alleviated.
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