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Abstract: Individual tree detection algorithms (ITD) are used to obtain accurate information about
trees. Following the process of individual tree detection, it is possible to use additional processing
tools to determine tree parameters such as tree height, crown base height, crown volume, or stem
volume. However, many of the methods developed so far have focused on parameterising the
algorithms based on the study area, height structure or tree species analysed. Applying the parameters
of the method can be challenging in areas with dense and heterogeneous forests with a diverse stand
structure. Therefore, this work aimed to develop a method to correct the results of ITD algorithms to
identify individual trees more reliably, taking into account different ITD methods based on the Canopy
Height Model. In the present study, we proposed a three-step approach to correct segmentation errors.
In the first step, erroneous (under- and over-segmentation errors) and correct segments were classified.
After classification, the second step was to refine the under-segmentation errors. The final step was
to merge segments from the over-segmentation class with correct segments based on the specified
conditions. The study was conducted in one of the most complex and diverse forest communities in
Europe, making tree identification a major challenge. The accuracy of the segmentation improvements
varied depending on the method applied and tree species group examined. Thus, based on the results,
the paper advocates for the correction method due to its efficiency in mixed forest stands. Therefore,
the present study offers a possible solution to reduce segmentation errors by considering different
forest types and different CHM-based ITD methods for identifying individual trees.

Keywords: individual tree detection (ITD); error correction; under-segmentation; over-segmentation;
canopy height model (CHM); airborne laser scanning (ALS)

1. Introduction

Over the past decade, the term “precision forestry” has become increasingly popular.
It encompasses the use of information technology, analytical tools, and a broad dataset to
support decision-making processes related to economic, ecological, and sustainable aspects
of forest management [1–3].

Since the beginning of aerial photography use for forest inventories in the 1950s,
remote sensing has supported forest surveying and management [4]. Techniques for
the efficient acquisition of precision remote sensing data have developed rapidly over
the last two decades. Nowadays, high-resolution geographic information and remote
sensing data are believed to be directly related to the concept of precision forestry [5].
Currently, one technology with great potential for forest inventory is aircraft-mounted
LiDAR (Light Detection and Ranging, Airborne Laser Scanner—ALS). The use of ALS
data allows the measurement or modelling of a selected tree and stand characteristics
such as tree height [6,7], tree density [8], crown base height [9], crown volume [10], stem
volume [11,12], or aboveground biomass [13]. Presently, it can be noted that traditional
forest inventories, although time-consuming and expensive, are essential for planning
future forestry activities and documenting events [14].
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Since the beginning of the 21st century, more than 200 various semi- and fully-
automated methods for identifying individual trees have been developed [15], and their
number continues to increase. Thus, individual tree detection (ITD) methods can be
divided into point cloud-based, raster-based methods, and methods that combine both
datasets. Most traditional raster-based ITD algorithms can be applied to a raster Canopy
Height Model (CHM) derived from a laser point cloud, which is then interpolated and
smoothed [16]. A common issue when using CHMs is the occurrence of pits (irregular
height differences) within the crown [17]. Such artefacts should be reduced as much as pos-
sible before performing analyses on CHMs, as incorrect values in CHMs can lead to over-
or under-segmentation of tree crowns [18], which negatively affects the quality of the tree
segmentation process. Considering this, an important factor of CHM-based segmentation
is the right choice of method for CHM post-processing.

Choosing the right method to detect individual trees is challenging and depends on
the purpose of the application. It also depends on data characteristics such as sensor type
and point cloud acquisition density [19,20]. The accuracy of ITD depends on many factors,
mainly influenced by stand age, species diversity, canopy closure, and forest type [21].
CHM-based methods are widely used due to the extensive knowledge and experience in
this field and the possibility of easy implementation of the method. On the other hand, the
point cloud pre-processing causes loss of some information. The first ITD methods were
developed in coniferous forests [22–24] and many newer methods focused on the areas of
high latitudes, which often resulted in some improvements of the original methods. This has
raised the problem that many methods developed for coniferous stands have been found to
be less accurate for deciduous or mixed forests with a dense canopy [14], especially those
with high species and height diversity [25]. Therefore, in the last decade many methods
that take into account diverse forest conditions have been developed [26–29].

Detection of individual trees can be a basic tool in forest inventory procedures that
can operate at the tree level. However, errors in under-segmentation (several trees are
combined into one segment) and over-segmentation (one tree is divided into several
segments) affect the accuracy of the parameter estimates at this level. Although successful
results for delineating individual trees from ALS data can be found in the literature, some
problems still need to be solved. These errors are particularly common in complex and
dense forests [28,30,31]. This issue affects both raster-based methods and the ones that
use the whole point cloud. Many authors found that especially the crowns of deciduous
trees are often over-segmented [15,32]. However, this is mainly the case for mature trees,
as relatively small deciduous trees are often correctly segmented [33]. Over-segmentation
errors mainly affect dense stands with a homogeneous height structure, which influences
the difficulty of segmentation [14]. However, if dominant deciduous trees crowns are not
closely intertwined, the segmentation result is better [33], especially in boreal forests where
the crowns are much more clearly separated than in mixed forests [34].

In many studies, authors have tried to parameterise their methods or identify errors to
avoid excessive segmentation errors (in both CHM-based and whole point cloud methods).
Some authors attempted to characterise segments as trees based on geometric variables.
Jing et al. [28] integrated multilayered segments by previously determining whether a
segment is a single tree or a group of trees. They considered that a tree canopy on CHM
usually appears circular, while a cluster of multiple tree canopies is less circular. The
authors compared and integrated segments based on their circularity [35], ordering the
integration from the largest crown level. Lisiewicz et al. [33], considering geometric
variables but also structural and intensity variables from the ALS point cloud, tried to
distinguish segmentation errors (divided into under-segmentation and over-segmentation)
from correct tree segments resulting from CHM-based ITD. Using the Random Forest
classifier, high accuracies were obtained for training (OA = 87.0% and κ = 0.794) and
test data (OA = 85.3% and κ = 0.641). In the study by Dai et al. [36], the segments were
classified as under-segmentation or non-under-segmentation (correctly detected trees and
over-segmentation) using the Support Vector Machine method, with an accuracy of 84%.
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The authors then refined the segments using a mean-shift ITD method in a joint feature
space that includes both spatial and multispectral domains. This increased the average
tree detection accuracy by 6% and 9% for complex stands. In other studies, authors
present tree segmentation methods that combine stem detection with crown segmentation.
Wang et al. [37] first segmented tree crowns from a point cloud acquired during the leaf-
on season to generate initial tree segments. Subsequently, the tree stems were extracted
from the point cloud acquired in leaf-off season and then used to refine the segmentation
from the previous step. This improved the segmentation accuracy in terms of F-score by
4.6%. In another study, Dersch et al. [38] presented a method for individual tree detection
using graph-cut clustering supported by automatic stem detection. The authors have
demonstrated that integrating stem detection with graph-cut segmentation effectively
improves the overall accuracy of the tree segmentation. Considering the F-score, the overall
improvement is up to 15% and 6% for reference data from visual interpretation and field
measurements, respectively.

Many of the previous methods have focused on parameterising the developed algo-
rithms based on the study area, height structure, or species analysed. There are only a
limited number of methods for correcting errors in the ITD algorithms, and although the
researchers have tried to solve this problem in many studies, parameterising the methods
in a different area is often difficult to implement, especially in dense and heterogeneous
forests with a differentiated stand structure. In view of all this, we believe that there is room
for improvement, which does not necessarily have to lie in the development of new ITD
algorithms. Therefore, the aim of this work was to develop a method to correct the results of
CHM-based ITD algorithms to identify individual trees more reliably, considering different
ITD methods. In a first step, the classification method described in Lisiewicz et al. [33] was
used to extract individual segmentation errors, and then under- and over-segmentation
errors were refined using an automatic correction method. We believe that the developed
correction method will be particularly useful in precise remote forest inventories, e.g., when
conducting national forest inventories or inventories of urban greenery. The correction
method was tested in the Białowieża Forest in Poland, a unique area with a huge diversity
of forest types and species composition.

2. Materials and Methods
2.1. Study Area

The Białowieża Forest (BF) is an extensive forest area located on the border between
Poland and Belarus (52◦45′29′′N, 23◦46′8′′E) (Figure 1). Thanks to several years of protec-
tion, part of BF has been preserved in close-to-natural forest to this day. The Polish part of
BF covers about 62,000 ha, of which 10,500 ha is a Białowieża National Park (BNP); nature
reserves cover about 12,000 ha, while the remaining forests are about 39,500 ha. The terrain
here is flat with only slight differences in relative elevation (131.6–195.6 m a.s.l.).

The BF area comprises a lowland forest complex characteristic of the Central European
ecoregion of mixed forests. The area is of exceptional importance for nature conservation
as it includes large intact areas of old-growth forest where natural processes take place.
Taking into account the upper layer of the tree stand, the proportion of individual tree
species in the BNP is 20%—alder (Alnus glutinosa (L.) Gaertn.); 16%—hornbeam (Carpinus
betulus L.); 15%—spruce (Picea abies (L.) H.Karst); 13%—pine (Pinus sylvestris L.); 12%—
lime (Tilia cordata Mill.); 9%—oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.);
6%—birches (Betula pendula Roth., and Betula pubescens Ehrh.); and 9%—others. In turn,
in the BF part situated outside the BPN: 23%—spruce; 19%—alder; 17%—pine; 8%—oaks;
8%—hornbeam; 7%—lime; 7%—birches; and 11%—others [39].
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Figure 1. Polish part of the Białowieża Forest with the selected sample plots.

2.2. Field Measurement

The field measurements were carried out from July to the end of October 2015. A total
of 685 circular sample plots with a radius of 12.62 m were surveyed over the entire area of
the Białowieża Forest. The centres of individual plots were accurately measured using a
real-time kinematic (RTK) receiver or a static geodetic class receiver for global navigation
satellite systems. The SD = 0.096 m was the result of differential pre-processing of the series
GNSS data. We assumed similar or better accuracy for the fixed RTK mode, which was used
much less frequently due to the dense forest in which the measurements were made. Based
on the relationship between the tree and the centre of the sample (distance and azimuth),
the position of each tree was calculated. During the field measurement, numerous tree-
related characteristics, such as tree species, tree height, diameter at breast height (DBH),
crown length and viability of the tree, were collected. In addition, the visibility from above
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was determined for each tree. In this work, only trees visible from above (i.e., on remote
sensing data) were selected to verify the accuracy of the presented correction method.

The verification of the segmentation methods and their corrections was based on a
comparative visual assessment between the reference trees and the segments formed during
the crown delineation process. For this study, 69 plots with different species diversity, with
a total of 1015 trees of nine tree species, were used (Table 1). Furthermore, the plots were
divided into three groups based on species composition (forest types):

- Coniferous—the proportion of spruce and/or pine is over 90%;
- Deciduous—the proportion of deciduous trees is over 90%;
- Mixed stands—the proportion of deciduous and coniferous trees is about 50% in each

forest type.

Table 1. Number (n) of reference trees assigned to a particular species. In addition, information on
the height range (H_range) and the range of diameter at breast height (DBH_range) is given for each
tree species.

Species n H_Range (m) DBH_Range (cm)

Coniferous (20 plots)

Pine 270 16.8–41.0 14.6–75.6
Spruce 131 9.0–44.3 7.5–66.8

Deciduous 21 13.8–32.3 10.9–58.8

Deciduous (26 plots)

Birch 16 20.7–31.1 14.6–36.6
Hornbeam 79 9.1–31.8 8.0–63.0

Lime 55 5.1–34.5 7.6–117
Maple 17 16.8–36.8 13.5–98
Oak 50 17.2–38.7 15.5–117.4

Spruce 20 19.8–37.5 17.9–68.7
Other 14 16.4–34.2 14.9–56.8

Mixed (23 plots)

Alder 55 9.9–36.5 7.4–62.8
Birch 47 9.1–38.0 7.1–66.2

Hornbeam 40 7.9–24.8 7.0–51.0
Lime 10 13.9–28.6 13.3–45.7
Oak 22 17.0–40.2 12.2–111.7
Pine 32 12.1–35.6 15.3–82.2

Poplar 12 21.5–36.7 23–56.1
Spruce 121 8.0–39.0 7.6–71.6
Other 3 18.4–30.6 15.1–50.4

2.3. ALS Dataset

The ALS dataset was acquired on 2–5 July 2015 using the LMS-Q680i full wave-
form system (Riegl, Horn, Austria). The acquired point cloud had an average density of
11 points/m2 and its horizontal accuracy was ≤0.20 m, while the vertical accuracy was
<0.15 m. The LiDAR strips were overlapped with a coverage of 40% (FOV = 60◦). The point
cloud was acquired with a maximum scan angle of ±30◦. In order to cover the entire study
area, 135 individual flight lines were performed. The flight altitude of 500 m resulted in a
laser beam footprint of 0.25 m. The data from ALS were used to generate the digital terrain
model (DTM) and the digital surface model (DSM) with a resolution of 0.5 m.

The DTM was generated using TerraSolid software (Terrascan, Espoo, Finland), which
implements active TIN model algorithm. This filtering method removes non-ground points
based on iterative distance and iterative angle [40]. The DSM was generated using the
method presented by Erfanifard et al. [41]. To verify the quality of the DTM, 421 ground
control points were measured under different conditions (i.e., forests, meadows, public
roads). The accuracy of the DTM was expressed by the Root Mean Square Error (RMSE)
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value of 0.08 m. The models allowed the calculation of a Canopy Height Model (CHM), on
the basis of which the segmentation of the individual trees was carried out.

2.4. Segmentation Algorithms

In our work, three automatic segmentation methods were used to identify trees on
CHM. Segmentation and subsequent correction were carried out on each of the 69 plots,
with the generated CHM in a square buffer of 25 m from the centre of the plot, and then
selecting only those segments whose centroid was within the plot boundaries. A brief
description of the methods used in the study is presented below.

2.4.1. Local Method

The first method presented is the algorithm described in Stereńczak et al. [27], here-
after referred to as the “Local method”, as it was developed based on the data from the
Białowieża Forest area. This method is based on finding local maxima and subsequent
extraction of tree crowns by outlining minimum valleys on the CHM with additional seg-
mentation parameterisation in three height ranges (h ≤ 25 m; 25 m < h ≤ 35 m; h > 35 m).
For this step, the maximum pixel height value in each segment is used. For each height
range, the CHM is filtered with different settings, namely during the automatic optimisa-
tion, the kernel size and the sigma value are assigned for each height range. After filtering,
a hierarchical segmentation is performed starting from the top layer of the tree canopy
using a pouring algorithm [42]. Subsequently, the resulting segments are adjusted using
the five-step procedure described in detail in Stereńczak et al. [27].

2.4.2. MCWS 3 × 3 Method

The method presented consists of two steps. In the first step, the method implements a
tree detection algorithm based on a local maximum filter to search for potential treetops [43].
The window size can be fixed or variable and the algorithm can work with both raster
and point cloud. In this study, we defined the window size as fixed with a kernel size of
three pixels. In the second step, the method implements the watershed function [44] to
segment (i.e., outline) crowns from a CHM. The segmentation is based on the position of
the potential tree crowns determined in an earlier step.

2.4.3. MCWS 5 × 5 Method

The workflow of the method is the same as described in Section 2.4.2. Instead of
a kernel size of three pixels, a kernel with a size of five pixels is used for finding the
local maxima.

2.5. Correction Method

In this paper, we propose a three-step approach to correct CHM-based individual
tree detection errors. In the first step, classification of erroneous (over-segmentation and
under-segmentation) and correct segments was performed using the classification method
described in Lisiewicz et al. [33]. After classification, the next step was to refine the under-
segmentation errors; i.e., to try and separate a segment containing more than one tree. The
final step was to merge segments from the over-segmentation class with segments that
were classified as correct containing a tree stem, based on the specified conditions.

2.5.1. Recognition and Classification of Segmentation Errors

For the purposes of this paper, we used the method described in Lisiewicz et al. [33] to
classify errors in the detection of individual trees. In that study, the authors presented the
possibility of distinguishing correct from erroneous segments resulting from CHM-based
ITD using the ALS data. Using the Random Forest algorithm and a set of selected predictors
from three groups—segment geometry and structural and intensity metrics from the ALS
point cloud—it was possible to identify under-segmentation and over-segmentation errors
as well as correct segments. High accuracies were obtained for both the training data
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(OA = 87.0% and κ = 0.794) and test data from 30 sample plots (OA = 85.3% and κ = 0.641).
In this study, the classification of segmentation errors was performed for each of the tested
and corrected ITD methods. The classification and subsequent correction were performed
for segments above 15 m, as the relatively low point cloud density did not allow correct
extraction of errors below the 15 m height threshold. Therefore, segments with a height of
less than 15 m were automatically assigned to the correct segmentation class. It is worth
noting that segments above 15 m height account for about 82% of all segments and 94% of
the area of all segments in the BF. Figure 2b shows the classification of the input segments
into correct and erroneous classes.
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2.5.2. Refine Under-Segmentation Errors

Once the erroneous segments had been extracted during the classification process,
segments from the under-segmentation class were selected for further refinement. The
correction of the errors in this class consisted of performing a re-segmentation using the
method described in Section 2.4.2., based on a defined window size (Figure 2c) to search
for local maxima within these segments. The refinement of under-segmentation errors
consisted of the following five stages:

(1) The height and volume metrics based on CHM were counted. The different
statistics were used to determine their usefulness in the context of determining a window
size for re-segmentation. To determine the optimal window size, 131 segments outside
the boundaries of the sample plots were selected from the under-segmentation class as a
reference. Then, starting with the lowest values, a window size was assigned that would
allow correct re-segmentation within the segment. Correct re-segmentation means the
correct split of trees in a segment containing two or more trees into separate segments.
The first minimum window size value that allows correct re-segmentation was selected.
Then, based on a forward stepwise regression, three variables were selected to determine
the window size in the search for tree tops, namely, h_median, h_range, and crown_v,
where h_median is a median height of CHM overlapping the segment, h_range is the
difference between the maximum and minimum height of CHM overlapping the segment,
and crown_v is the crown volume calculated from the formula:

∑n
i = 1 res2 ∗ (hi − hmin) (1)

where:
res—CHM resolution;
hi—CHM pixel value;
hmin—the minimum height from CHM overlapping the segment;
n—the number of pixels contained in the segment.

The optimal window size (OWS), whose value was rounded to an integer, was calcu-
lated from the formula:

OWS = 1.96 + (0.00178 ∗ crownv) + (0.06812 ∗ hmedian) + (−0.07653 ∗ h_range) (2)

R2 = 0.70, R2
adj = 0.70, Se = 0.27

e.g., OWS = 1.96 + (0.00178 × 150) + (0.06812 × 25) + (−0.07653 × 10) = 3.1647 ≈ 3.
(2) Based on the indicated window size, local maxima within the boundaries of the

segment with the under-segmentation class were extracted (Figure 2d).
(3) The re-segmentation was performed using the watershed algorithm. Segments

whose local maxima were within the input segment were selected. The boundaries of the
new segments were restricted to the boundaries of the input segment.

(4) To avoid situations where a tree or a large part of it would not be detected, an
additional solution was used to capture such cases. In a complex forest, there were situa-
tions where the local maxima were adjacent to the segment boundaries. To extract these
cases, the difference between the output and input segments was calculated (Figure 2e).
The Classification And Regression Tree method [45] was used to classify the segments to
determine whether it is a tree/tree part or not. Considering such cases in the sample plots,
232 reference segments were selected, of which 146 were trees/tree parts and 86 segments
that could not be assigned to any tree. The model had an overall accuracy and a kappa
coefficient of 97% and 0.94, respectively. Using the CART method, two conditions could be
derived based on which segments were selected, namely where:

{Area ∈ <4, 8> and Reock_Score > 0.35} or {Area > 8 and Reock_Score > 0.21} (3)

where:
Area is the area of the segment;
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The Reock Score [46] is the ratio of the area of the segment to the area of the minimum
bounding circle of that segment.

(5) The final stage was to reclassify the new segments using the method described in
Section 2.5.1. This step was necessary since the algorithm could split a segment from the
under-segmentation class into two or more segments, which do not necessarily have to
be trees but can also be parts of a tree. For new segments from the under-segmentation
class, another iteration was performed, in which the previously mentioned process of
segment splitting was carried out again. Subsequently, a re-classification of the segments
was carried out. If a segment was again found to be under-segmented, it was assigned to
the correct-segmentation class. The output layer of the segments classified as correct and
the segments with over-segmentation errors was used for the next correction step, which is
described in the following subsection.

2.5.3. Refine Over-Segmentation Errors

The refinement of the over-segmentation errors consisted of combining segments from
this class with segments from the correct-segmentation class (Figure 3A). In a first step, a
variety of intensity variables were checked to avoid combining segments from other tree
species. Considering the tree species classification in the Białowieża Forest into spruce,
pine, deciduous, and dead trees [47], the intensity coefficient of variation (referred to as
“int_cv”) variable from the first reflections allowed us to reliably differentiate between these
classes. The next step was to set conditions that allowed correct assignment of segments
from the over-segmentation class. The following four conditions for the refinement of
over-segmentation segments were compiled:

(1) If the segment does not intersect with any other segment, the class has been
assigned to the correct-segmentation.

(2) If a segment intersects with only one segment and it is a correct-segmentation class,
the int_cv difference between the two segments from the formula was checked:

int_cv_di f f (a, b) =
|int_cv(a)− int_cv(b)|

max(int_cv(a); int_cv(b))
∗ 100% (4)

where:
a, b—the intersecting segments;
int_cv(a), int_cv(b) are the intensity coefficient of variation of the segments of interest.
If int_cv_di f f (a, b) ≤ 15%, the two segments were combined. If int_cv_di f f (a, b) > 15%,

the correct-segmentation class was assigned (Figure 3B).
(3) If a segment intersects with only one segment and it is an over-segmentation class,

proceed analogously to condition 2.
(4) If a segment intersects with more than one segment, the following conditions

are proposed:

� It has been checked how many of them are correct-segmentation. If only one, then the
term from condition 2 was executed. If more than one is correct-segmentation and
both segments have an int_cv difference of 15% or less, the segment with the longest
common boundary was merged (Figure 3C).

� In other cases, i.e., if there was more than one segment from the over-segmentation
class, the same condition as above was executed.

2.5.4. Segmentation Methods and Correction Validation

A visual method was used to assess the accuracy of individual tree detection by
different segmentation methods and their subsequent correction. The visual assessment
consisted of comparing the locations of trees from field measurements with the segments
generated by the segmentation and correction process. Thanks to the use of high-resolution
remote sensing data—georectified images (ground sampling distance (GSD)—0.2 m), CHM
(GSD 0.5 m), and ALS point cloud cross-sections (average density of 11 points/m2)—it was
possible to accurately assess each segment subjected to segmentation and correction against
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the tree data measured in the field. Segments with only one equivalent of the field-based
measurements were considered to be correctly segmented. Two main segmentation errors
were distinguished, namely, over-segmentation (one tree is split into several segments) and
under-segmentation (several trees are combined into one segment).
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Verification was carried out by two experienced remote sensing specialists who also
participated in the field measurements. The verification consisted of assigning to each
segment from the output segmentation and correction layers the identifier of the corre-
sponding reference tree from the ground measurements. If a tree was divided into several
segments (over-segmentation error), the same reference tree was assigned to each segment.
For segments that contained several reference trees, all identifiers were assigned to the
segment. No identifiers were assigned to segments that contained no reference trees. If a
segment contained a reference tree, but simultaneously also contained a tree outside the
sample plot, an additional reference tree was added to the tree reference number.

The evaluation method described by Eysn et al. [19] was used to assess the accuracy of
each individual tree detection method and its subsequent correction. The following statisti-
cal parameters were calculated for the verification dataset used for the accuracy assessment:

NTest—Number of extracted trees (segments);
NMatch—Number of reference trees with which a segment matched. If two or more

reference trees overlapped with a segment, only one was counted;
NRef—Number of reference trees from the top layer of the stand;
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NCom—Number of extracted trees (segments) that could not be matched—
NCom = NTest − NMatch;

NOm—Number of reference trees that could not be matched—NOm = NRef − NMatch;
NTest/NRef—Extraction rate;
NMatch/NRef—Matching rate;
NCom/NTest—Commission rate—test trees that could not be matched;
NOm/NRef—Omission rate—reference trees that could not be matched.
The parameters defined above were used to calculate RMS errors for all plots combined

and for selected forest types (coniferous, deciduous, and mixed forest).
RMSextr—Root mean square of extraction rates;
RMSass—Root mean square of matching rates;
RMSCom—Root mean square of commission rates;
RMSOm—Root mean square of omission rates.
In addition to the holistic interpretation of the correction results, height subgroups

and variations in tree height across the sample plots were also presented. The height
subdivision consisted of dividing the sample plots into those where the median tree height
was less than 25 m and equal to or more than 25 m. Considering height variability, we
subdivided the sample plots in which the coefficient of variation of tree height was less
than 15% and equal to or more than 15%.

The complete workflow of the correction method is shown in Figure 4. All processing
steps were implemented using a script written in the R language (ver. 4.1.0 [48]) with the
following packages: raster [49], rgdal [50], rgeos [51], lidR [52], ForestTools [53], and sf [54].
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3. Results
3.1. Overall Matching and Correction Results

Figures 5–8 show the summarised detection and correction results for all the tested
methods, divided into four groups: all plots, coniferous, deciduous, and mixed plots. The
results of the matching, considering different metrics, show how well a method performs
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for a certain group and what impact the segmentation correction has on this method
and group.
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The highest extraction rate for all plots (RMSextr = 105%) was obtained with ‘MCWS 3 × 3′,
and the lowest (RMSextr = 52%) with ‘MCWS 5 × 5′. The correction method improved these
results to 103% and 68%, respectively. Looking at the different species groups, the highest
extraction rate (RMSextr = 126%) was found for the deciduous group with ‘MCWS 3 × 3′,
and the lowest (RMSextr = 44%) for the mixed group with ‘MCWS 5 × 5′. The correction
method improved these results to 120% and 69%, respectively (Figure 5).
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Looking at the matching rates, the highest rate for all plots (RMSass. = 82%) was
obtained with the ‘Local method’, and the lowest (RMSass. = 52%) with ‘MCWS 5 × 5′.
The correction method improved these results to 84% and 68%, respectively. Concerning
the different species groups, the highest matching rate (RMSass. = 85%) was found for the
coniferous and deciduous groups with the ‘Local method’, and the lowest (RMSass. = 42%)
for the mixed group with ‘MCWS 5 × 5′. The correction method improved these results to
88% for the deciduous group with the ‘Local method’ and to 69% for the mixed group with
‘MCWS 5 × 5′ (Figure 6).

Referring to incorrect detections, the highest commission rate for all plots (RMSCom = 24%)
was obtained with ‘MCWS 3 × 3′, and the lowest (RMSCom = 6%) with ‘MCWS 5 × 5′. The
correction method improved results with ‘MCWS 3 × 3′ to 23% and worsened them with
‘MCWS 5 × 5′ to 12%. Looking at the different species groups, the highest commission rate
(RMSCom = 30%) was found for the deciduous group with ‘MCWS 3 × 3′ and the lowest
(RMSCom = 3%) for the coniferous group with ‘MCWS 5 × 5′. The correction method did
not improve the results for the deciduous group with ‘MCWS 3 × 3′ (RMSCom = 30%) and
worsened them to 8% for the mixed group with ‘MCWS 5 × 5′ (Figure 7).

The highest omission rate for all plots (RMSOm), which missed 52% of the indicated
reference trees, was obtained with ‘MCWS 5 × 5′. The lowest omission rate (RMSOm = 21%)
was found with the ‘Local method’. The correction method improved these results to
41% and 20%, respectively. For the different species groups, the highest omission rate
(RMSOm = 59%) was found for the mixed group with ‘MCWS 5 × 5′ and the lowest
(RMSOm = 19%) for the coniferous group with ‘Local method’. The correction method
improved the results for the mixed group with ‘MCWS 5 × 5′ to 44% and did not improve
(RMSOm = 19%) for the coniferous group with ‘Local method’ (Figure 8).

Looking at all metrics, one can see a significant improvement in the ‘MCWS 5 × 5′ al-
gorithm, where several or more dozen percent improvements were recorded in each metric.
Improvements in accuracy were also noted in the ‘Local method’, the most sophisticated of
the algorithms used. There was no improvement in results for the ‘MCWS 3 × 3′ method;
however, the correction did not affect the tree detection results with this method. It is worth
noting that the correction method improved the tree detection results for mixed stands.

3.2. Matching and Correction Results with Various Height Subgroups

To examine the performance of the correction method in detail, the sample plots were
divided into those where the median tree height was less than 25 m (Table 2) and equal
to or more than 25 m (Table 3). The detailed matching results of the correction according
to height subgroups show how well the correction method works under this aspect and
considering different forest types.

Considering both height subgroups, the correction results differed for each method.
For the ‘Local method’, no improvement was observed in the subgroup below 25 m (same
values for extraction and matching rate for all plots). However, in the subgroup for higher
trees, an increase in accuracy was observed with a simultaneous decrease in the values for
commission and omission rates. This was especially true for the deciduous group, where
the extraction and matching rates improved by 6%, while the commission and omission
rates improved by 8% and 5%, respectively. The opposite situation occurred for the ‘MCWS
3 × 3′ method, where the correction resulted in improved accuracy for the subgroup below
25 m, especially for the mixed group (increase in extraction and matching rates by 6% and
4%, respectively). In contrast, no significant differences were found for the subgroup equal
to or above 25 m, except for the 13% improvement in extraction rate and a concomitant
5% decrease in matching rate in the case of the deciduous group. An analogous situation
for this group concerns the commission and omission rates, where the values decreased
by 2% and increased by 4%, respectively. For the last method applied, i.e., ‘MCWS 5 × 5′,
the correction worked more reliably for the subgroup with smaller trees. Improvement
in extraction and matching rates for all plots by 21% and 15%, respectively. A significant
improvement in accuracy was observed for the mixed group, extraction and matching rates
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by 31% and 21%, respectively. There was a 9% increase and a 20% decrease in commission
and omission rates, respectively. A similar trend was observed for the taller tree subgroup,
but with slightly lower values of improvement; i.e., the extraction and matching rates
improved by 14% and 9% for all plots and by 18% and 12% for the mixed group.

Table 2. Summarised detection and correction results for the subgroup where the median tree height
in the sample plot was below 25 m. RMS of the four indicators for all plots is presented. The results
for each indicator for the primary segmentation are presented on the left and post-correction on
the right.

Method Group RMSextr. (%) RMSass. (%) RMSCom (%) RMSOm (%)
Extraction Rate Matching Rate Commission Rate Omission Rate

Local method

All_plots 86|86 80|80 8|9 22|22
Coniferous 91|89 85|86 9|5 20|18
Deciduous 88|87 82|81 9|9 20|21

Mixed 81|83 76|77 7|10 25|24

MCWS 3 × 3

All_plots 90|92 74|76 18|18 29|27
Coniferous 81|82 78|80 5|3 22|22
Deciduous 99|100 79|79 21|21 24|23

Mixed 78|84 66|70 17|17 35|32

MCWS 5 × 5

All_plots 48|69 47|62 5|12 55|40
Coniferous 47|71 47|68 0|5 54|33
Deciduous 51|64 50|61 5|9 52|41

Mixed 43|74 42|63 5|16 59|39

Table 3. Summarised detection and correction results for the subgroup where the median tree height
in the sample plot was 25 m or more. RMS of the four indicators for all plots is presented. The results
for each indicator for the primary segmentation are presented on the left and post-correction on
the right.

Method Group RMSextr. (%) RMSass. (%) RMSCom (%) RMSOm (%)
Extraction Rate Matching Rate Commission Rate Omission Rate

Local method

All_plots 103|104 84|87 17|15 21|19
Coniferous 91|89 85|84 9|8 19|19
Deciduous 130|124 86|92 28|20 20|15

Mixed 90|92 77|81 16|14 24|22

MCWS 3 × 3

All_plots 117|111 80|79 27|26 23|24
Coniferous 92|90 80|79 14|12 23|23
Deciduous 163|150 90|85 42|40 14|18

Mixed 105|104 72|72 28|27 29|30

MCWS 5 × 5

All_plots 53|67 52|61 5|12 51|42
Coniferous 58|70 57|66 4|8 46|37
Deciduous 61|67 56|59 11|15 47|43

Mixed 45|63 43|55 6|14 59|49

3.3. Matching and Correction Results with Various Coefficient of Variation of Height Subgroups

Detailed results were also presented in relation to the variation in height of individual
trees in the sample plots, which were divided into those where the coefficient of variation
of height (CV_h) was less than 15% (Table 4) and equal to or greater than 15% (Table 5).
The results provide information on how the correction method works in stands with a
similar height structure and in stands where the variation in height of individual trees
is considerable.
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Table 4. Summarised detection and correction results for the subgroup where the coefficient of
variation of tree height in the sample plot was less than 15%. RMS of the four indicators for all plots
is presented. The results for each indicator for the primary segmentation are presented on the left
and post-correction on the right.

Method Group RMSextr. (%) RMSass. (%) RMSCom (%) RMSOm (%)
Extraction Rate Matching Rate Commission Rate Omission Rate

Local method

All_plots 102|101 84|87 16|13 20|19
Coniferous 89|88 83|83 9|9 21|20
Deciduous 117|114 87|93 21|15 18|17

Mixed 93|102 80|88 17|15 21|17

MCWS 3 × 3

All_plots 116|112 81|80 26|25 22|22
Coniferous 90|86 80|79 13|11 22|23
Deciduous 137|129 85|83 33|32 19|20

Mixed 114|120 75|77 30|31 26|24

MCWS 5 × 5

All_plots 57|70 54|64 6|11 48|37
Coniferous 57|67 56|64 4|7 47|37
Deciduous 58|68 55|62 8|11 47|39

Mixed 52|79 49|67 7|15 52|35

Table 5. Summarised detection and correction results for the subgroup where the coefficient of
variation of tree height in the sample plot was 15% or more. RMS of the four indicators for all plots is
presented. The results for each indicator for the primary segmentation are presented on the left and
post-correction on the right.

Method Group RMSextr. (%) RMSass. (%) RMSCom (%) RMSOm (%)
Extraction Rate Matching Rate Commission Rate Omission Rate

Local method

All_plots 86|90 79|81 10|12 23|22
Coniferous 100|92 94|92 9|0 11|13
Deciduous 84|90 79|81 9|12 22|22

Mixed 83|89 75|78 11|13 26|23

MCWS 3 × 3

All_plots 90|92 73|74 20|20 30|29
Coniferous 91|96 79|83 14|15 23|20
Deciduous 103|103 80|78 24|25 24|24

Mixed 82|84 67|68 19|19 34|33

MCWS 5 × 5

All_plots 45|66 44|58 5|13 57|45
Coniferous 54|79 54|72 0|10 47|32
Deciduous 49|60 47|55 7|11 55|46

Mixed 41|64 40|56 5|15 61|47

In the first of the methods studied, i.e., the ‘Local method’, considering all plots, the
correction improved the results of extraction and matching rates in both subgroups of
height variation; in the subgroup below 15% CV_h, by 1% and 3%, respectively, while in
the subgroup equal to or above 15% CV_h, by 4% and 2%, respectively. When analysing
the individual groups, the greatest improvement was observed with the first subgroup in
the mixed group, where the matching rate increased by 8% and the rate of commission and
omissions errors decreased by 2% and 4%, respectively. For the second subgroup, the best
improvement was also in the mixed group. For the deciduous group, the accuracy of the
extraction and matching rates decreased by 6% and 2%, respectively, while the commission
rate error increased by 3%. For the ‘MCWS 3 × 3′ method, considering the subgroup with
less variation in tree height, there was a 4% increase in the extraction rate with a 1% decrease
in the matching rate. In the analysis of the individual groups, the differences in accuracy
were small and the differences in commission and omission error rates did not exceed 2%
for any of the subgroups. In the subgroup with greater variability in tree height, there was
a slight improvement in the extraction and matching rates of 2% and 1%, respectively. The
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coniferous group improved the most with an increase in extraction and matching rates of
5% and 4%, respectively. However, the deciduous tree group showed lower accuracy as
the matching rate decreased by 2%. The differences between the commission and omission
rate values were no more than 1% for all groups, except for a 3% improvement in the
omission rate in the coniferous group. For the last of the methods used, i.e., ‘MCWS 5 × 5′,
an increase in the accuracy of the extraction and matching rates for all plots was observed
in both subgroups, by 13% and 10%, respectively, for the subgroup with lower variability,
and by 21% and 14%, respectively, for the subgroup with higher variability in tree height.
At the same time, commission rate errors increased by 5% and 8% in both subgroups, while
the omission rate errors decreased by 11% and 12%, respectively. Looking at the individual
groups, the correction in the subgroup with low height variability had the most reliable
effect for the mixed group, with an improvement in extraction and matching rates of 13%
and 10%, respectively. An analogous situation occurred for the high tree height variability
subgroup, where the results of the correction for the mixed group improved the extraction
and matching rates by 21% and 16%, respectively.

4. Discussion

In this study, we proposed a three-step approach to refine the segmentation errors aris-
ing from CHM-based ITD methods. For this purpose, three methods were tested. In the first
step, classification of erroneous (over-segmentation and under-segmentation) and correct
segments was performed using the classification method described in Lisiewicz et al. [33].
Using the post-classification layer, the second step was to perform error correction for the
under-segmentation class, attempting to extract additional tree crowns within the input
segment. The final step was to merge segments from the over-segmentation class with
segments classified as correct that contained the tree stem, based on certain conditions.
Four indicators were used to show the segmentation accuracy and its subsequent correction.
The best correction effects in terms of matching rate were recorded for the mixed plot group,
namely, a 4% improvement for the ‘Local method’, 2% for ‘MCWS 3 × 3′, and 17% for
‘MCWS 5 × 5′. Importantly, the study was conducted in one of the most complex and
diverse forest communities in Europe, making tree identification a major challenge. There-
fore, this study presents a possible solution to reduce segmentation errors by considering
different forest types and different ITD methods for identifying individual trees.

4.1. Overall Matching and Correction Results

The correction results differed depending on the method and forest type. The method
developed in the study area, i.e., “Local method”, taking into account the matching rate,
was improved by 2% when all plots were analysed, and by 3% and 4% when deciduous
and mixed plots were considered, respectively. Little or no improvement was expected for
coniferous stands, for which the methods were originally developed. This result seems
likely, as conifers usually have a clearly defined crown shape. It becomes problematic
when treetops and crowns overlap. In this case, under-segmentation errors are difficult to
correct. For the ‘MCWS 3 × 3′ method, a 1% decrease was noticed in the matching rate, a
2% improvement in the extraction rate, and a 1% improvement in both the commission and
omission rates. The results for this method show that correction did not bring significant
changes, except for the mixed group where 1–2% increases in individual accuracy rates
were recorded. Mixed stands tend to have higher segmentation errors than homogeneous
coniferous stands [34]. It can be explained by mixed forests specificity: diverse species of
different heights and crown characteristics are present, in particular in the BF mixed stands.
Therefore, classification and subsequent errors correction is more notable in such areas,
as these errors actually occur most frequently there. For the ‘MCWS 5 × 5′ method, the
improvement taking into account the matching rate and all plots was greatest at 11%, while
for the mixed group it was 17%. This method enables for the correct extraction of large trees
with spreading crowns but tends to merge crowns of smaller trees; e.g., species such as
hornbeam and lime tend to merge crowns due to the lack of distinct treetops and a domed
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crown structure. Therefore, the commission rate errors were highest for this method. They
were corrected by 11% for all plots and 15% for mixed plots.

In other studies, the authors sought suitable solutions to improve their methods and
reduce the occurrence of errors as much as possible. Dai et al. [36], in an attempt to avoid
under-segmentation errors, classified segments into under-segmentation or non-under-
segmentation (correctly detected trees and over-segmentation) with 84% accuracy using the
Support Vector Machine method. The authors then refined the segments using the mean-
shift ITD method in a common feature space that includes both spatial and multispectral
domains. This increased the average tree detection accuracy by 6% and 9% for complex
stands. In one of the post-processing steps, Pang et al. [55] treated a tree with a crown
diameter greater than half the value of the tree height as an abnormal crown shape, as it
is likely to be under-segmented. The corresponding point cloud was then filtered out so
that it could be further searched as potential trees in the re-segmentation. Dersch et al. [38]
proposed the integration of stem detection with graph-cut segmentation to improve the
overall accuracy of the tree segmentation. Considering the F-score, the overall improvement
was up to 15% and 6% for reference data from visual interpretation and field measurements,
respectively. Our results are difficult to compare due to significant differences in the method
used and the density of the point cloud, as a denser point cloud facilitates the extraction
of the tree habit. However, dense point clouds are usually collected for small areas, as
the processing time for such data is currently too long to apply the solutions for large
survey areas. Nevertheless, presently a common trend is to focus on the detection of a tree
stem [37,38] or a segment with a tree stem [33] to reliably improve segmentation results.

4.2. Matching and Correction Results with Various Height Subgroups

The vertical structure of the forest seems to have a strong influence on the segmentation
results [19]. However, an important aspect is the immediate surroundings of the tree,
because in dense stands the crowns of the trees do not always have the crown shape typical
for a particular species, as the crowns of neighbouring trees interact with each other, and
individual branches interfere with the crowns of neighbouring trees [33]. The results of
the correction in the height subgroups varied depending on the segmentation algorithm
used. For the ‘Local method’, the correction worked best in the subgroup with high trees,
while for the ‘MCWS 3 × 3′ and ‘MCWS 5 × 5′ methods it worked best with small trees.
Regardless of subgroup and method, the correction improved segmentation results in
mixed stands (except for the subgroup with high trees for ‘MCWS 3 × 3′). When looking
at the commission and omission rates, we found that all methods tested and corrected
tended to merge the crowns of neighbouring trees (high values for omission rate), possibly
due to dense stands where clear boundaries between trees are often missing. The highest
commission rates were observed for the ‘MCWS 3 × 3′ method, which uses a small kernel
for finding the local maxima and therefore tends to find local irregularities in the CHM, as
many such irregularities can be located within individual tree crowns and kernels that are
too small tend to detect too many potential trees.

Eysn et al. [19] tested and evaluated eight different segmentation methods, in different
study areas, and at different height ranges. Given the identification of small trees, they
assumed that small trees in the subdominant layer are theoretically mapped more efficiently
at a higher ALS point density. Our study has shown that the accuracy of the segmentation
and subsequent correction of small trees also depends on the segmentation method used
and the species group analysed. Some studies suggest that tree density, vegetation type and
canopy cover affect the results of individual segmentations [56]. Falkowski et al. [57] found
that algorithms perform best when canopy cover is less than 50%. Vauhkonen et al. [30]
compared various ITD algorithms in different forest types, and their results showed that
tree density and clustering are the most important vegetation characteristics affecting
segmentation. Considering this, it is extremely important to take into account the charac-
teristics and type of vegetation, as these studies show that their influence on segmentation
accuracy is significant. For single species stands, the algorithm is easier to parameterise.
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This is less the case for mixed stands with several species, as there are additional problems
with multiple interactions between neighbouring tree crowns of different species with
various heights.

4.3. Matching and Correction Results with Various Coefficient of Variation of Height Subgroups

The accuracy in recognising individual trees is closely related to the immediate envi-
ronment of the tree being segmented. An important influence on correct segmentation is
the height variation of the neighbouring trees. In our study, we used CV _h to divide the
sample plots into two subgroups: with low (<0.15) and high (≥ 0.15) tree height variation.
Considering the matching rate, lower accuracies were obtained in the plots with the higher
height variability. When analysing the correction efficiency, it depended on the specific
group and the method used. For the ‘Local method’, correction was more efficient in
sample plots with low height variation, improving the accuracy for the deciduous and
mixed groups by 6% and 8%, respectively. This shows that the local algorithm took the
height differences of the stands into account, among other things, through hierarchical
segmentation. For the ‘MCWS 3 × 3′ and ‘MCWS 5 × 5′ methods, the best improvement
was for the coniferous group, where CV _h was highest, by 4% and 18%, respectively.

Analogous to our study, other authors have also highlighted the feasibility of charac-
terising forest structure using CV_h. Magnussen et al. [58] suggested that small trees in
heterogeneous canopy structures may not be detected because they are obscured by large
trees, and therefore the heterogeneous nature of canopy morphology can be characterised
by CV_h. Yang et al. [31] also stated that CV_h is a very important feature of vegetation.
They claim that a larger CV_h corresponds to more heterogeneous canopy structure and
that small trees are more likely to be obscured by large trees, which can significantly reduce
the accuracy of tree detection. In mixed forests, the canopies of coniferous and deciduous
trees are meaningfully different, which can lead to higher amount of segmentation errors
by omission and commission [59,60], as in our study, where most errors occurred in the
mixed stands. Apart from the diverse tree species composition of the analysed stands, there
is also a huge variation in the mixture of trees—from groups to individual trees, which
is an expression of spatial variation. Therefore, algorithm parameterisation is the most
difficult when the mixture of tree species and their heights are considerable.

4.4. Outlook

The correction method we have developed can be described as a safe method that
attempts to isolate the major errors to refine them. The performance of the method in mixed
stands is particularly remarkable. With few exceptions, the correction process does not
additionally generate a large number of new errors. However, as with any ITD method,
some shortcomings and opportunities for future development are present. Consider-worthy
is the acquisition of additional features that would potentially enable correct detection of
over-segmentation and under-segmentation errors. Over-segmentation errors, although
extracted with high accuracy, can be classified as correct segments in the case of spreading
crowns of mature deciduous trees. Under-segmentation errors can be further supported by
extracting stems from the point cloud, which is already the case in recent studies. However,
one limiting factor is the point cloud density, as in the case of our study. For some species at
high scan angles, the stem was not derived from the point cloud, e.g., pine, and the segment
was therefore classified as an error. We believe that despite the significant development
of point cloud-based methods in the last decade, CHM-based methods in combination
with information derived directly from point clouds are worth further development, as the
applicability and ease of implementation of CHM-based methods leads to greater capacity
and forest management. Therefore, we believe that the correction method developed can
significantly improve the ITD results and thus enable a more precise forest analysis; for
instance, in the national forest inventories or in the inventory of urban greenery.
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5. Conclusions

This study presented a method for correcting segments resulting from CHM-based
ITD algorithms. Three ITD methods were tested and corrected in diverse forest stands
with different height structures. In a first step, the segmentation errors were classified, and
then the under- and over-segmentation errors were refined as efficiently as possible using
an automatic correction method. The accuracy of the segmentation improvements varied
depending on the method applied and the tree species group studied. The most important
findings of the work are as follows:

- The correction method allows refinement of many segmentation errors.
- Local ITD methods largely solve many of the potential problems causing errors at the

initial stage, so the proposed method is often more effective in improving the results
of commonly available methods.

- In general, the correction method is most efficient for mixed stands, for which the
lowest segmentation accuracy is initially obtained. According to the literature, mixed
stands have the highest error rate and are the most difficult to parameterise.

- Using standardised variables for the classification process and refining the over-
segmentation errors allows for easier implementation of the method in other study
areas without having to adjust the variables.

It is noteworthy that this study was conducted in one of the most complex and diverse
forest communities in Europe, which makes tree identification challenging. Therefore, this
study offers a possible solution to reduce segmentation errors by considering different
forest types and different ITD methods for identifying individual trees.
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6. Mielcarek, M.; Kamińska, A.; Stereńczak, K. Digital aerial photogrammetry (DAP) and airborne laser scanning (ALS) as sources
of information about tree height: Comparisons of the accuracy of remote sensing methods for tree height estimation. Remote Sens.
2020, 12, 1808. [CrossRef]

7. Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based
variable window size. Comput. Electron. Agric. 2002, 37, 71–95. [CrossRef]
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