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Abstract: High-precision spatial mapping of paddy planting areas is very important for food security
risk assessment and agricultural monitoring. Previous studies have mainly been based on multi-
source satellite imagery, the fusion of Synthetic Aperture Radar (SAR) with optical data, and the
combined use of multi-scale and multi-source sensors. However, there have been few studies
on paddy spatial mapping using collaborative multi-source remote sensing product information,
especially in tropical regions such as Southeast Asia. Therefore, based on the Google Earth Engine
(GEE) platform, in this study, Cambodia, which is dominated by agriculture, was taken as the study
area, and an extraction scheme for paddy planting areas was developed from collaborative multi-
source information, including multi-source remote sensing images (Sentinel-1 and Sentinel-2), multi-
source remote sensing land cover products (GFSAD30SEACE, GLC_FCS30-2015, FROM_GLC2015,
SERVIR MEKONG, and GUF), paddy phenology information, and topographic features. Evaluation
and analysis of the extraction results and the SERVIR MEKONG and ESACCI-LC paddy products
revealed that the accuracy of the paddy planting areas extracted using the proposed method is the
highest, with an overall accuracy of 89.90%. The results of the proposed method are better than
those of the other products in terms of the outline of the paddy planting areas and the description
of the road information. The results of this study provide a reference for future high-precision
paddy mapping.

Keywords: GEE; multi-source information; paddy extraction; Sentinel-1/2; Cambodia

1. Introduction

The timely and accurate acquisition of the spatial distribution of paddy planting areas,
on which humans depend for survival, is of great significance for agricultural monitoring,
paddy yield estimation, and other research [1,2]. Paddy is the most important food security
crop in Southeast Asia, but most paddy is planted in the rainy season, and the cloudy
weather in the rainy season seriously affects the use of optical remote sensing images, which
in turn affects the accurate extraction of paddy planting areas [3]. Synthetic Aperture Radar
(SAR) can observe the ground surface in near real-time and can reflect basic information
about an area, such as the geometric structure of the land cover and the roughness of
the vegetation canopy [4]. However, compared with optical remote sensing images, SAR
data are very often used in agricultural mapping and monitoring [5,6]. The Sentinel
series of freely available satellite data, which has high temporal and spatial resolutions,
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provides new opportunities for agricultural monitoring [7], which is extremely important
in cloud-prone regions such as Southern and Southeast Asia.

Until now, scholars have used optical, SAR, and a combination of optical and SAR
images to map paddy planting areas and planting patterns [8–10]. Dong et al. [11]
extracted the paddy planting area of China’s Sanjiang Plain from 1986 to 2010 using
Landsat time-series images and a phenological algorithm. Chen et al. [12] used time-
series Moderate Resolution Imaging Spectroradiometer (MODIS) data to monitor paddy
planting activities in the lower Mekong countries. Park et al. [13] carried out paddy
mapping research in the United States and South Korea based on Landsat and SAR time-
series data. Ding et al. [14] proposed a paddy extraction algorithm that combines Landsat
and MODIS images with phenology-based methods. Since the launch of the Sentinel
series of satellites in 2014, scholars have started to study the areas and planting patterns
of paddy in different regions based on Sentinel data. For example, Singha et al. [15]
created a high-resolution (10 m) seasonal paddy map of Bangladesh and northeast India
using time-series Sentinel-1 data and the random forest algorithm based on the Google
Earth Engine (GEE) platform. Mansaray et al. [16] used Sentinel-1A and Landsat 8 data to
extract the paddy areas in the Central Business District of Shanghai and its surrounding
areas in southeastern China.

Previous studies have mainly been based on multi-source satellite imagery, the fusion
of SAR and optical data, and the combined use of multi-scale and multi-source sensors.
However, few studies have been conducted on the spatial mapping of paddy areas us-
ing collaborative multi-source remote sensing product information, especially in tropical
regions such as Southeast Asia.

Therefore, in this study, the predominantly agricultural country of Cambodia in
Southeast Asia was taken as the experimental area, and the paddy planting areas were
extracted using a combination of multi-source information, including optical and SAR multi-
source remote sensing images, multi-source land cover product data, paddy phenology
data, and topographic data (such as the Digital Elevation Model, DEM) and the GEE remote
sensing big data cloud computing platform. The results of this study provide a new idea for
the application of multi-source remote sensing land cover products and a reference scheme
for the high-precision acquisition of paddy planting areas in cloudy and rainy areas.

2. Materials and Methods
2.1. Study Area

Cambodia, which is located in the southern part of the Indochina Peninsula, borders
Thailand, Laos, and Vietnam (Figure 1). The central and southern parts of Cambodia are
flat, and there are mountains and plateaus in the east, north, and west. Forestry is the
main surface cover type in Cambodia. Cambodia has a tropical monsoon climate. May to
October is the rainy season, November to April is the dry season, and there are differences
in rainfall throughout the region. The Mekong River and Tonle SAP Lake are Cambodia’s
largest river and lake, respectively, and the area around Tonle SAP Lake is an important
crop growing area [17].

2.2. Data and Preprocessing
2.2.1. Remote Sensing Image Data

Free Sentinel-1 SAR and Sentinel-2 multispectral data provide the possibility for paddy
extraction in Cambodia, which contains a large paddy planting area and is susceptible to
cloud cover. Studies have shown that the Vertical Horizontal (VH) polarization backscat-
tering of the Sentinel-1 SAR is more sensitive to paddy growth [16,18]. In addition, the
Interferometric Wide swath (IW) mode is the main mode of operation according to Sentinel-
1’s mission requirements [19], which supports its application in natural resources such as
agriculture and forestry [20]. In order to meet the image quality and scan width require-
ments, IW mode is implemented as the ScanSAR mode with a progressive azimuth scan.
IW mode combines a large mapping zone width (250 km) with a high geometric resolution
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(5 m × 20 m above ground). Using this technique, the radar beam scans back and forth
three times along a strip, allowing the production of a very high quality and uniform SAR
image. Sentinel-1 VH polarization and IW level-1 Ground Distance image (GRD) data were
used as the remote sensing data sources in this study. The Sentinel-2 data include Level-1C
top-of-atmosphere reflectance products and Level-2A bottom-of-atmosphere reflectance
data. The image block is a 100 × 100 km2 ortho image projected onto the UTM/WGS84
coordinate system. In this study, the Level-2A products of Sentinel-2 were selected for
use in the extraction of the paddy growing areas. Tables 1 and 2 present the detailed
information about Sentinel-1 and Sentinel-2 data used in this study.

Figure 1. Geographic location of the study area.

Table 1. Sentinel-1 GRD IW image data.

Sensor Sentinel-1 SAR (C)

Dates 1 January 2015–31 December 2015
Scenes 193

Pass direction Ascending
Polarization VH

Table 2. Sentinel-2 Multispectral Instrument (MSI) image data.

Sensor Sentinel-2 (MSI)

Dates
1 April 2015–1 October 2015 (Cloud cover < 20%)
1 April 2016–1 October 2016 (Cloud cover < 20%)
1 April 2017–1 October 2017 (Cloud cover < 20%)

Scenes 624
Bands used B3, B4, B8, B11
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The Sentinel-1 data provided by the GEE (Figure 2) have been processed, including
orbit correction, GRD boundary noise cancellation, thermal noise cancellation, radiomet-
ric calibration, and terrain correction. The unit of the radar backscattering coefficient
is decibels (dB). The Sentinel-2 data provided by the GEE have been preprocessed, in-
cluding atmospheric correction. Based on this, in this study, the preprocessing included
Sentinel-2 data cloud removal and region clipping. First, the Sentinel-2 data package
contains cloud mask band QA60 with a resolution of 60 m. The dense clouds and cirrus
clouds are labeled as binary positions 10 and 11, respectively. Based on this, the QA10
and QA20 bands are resampled to resolutions of 10 m and 20 m, respectively. In the
corresponding binary bit, 0 indicates no clouds, and 1 indicates that there are clouds.
Therefore, the GEE can be used to facilitate cloud removal using the band logic operation
of the image. Finally, the clip function in the GEE was used to obtain Sentinel-2 image
data covering the study area.

Figure 2. GEE cloud computing platform online code editor.

2.2.2. Multi-Source Land Cover Data

In order to solve the problem of the use of time-consuming and labor-intensive training
samples, in this study, the acquisition of the paddy extraction training samples was con-
ducted using a combination of multi-source remote sensing land cover products. The land
cover products used included GLC_FCS30-2015 [21], FROM_GLC2015 [22,23], SERVIR
MEKONG [24,25], Global Food Security-Support Analysis Data Cropland Extent 2015
Southeast and Northeast Asia 30 m (GFSAD30SEACE) [26], and Global Urban Footprint
(GUF) (https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-11725/20508_read-4794
4/) (accessed on 6 December 2021) [27,28]. According to the production instructions of each
product, the overall accuracies of GLC_FCS30-2015, FROM_GLC2015, GFSAD30SEACE,
and GUF products are 81.4%, 77.3%, 88.6%, and 93.96%, respectively, based on the abso-
lute accuracy evaluation of the validation samples. The overall accuracy of the SERVIR
MEKONG product is currently unpublished. Among them, the spatial resolution of the
GUF product is 12 m, and those of the other products are 30 m. The GUF product was
produced in the period 2011–2012, and the other products (GFSAD30SEACE, GLC_FCS30-
2015, FROM_GLC2015, and SERVIR MEKONG) were produced in 2015. According to
previous studies [29], natural ecosystems often undergo significant changes during periods
of 10 years or longer. Therefore, the timeframes of the data selected are adequate for use
in this study. After obtaining the land cover products for the study area, the WGS84 data
and the Albert equal-area projection coordinate system were used as the spatial reference
system for the analysis.

https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-11725/20508_read-47944/
https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-11725/20508_read-47944/
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2.2.3. Other Auxiliary Data

Paddy planting calendar. The paddy planting calendar information from the Food and
Agriculture Organization (FAO) Global Information and Early Warning System (GIEWS)
information (http://www.fao.org/giews/countrybrief) (accessed on 8 December 2021)
and the RiceAtlas (https://doi.org/10.7910/DVN/JE6R2R) (accessed on 15 December
2021), which is a spatial database of the global paddy calendar and yield produced by
Laborte et al. [30], were used in this study. For more information about the RiceAtlas data,
please refer to Laborte et al. [30]. In addition, in order to ensure the reliability of the paddy
planting calendar information, they were compared with the information obtained from
the field investigations and consultation with local residents in 2018 and data obtained
from the literature. The results revealed that the paddy planting calendar information from
the GIEWS and RiceAtlas is consistent with the reference data. Detailed information about
the paddy planting calendar for the study area is presented in Figure 3.

Figure 3. Paddy planting calendar for the study area.

DEM data. The DEM data used in this study are National Aeronautics and Space
Administration (NASA) Shuttle Radar Topography Mission (SRTM) DEM data, which
are global 30-m resolution DEM data released by NASA in February 2020. This dataset
combines the advantages of the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model (GDEM), ICESat Geoscience Laser
Altimeter System (GLAS), and Portable Remote Imaging Spectrometer (PRISM) data in
terms of processing and improving the original SRTM data, filling in missing values, and
improving the elevation accuracy [31]. In order to improve the computational efficiency,
the DEM data and slope data calculated based on the DEM were obtained directly from the
GEE platform.

2.3. Methods

Figure 4 shows the overall extraction process for the paddy planting areas. First, in or-
der to quickly obtain the training samples, multi-source remote sensing land cover products
were combined to obtain the training samples. Second, using the GEE platform, Sentinel-1
and Sentinel-2 remote sensing images acquired in the dry and rainy seasons were selected
based on the phenological information for the study area. The backscattering coefficients of
the three key phenological periods (transplanting, heading, and mature) of paddy were
extracted based on the Sentinel-1 images. Then, other classification features were extracted
from Sentinel-2 images and were classified using the random forest method. Finally, the
accuracy of the paddy extraction was qualitatively and quantitatively verified and was
compared with existing paddy data products to verify the advantages and disadvantages
of the proposed method.

2.3.1. Acquisition of Training Samples

Figure 5 shows the overall process used to quickly acquire training samples from the
combination of multi-source remote sensing land cover products.

http://www.fao.org/giews/countrybrief
https://doi.org/10.7910/DVN/JE6R2R
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Figure 4. The flowchart of the paddy extraction process.

Figure 5. The flowchart of the process of obtaining the training samples.

Acquisition samples of forests, water bodies, and artificial surfaces. In this study,
using the ArcGIS software (version 10.3 of Esri USA), the spatial superposition method was
used to calculate the consistency of the different land cover data for each grid point pixel
by pixel. The same number was defined for each type of pixel-by-pixel statistic, and the
consistency was divided into different levels from low to high. In this study, samples were
collected from the regions with the highest spatial consistency. The spatially consistent
regions of the GLC_FCS30-2015, FROM_GLC2015, and SERVIR MEKONG products were
obtained via spatial superposition. The results revealed that the consistencies of the water
bodies, forests, and artificial surfaces were high, but the consistencies of the other types
(such as shrubland) were low, which did not satisfy the requirements for the automatic
acquisition of training samples. Therefore, in order to ensure the quality of the samples,
the random sampling method was adopted to obtain the training samples from consistent
areas of forest and water bodies. For the artificial surfaces, the GUF products and artificial
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surface consistency area were spatially superimposed, and the artificial surface samples
were randomly sampled in the new consistent area.

Paddy sample acquisition. The consistent areas of the GLC_FCS30-2015, FROM_GLC2015,
SERVIR MEKONG, and GFSAD30SEACE were spatially superposed with the paddy extrac-
tion areas of the SERVIR MEKONG, then the paddy samples were randomly sampled in the
consistent areas. In addition, in order to ensure the number of paddy samples, Sentinel-2
images, high-resolution Google Earth images, and field investigation data were used as
auxiliary data for the sample encryption to obtain the final paddy training samples.

Acquisition of other types of samples. Due to the small coverage areas of the shrubland,
grassland, other cropland, and other land cover types in the study area, the random
sampling of sample points based on the consistent areas could not guarantee the sample
quality. Therefore, in order to improve the accuracy of the samples, these types of samples
were acquired based on Google Earth images, Sentinel-2 images, and field investigation
data. Using the above three steps, 1350 training samples covering the study area were
finally obtained (Figure 6 and Table 3).

Figure 6. Spatial distribution of training samples.

Table 3. Statistics of the number of training samples.

Type Paddy Other
Cropland Forest Water

Bodies
Shrubs/

Grassland
Artificial
Surfaces Other Types

Total number of samples 722 84 260 100 38 100 46
1350
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2.3.2. Feature Extraction

Key phenological characteristics of paddy. The phenological growth characteristics
of paddy mainly include the germination stage, seedling stage, and transplanting stage
(Figures 7 and 8). During the process of paddy growth and development, the radar
backscattering coefficients under different polarization and polarization combinations
exhibit different response characteristics [32–34]. Therefore, based on the transition of
paddy between the different phenological stages, the backscattering coefficient of the VH
polarization exhibits different trends, which can be used to obtain the paddy planting
areas [35].

Figure 7. Phenological growth characteristics of paddy.

Figure 8. Typical growth map of the three key phenological stages of paddy.

The backscattering coefficients of the different land surface types were different
in the time series, and the paddy types exhibited obvious phenological characteristics.
During the growth and development of paddy, the radar backscattering coefficients
under different polarizations and polarization combinations exhibit different response
characteristics. Specifically, the VH polarization characteristics of paddy in the trans-
planting stage are similar to those of water bodies, and the backscattering coefficient is
low. With the continuous growth of the paddy, the radar backscattering is mainly from
the paddy itself, and the backscattering coefficient increases. When the paddy is in the
heading stage and the milk ripening stage, the backscattering coefficient of the paddy
reaches its maximum value. However, when the paddy is in the waxy ripening stage to
the mature stage, the attenuation effect of the backscattering becomes stronger and the
backscattering coefficient begins to decrease. In summary, in the three key phenological
stages (transplanting, heading, and mature stages), the backscattering coefficients of
paddy are small, large, and small, successively. In this study, the paddy phenology infor-
mation for Cambodia was used as the time window to enhance the paddy information
based on the Sentinel-1 image extraction of the backscattering coefficients in the three
different growth stages of paddy in the dry season and rainy season. The detailed steps
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are as follows. Using the GEE platform, according to the image data for the first growth
stage of paddy in the dry season, the minimum backscattering coefficient was extracted
pixel by pixel using the image collection function in order to enhance the signal of the
paddy transplanting stage. Then, using the image data for the second growth stage
during the dry season, the maximum backscattering coefficient was extracted pixel by
pixel using the image collection function to enhance the signal of the paddy heading
stage. Finally, using the image data for the third growth stage during the dry season,
the minimum backscattering coefficient was extracted pixel by pixel using the image
collection function to enhance the signal of the mature paddy stage. The method of
enhancing the signals of the paddy transplanting stage, heading stage, and mature stage
for the rainy season is consistent with that of the dry season. For a single pixel, the
backscattering coefficients of the three key phenological stages were extracted using
Equations (1)–(3). Through the above steps, the radar backscattering coefficients of six
bands were obtained to enhance the extraction of the paddy planting areas.

σ0
a = min

{
σ0

1 , σ0
2 , σ0

3 , . . . , σ0
k

}
, (1)

σ0
b = max

{
σ0

1 , σ0
2 , σ0

3 , . . . , σ0
m

}
, (2)

σ0
c = min

{
σ0

1 , σ0
2 , σ0

3 , . . . , σ0
n

}
, (3)

where σ0
a , σ0

b , and σ0
c are the backscattering coefficients of the transplanting, heading,

and mature stages, respectively, and k, m, and n are the numbers of all of the available
backscattering coefficients for the transplanting, heading, and ripening stages, respectively.

Other characteristics. The other features used in this study included the thematic
index feature, textural feature, and terrain feature. The features of the thematic indexes
mainly include the Normalized Difference Vegetation Index (NDVI) [36], Modified
Normalized Difference Water Index (MNDWI) [37], and Normalized Difference Building
Index (NDBI) [38]. In this study, after resampling the resolution to 10 m, based on
previous research results, the annual maximum value of the NDVI was used to highlight
the forest information, the annual mean value of the MNDWI was used to highlight the
water information, and the annual mean value of the NDBI was used to highlight the
building information. Haralick et al. [39] proposed the Gray-Level Co-Occurrence Matrix
(GLCM), which is widely used at present and can obtain good classification results, to
characterize the textural features of images [40,41]. Previous studies have shown that the
four features of contrast, entropy, angle of the second moment, and correlation calculated
using the GLCM have good classification effects for remote sensing images and can
effectively represent the textural information of the ground objects [42]. Therefore, in this
study, the four textural features were calculated based on the B8 band Sentinel-2 data and
were introduced into the classification. During the calculation of the above characteristic
indices, the data resolution was resampled to 10 m. In addition to the extracted paddy
phenology features, thematic index features, and textural features, the DEM and slope
(topographic factors) also have an impact on the accuracy of the cropland extraction.
Therefore, the DEM and slope were added to the classification to avoid unreasonable
classification results.

2.3.3. Classification and Accuracy Evaluation

At present, many remote sensing images classification studies have verified the ro-
bustness of the random forest algorithm [43–46]. Therefore, in this study, the random forest
algorithm [47] was used to extract the paddy areas. When building a random forest model
using the GEE platform, the number of randomly selected features is the default value of
the random forest function, which is the square root of the total number of input features.
The number of spanning trees is determined according to the highest classification accuracy
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obtained through multiple tests. The final value is set to 40, and the default values of the
other parameters are used.

The accuracy evaluation was conducted from qualitative and quantitative perspectives.
The qualitative evaluation involved comparing the extracted results with high-resolution
Google Earth images and Sentinel-2 images to assess the spatial pattern. The quantitative
evaluation involved calculating the Overall Accuracy (OA), User Accuracy (UA), Producer
Accuracy (PA), and Kappa coefficients using the confusion matrix [48,49]. The validation
samples used for the quantitative evaluation were based on the data collected during the
field investigation in 2018 and high-resolution Google Earth images. The spatial distribution
of the validation samples and photos of typical samples taken in the field are shown in
Figures 9 and 10. In addition, the results were compared with the SERVIR MEKONG and
European Space Agency Climate Change Initiative Land Cover (ESACCI-LC) [50] products
to verify the advantages and disadvantages of the proposed method. More information
about the ESACCI-LC products can be found at http://maps.elie.ucl.ac.be/CCI/viewer/
index.php (accessed on 10 December 2021).

Figure 9. Spatial distribution of verification samples in the study area.

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
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Figure 10. Field photographs of typical samples in the study area.

3. Results and Analysis
3.1. Paddy Extraction Results and Qualitative Evaluation
3.1.1. Spatial Distribution of Paddy Extraction Results

Figure 11 shows the spatial distribution of the paddy areas in Cambodia in 2015. The
paddy planting areas in Cambodia were mainly distributed in the northwestern, central,
and southern regions. In the east and northeast, the paddy planting areas were small and
scattered, which is closely related to the topography and water resources in the study area.

Figure 11. Spatial distribution of the paddy products in the study area. (a) Results obtained in this
study, (b) SERVIR MEKONG, and (c) ESACCI-LC.
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By comparing the results of this study with the SERVIR MEKONG and ESACCI-LC
products for the same period, it was found that the SERVIR MEKONG product has a
good spatial consistency with the extraction results obtained in this study. However, the
extraction results obtained in this study differ from the SERVIR MEKONG product in
the Tonle Sap Lake (https://hydrosheds.org/downloads) (accessed on 18 December 2021)
basin and the southern Mekong River (https://hydrosheds.org/downloads) (accessed on
18 December 2021) basin. This may be due to the fact that the two products use different
data sources and classification methods. The consistencies of the spatial patterns of the
ESACCI-LC product and the other two products are low. The paddy area extracted from
the ESACCI-LC was mainly concentrated in the southern Mekong River basin, and fewer
paddy areas were located in the vicinity of the Tonle SAP Lake basin. There was a significant
leakage phenomenon in this product. The main reason for this phenomenon is that when
the classification system of the ESACCI-LC product was developed, the paddy types only
included irrigated paddy fields, not rain-fed paddy fields.

3.1.2. Comparative Analysis with Google Earth Images

The four different land cover types were selected based on high-resolution Google
Earth images to compare the extraction results with the existing paddy products. As can
be seen from Figure 12, the paddy planting areas extracted in this study are superior to
the existing paddy products for all four types of surface cover. In regions A and B, there
are obvious omissions in the paddy areas derived from the SERVIR MEKONG product,
resulting in low estimates. The paddy extraction results of the ESACCI-LC products
not only have serious omissions, but they also failed to distinguish paddy areas from
water, with obvious characteristics such as spectrum and texture. In regions C and D, the
results obtained using the proposed method are also better than the results of the other
two products in terms of depicting linear features such as roads and rivers.

Figure 12. Cont.

https://hydrosheds.org/downloads
https://hydrosheds.org/downloads
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Figure 12. Comparison of the paddy extraction results of each product with Google Earth images.
The yellow area represents paddy, and the white area represents non-paddy.

3.1.3. Comparative Analysis with Sentinel-2 Images

Figure 13 shows that the spatial representation of the paddy planting areas extracted
in this study is superior to those of the other two products, and its ability to depict linear
features such as roads and rivers is also slightly better. The SERVIR MEKONG product
depicts the large contours and boundaries of the paddy planting areas, but there is a
certain degree of leakage. For the ESACCI-LC product, the spatial comparison results
are consistent with the aforementioned high-resolution Google Earth images. For all four
types of surface cover, the paddy planting area extracted using this product has a serious
omission phenomenon. Therefore, it is necessary to be cautious when using these data for
relevant research.
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Figure 13. Comparison of the paddy extraction results of each product with Sentinel-2 images (R: B8;
G: B4; and B: B3). The yellow area represents paddy, and the white area represents non-paddy.
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3.2. Quantitative Evaluation

The results of the paddy extraction were evaluated using data for 792 verification
points collected in 2015. Table 4 shows that the OA and kappa values of the paddy areas
extracted in this study are 89.90% and 0.792, respectively. According to the corresponding
relationship between the kappa value and the classification accuracy [51], the method of
extracting the paddy planting areas developed in this study is very good and can meet the
requirements of paddy correlation analysis. By comparing the evaluation results with the
SERVIR MEKONG and ESACCI-LC products acquired in the same period (Figure 14), it
was found that the accuracy of the paddy extraction obtained using the proposed method
is significantly superior to those of the other two products, especially the ESACCI-LC. The
PA of the SERVIR MEKONG product is lower than the UA, indicating that the product has
more omissions than misclassifications, and there is a certain degree of underestimation.
The UA of the ESACCI-LC product is significantly higher than the PA, indicating that the
product has serious omissions and serious underestimation.

Table 4. Confusion matrix of the extraction results.

Non-Paddy Paddy Total

Non-paddy 422 35 457
Paddy 45 290 335
Total 467 325 792

PA (%) 90.36 89.23
UA (%) 92.34 86.57
OA (%) 89.90
Kappa 0.792

Figure 14. Comparison of the accuracies of the extraction results of the proposed method and the
existing products.

4. Discussion
4.1. Potential Sources of Uncertainty

The Sentinel satellites, as data sources with finer temporal and spatial scales, have been
used for paddy extraction and land cover monitoring research [16,18]. Previous studies
have shown that the combination of optical and SAR data can improve the extraction
accuracy of land cover information in areas with strong heterogeneity [52,53]. In this
study, it was found that the overall accuracy of the paddy planting area is higher than
those of the SERVIR MEKONG and ESACCI-LC products, and the results are better for
different paddy landscape patterns. The results demonstrate that the paddy planting area
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extraction method that uses multi-source information developed in this study can not only
reduce the time-consuming and labor-consuming training sample acquisition but can also
rapidly obtain high-precision paddy planting area results using the GEE platform, so it has
good applicability. Therefore, the proposed paddy planting area extraction method based
on Sentinel data provides a new strategy for accurately obtaining high resolution paddy
planting information.

The paddy planting areas extracted in this study were overestimated. The Sentinel SAR
data have different radar backscattering coefficients for the different surface cover types
and are sensitive to the geometric and dielectric properties [54,55]. However, some dryland
crops and other vegetation types were misclassified as paddy (Figure 15). The temporal
radar backscattering coefficient of paddy is largely a function of the paddy growth stage,
and the high temporal frequency of SAR observations can reveal more detailed growth
profiles, which improves the ability to identify paddy from other land cover types [56].
However, different planting densities and planting dates for paddy have important effects
on the radar backscattering coefficient. In addition, the classification method developed in
this study also relies on the three key growth stages of paddy (transplanting stage, heading
stage and mature stage), which may increase the error of the extraction results.

Figure 15. Examples of paddy misclassification.
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4.2. Advantages of the GEE

The results of this study demonstrate the feasibility and reliability of using the GEE
platform and Sentinel image data to obtain high-resolution paddy data products for Cam-
bodia. The GEE platform has a very large database, huge computing power, and many
algorithms, and it is helpful in processing a large number of high-resolution images for the
creation of crop maps [57] and for the timely acquisition of different levels of processed
image products for direct use. This study reveals the incentive effect of land cover mapping
on cloud computing technology in emerging platforms such as GEE.

4.3. Suggestions for Future Work on Paddy Mapping

The Sentinel series of satellites provide open data with hyperspectral, high spatial,
and temporal resolutions, which is important for tropical and subtropical countries with
severe cloud cover. The data fusion techniques and methods are being further developed
and applied to land cover mapping [58]. In addition, phenology-based approaches and
available Landsat images are increasingly being used to study land cover and land-use
changes. For example, Zhong et al. [59] used phenological indicators to map soybean
and maize crops. Dong et al. [60] extracted the area of a rubber plantation using Landsat
and SAR images and a phenology method. Methods based on phenology have been
proven to be effective in mapping paddy using time-series MODIS data [61]. However,
this method faces more challenges when applied to tropical areas (such as Southeast
Asia) with more clouds [62], because paddy planting in these regions is fragmented and
the paddy planting intensity is high [63]. However, the combined application of Landsat
and Sentinel-2 data provides an opportunity to produce high-resolution paddy maps
based on phenological methods.

5. Conclusions

Based on the GEE platform, this paper utilized multi-source information, including
multi-sensor remote sensing images (Sentinel-1 and Sentinel-2), multi-source remote sens-
ing land cover products (GFSAD30SEACE, GLC_FCS30-2015, FROM_GLC2015, SERVIR
MEKONG and GUF), paddy phenology information and topographic factors (DEM and
slope) to acquire paddy data products in Cambodia. The results show that the overall
accuracy of the paddy extraction is 89.90%, and the spatial expression ability for paddy
planting areas is good under different landscape patterns, indicating the feasibility of the
proposed method. The results of the qualitative and quantitative analysis demonstrate that
the paddy extraction results obtained using the proposed method are superior to those of
the SERVIR MEKONG and ESACCI-LC products. This shows that the method of using
multi-source information for cooperative extraction of paddy planting areas proposed in
this paper has great applicability and superiority.
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