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Abstract: Underwater image segmentation is useful for benthic habitat mapping and monitoring;
however, manual annotation is time-consuming and tedious. We propose automated segmentation of
benthic habitats using unsupervised semantic algorithms. Four such algorithms—-Fast and Robust
Fuzzy C-Means (FR), Superpixel-Based Fast Fuzzy C-Means (FF), Otsu clustering (OS), and K-means
segmentation (KM)—-were tested for accuracy for segmentation. Further, YCbCr and the Commission
Internationale de l’Éclairage (CIE) LAB color spaces were evaluated to correct variations in image
illumination and shadow effects. Benthic habitat field data from a geo-located high-resolution
towed camera were used to evaluate proposed algorithms. The Shiraho study area, located off
Ishigaki Island, Japan, was used, and six benthic habitats were classified. These categories were
corals (Acropora and Porites), blue corals (Heliopora coerulea), brown algae, other algae, sediments, and
seagrass (Thalassia hemprichii). Analysis showed that the K-means clustering algorithm yielded the
highest overall accuracy. However, the differences between the KM and OS overall accuracies were
statistically insignificant at the 5% level. Findings showed the importance of eliminating underwater
illumination variations and outperformance of the red difference chrominance values (Cr) in the
YCbCr color space for habitat segmentation. The proposed framework enhanced the automation of
benthic habitat classification processes.

Keywords: unsupervised semantic segmentation; underwater images; benthic habitats mapping;
shallow-water ecosystems

1. Introduction

Benthic habitats and seagrass meadows are biologically complex and diverse ecosys-
tems with enormous ecological and economic value [1]. These ecosystems contribute
substantially to nutrient cycling and nitrogen and carbon sequestration, create a natural
barrier for coastal protection, and provide income to millions of people [2,3]. These ecosys-
tems have suffered worldwide decline over the past three decades [4]. For instance, about
80% and 50% of coral cover were lost in the Caribbean and the Indo-Pacific, respectively,
during this time [5]. Our understanding of this rapid degradation is limited by the global
lack of benthic habitat mapping and seagrass meadow data [6]. Such data are vital for
accurate assessment, monitoring, and management of aquatic ecosystems, especially in
light of current global change, in which numerous stressors act simultaneously [7].

Underwater video and image surveys using scuba diving, towed cameras, and ROVs
are valuable remote-sensing techniques for monitoring changes and distribution of benthic
habitats with high spatial and temporal resolution [8–10]. Despite the merits of these
platforms, i.e., low cost, non-destructive sampling, and fast data collection [11], they suffer
from major drawbacks for underwater image analysis. First, inadequate illumination
and variable water turbidity cause poor image quality [12]. Second, the variable physical
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properties of water result in low contrast and color distortion [13]. Further, water attenuates
red, green, and blue wavelengths, creating blurred images. Third, wind, waves, and
currents may cause benthic habitats to appear differently from various camera angles [14].
Finally, underwater images often provide weak descriptors and insufficient information for
object detection and recognition.

These platforms collect large numbers of underwater images that remain partially
unexamined. These images make the manual annotation processes tedious, error-prone,
and time-consuming and create a gap between data collection and extrapolation [15].
Moreover, benthic habitats are complex morphologically with irregular shapes, sizes,
and ambiguous boundaries. For instance, 10–30 min is required for a marine expert to
produce fully annotated pixel-level labels for a single image [16]. The National Oceanic
and Atmosphere Administration (NOAA) reported that less than 2% of images acquired
each year on coral reefs were sufficiently analyzed by a marine expert, causing a substantial
dearth of information [17]. Manual analysis of such enormous numbers of images is the
major bottleneck in data acquisition for benthic habitats. Consequently, more studies are
needed for automating ecological data analysis from the huge collection of underwater
images of coral reefs and seagrass meadows [18].

Recent advances in computer vision have driven many scientists to propose various
methods for automated annotation of underwater images—a compelling alternative to
manual annotation [19]. Previous work on automatic annotation of marine images can be
divided into two main categories. The first tested machine learning algorithms combined
feature extractors [20–22]. For instance, Williams et al. [23] reported the performance of
the CoralNet machine learning image analysis tool [24] to produce automated benthic
cover images for the Hawaiian Islands and American Samoa. CoralNet achieved a high
Pearson’s correlation coefficient r > 0.92 for coral genera estimation, but the performance
was decreased for the other categories. Zurowietz et al. [25] proposed a machine learning
assisted image annotation (MAIA) method to classify marine object classes. Three marine
image datasets with different feature types were semi-automatically annotated with about
84.1% average recall compared to traditional methods. The second category was inspired
by trending research on deep learning approaches for the automatic classification of marine
species [26–28]. Still, for training, deep learning methods require extensive amounts of full
pixel-level labeled data.

Recently, weak supervised semantic segmentation approaches were proposed to re-
solve this issue [29]. Three levels of weak supervision: point-level, object-level, and pixel-
level, are considered [30,31]. Yu et al. [32] proposed a deep learning point-level framework
with sparse point supervision for underwater image segmentation. They evaluated this
framework using a sparsely annotated coral image dataset and reported findings superior
to other semi-supervised approaches. Alonso et al. [33] combined augmentation of sparse
labeling and deep learning models for coral reef image segmentation. This combination
was evaluated using four coral reef datasets. The results proved the performance of the
proposed method for training segmentation with sparse input labels. Prado et al. [34]
tested object-level supervision with YOLO v4, a deep-learning algorithm, for automatic
microhabitat object localization in underwater images on a circalittoral rocky shelf. This
method produced a detailed distribution of microhabitat species in a complex zone. Finally,
Song et al. [35] proposed image-level supervision using the DeeperLabC convolutional
neural network model trained on single-channel images for semantic segmentation of coral
reefs. DeeperLabC produced state-of-the-art coral segmentation with a 97.10% F1-score,
which outperformed comparable neural networks.

However, the above approaches have numerous disadvantages: (1) dependence on
the human-annotated training datasets, which is cumbersome and error-prone with high
uncertainty that affects model reliability; (2) deep learning methods provide impressive
results, but they require large amounts of data for training to avoid overfitting; (3) few
studies were performed to overcome the main challenges of towed underwater images—
illumination variation, blurring, and light attenuation [36]. Improving the accuracy of
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towed underwater images will allow the processing of spatial and temporal scales for
benthic habitat research to close the gap between the collected and analyzed. Consequently,
the development of automatic benthic habitat semantic segmentation frameworks that
can be applied to complex environments with reliable speed, cost, and accuracy is still
needed [37].

We present an automated framework for such segmentation. The main contributions
described can be summarized: (i) we tested several automatic segmentation algorithms
for unsupervised semantic benthic habitat segmentation; (ii) we demonstrated that the
K-means clustering method outperforms other segmentation algorithms using a hetero-
geneous coastal underwater image dataset; (iii) we evaluated various image color spaces
to overcome towed underwater image drawbacks; (iv) we show that using YCbCr color
space for underwater images in shallow coastal areas accomplished superior segmentation
accuracy; (v) we demonstrate that the proposed automatic segmentation methods can be
used to create fast, efficient, and accurate classified images.

2. Materials and Methods
2.1. Study Area

The Shiraho coast subtropical territory, Ishigaki Island, positioned south of Japan
in the Pacific Ocean, was the study area chosen for the proposed framework assessment
(Figure 1). This Island is rich in marine biodiversity, with shallow, turbid water, and a
maximum water depth of 3.5 m [38]. Moreover, it has a heterogeneous ecosystem with
various reefscapes, including hard corals, such as Acropora spp., Montipora spp., and Porites
cylindrica, and blue corals, such as Heliopora coerulea, considered the largest blue ridge coral
colony in the northern hemisphere. It also has a wide range of brown and other algae,
as well as a variety of sediments (mud, sand, and boulders). Further, a dense Thalassia
hemprichii seagrass meadow spreads across the same seafloor.
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2.2. Benthic Cover Field Data Collection

Field data collection in the study area was performed during the typhoon season on
21 August 2016. Outflows from the Todoroki River tributary to the Shiraho reef were
boosted by rainstorms before data acquisition. These outflows increased turbidity in
underwater images obtained using a low-cost, high-resolution towed video camera (GoPro
HERO3 Black Edition) [39]. The video camera was attached beneath the motorboat side just
under the water surface to record shallow seabed images. Four hours of recordings were
collected and video to JPG converter software was used to extract images from video files.
The extracted images had two-second time intervals synchronized with GNSS surveys.

2.3. Methodology

The proposed framework for benthic habitat automatic segmentation over the Shiraho
area was performed as:

1. All images from the video to JPG converter program were divided into five benthic
cover datasets with dominant habitats—brown algae, other algae, corals (Acropora
and Porites), blue corals (H. coerulea), seagrass, and the sediments (mud, sand, pebbles,
and boulders)—included in all images.

2. A total of 125 converted images were selected individually by an expert and divided
equally to represent the above benthic cover categories.

3. These images included all challenging variations in the underwater images, including
poor illumination, blurring, shadows, and differences in brightness.

4. A manual digitizing was applied carefully for these images. Each image displayed
two or three categories, converted to raster form using ARC GIS software.

5. Manually categorized images were reviewed by two other experts. These experts
compared manually categorized images to original images to guarantee correctness
before evaluating proposed methods.

6. A color invariant (shadow ratio) detection equation [40] using the ratio between blue
and green bands was used to separate images automatically.

7. RGB color space images that showed positive and negative values, indicating high illu-
mination, low brightness variation, and no shadow effects, were used for segmentation.

8. Otherwise, RGB color space images with only negative values, indicating low illumi-
nation, high brightness variation, and shadow effects, were converted to (CIE) LAB
and YCbCr color spaces before segmentation.

9. The Cr band from YCbCr color spaces represents the difference between the red
component and a reference value, and the Ac band from (CIE) LAB color spaces
represents the magnitude of red and green tones. Converted images were used for
segmentation.

10. Proposed unsupervised algorithms were assessed for segmentation and compared to
manually categorized images.

2.4. Proposed Unsupervised Algorithms for Automatic Benthic Habitat Segmentation
2.4.1. K-Means Algorithm

KM clustering is a classical unsupervised segmentation algorithm. This algorithm
is simple, fast, easy to implement, and efficient and can be applied to large datasets [41].
The algorithm works by partitioning a dataset into k clusters, pre-defined by users [42].
Euclidean distance is used to compare distances between features and cluster centers and
assigns each feature to the nearest center [43]. Then, variance is used to remove outlier
pixels and regions with an object remover technique after segmentation. Finally, a median
filter is applied to remove noise from segmented images [44]. KM algorithm steps were
previously described [45].

2.4.2. Otsu Algorithm

The OS method is a straightforward, stable, and effective threshold-based segmenta-
tion algorithm widely used for image processing applications [46]. Initially, a greyscale his-
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togram is used to divide the image into two classes—background and target objects [47,48].
Next, an exhaustive search selects an optimal threshold that maximizes separability and
minimizes variance within classes. This threshold is the weighted sum of variances of back-
ground and target classes [49]. Processing steps for the OS method were also previously
described [48].

2.4.3. Fast and Robust Fuzzy C-Means Algorithm

Fuzzy C-means (FCM) [45] is a soft clustering method that depends on the fuzziness
value concept and removing conditions. Each pixel may be included in two or more clusters
with various degrees of membership ranging between 0 and 1 [50]. Each objective function
can be described by distance aggregates between patterns and cluster centers. However,
this method yielded poor results if analyzed images included outliers, noise, and imaging
artifacts [51]. Thus, an FR algorithm [52] was developed to overcome the limitations of
the FCM method. FR applied a morphological reconstruction operation to integrate local
spatial information into images. Membership separation was also modified using local
membership filtering based on spatial neighbors of the membership divide [53]. These
amendments improved algorithm celerity, robustness, and efficiency.

2.4.4. Superpixel-Based Fast Fuzzy C-Means Algorithm

The FF algorithm [54] was proposed to improve the FCM method, particularly its
computational complexity and time consumption. FF uses a morphological gradient
reconstruction process to generate superpixel images. This approach is more helpful
for color image segmentation. The image histogram is then computed for the produced
superpixel image. Finally, the FCM method was applied using histogram parameters to
produce the final segmentation [55]. The proposed algorithm is more robust and faster than
the conventional FCM and yields better results for color image segmentation.

Numerous studies are available for comparing KM, OS, and FCM methods. These
studies illustrate the drawbacks of OS and FCM methods and support a preference for the
KM approach [56–58]. The OS method is a global thresholding algorithm that depends
on pixel grey values, while KM is a local thresholding method. Moreover, the OS method
must compute a greyscale histogram before running, and KM does not require this step.
Furthermore, the OS method produced good results only if the image histogram was not
affected by image noise and had a bimodal distribution [59]. Consequently, KM is faster,
more efficient, avoids image noise, and can be enhanced to multilevel thresholding [57].

FCM requires various fuzzy calculations and iterations that increase its complexity
and computation time compared to KM. Further, FCM is sensitive to noise, unlike KM
clustering. Hassan et al. [60] discussed the differences between KM and FCM.

All benthic cover unsupervised segmentation algorithms were applied in the MATLAB
environment with pre-defined numbers of clusters. The assessment of all algorithms
depended on two matrices normally used for segmentation evaluation—Intersection Over
Union (IOU) and F1 − score (F1) [18]:

IOU =
True Positives

True Positives + False Positives + False Negatives
(1)

F1 − score =
2×Precision × Recall

Precision + Recall
(2)

The procedures for automatic benthic habitat segmentation methods are shown in
Figure 2.
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Figure 2. Methodology workflow of this study. KM: KM with RGB image; KMAc: KM with Ac
channel; FF: FF with Cr channel; FR: FR with Cr channel; OS: OS with Cr channel; KM: KM with Cr
channel.

3. Results
3.1. Results of Automatic Segmentation of Algal Images

The comparison of segmentation methods for both highly illuminated and low contrast
algal images and poorly illuminated and high contrast algal images are presented in
Figures 3 and 4, respectively. Examples of classified images with two and three categories
are presented in Figures 5–8.
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(a) F1-score; (b) IOU.
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and yellow: sediments.
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and yellow: sediments.

Remote Sens. 2022, 14, 1818 7 of 22 
 

 

  
(a) (b) 

Figure 4. The results of evaluating the tested segmentation algorithms using low illuminated and 

high contrast algae images. Images (1–7) had two categories, and (8–14) had three categories: (a) F1-

score; (b) IOU. 

      
(a) (b) (c) (d) (e) (f) 

Figure 5. Validation tests of the proposed segmentation algorithms using highly illuminated and 

low contrast algae image (1) from Figure 3 as example of two categories: (a) original image; (b) 

ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Green: algae and yellow: 

sediments. 

      
(a) (b) (c) (d) (e) (f) 

Figure 6. Validation tests of the proposed segmentation algorithms using highly illuminated and 

low contrast algae image (11) from Figure 3 as example of three categories: (a) original image; (b) 

ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Green: algae, brown: 

brown algae, and yellow: sediments. 

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 7. Validation tests of the proposed segmentation algorithms using low illuminated and high 

contrast algae image (1) from Figure 4 as example of two categories: (a) original image; (b) ground 

truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr result; (h) 

KMCr result. Green: algae and yellow: sediments. 

Figure 7. Validation tests of the proposed segmentation algorithms using low illuminated and high
contrast algae image (1) from Figure 4 as example of two categories: (a) original image; (b) ground
truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr result; (h) KMCr
result. Green: algae and yellow: sediments.
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Figure 8. Validation tests of the proposed segmentation algorithms using low illuminated and high
contrast algae image (14) from Figure 4 as example of three categories: (a) original image; (b) ground
truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr result; (h) KMCr
result. Green: algae, gray: corals, and yellow: sediments.

3.2. Results of Automatic Segmentation of Brown Algae Images

The comparisons of segmentation methods for both highly illuminated and low con-
trast brown algae images and poorly illuminated and high contrast brown algae images are
presented in Figures 9 and 10, respectively. Examples of classified images with two and
three categories are presented in Figures 11–14.
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presented in Figures 15 and 16, respectively. Examples of classified images with two and
three categories are presented in Figures 17–20.
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3.4. Results of Automatic Segmentation of Coral Images 

The comparisons of segmentation methods for both highly illuminated and low con-

trast coral images and poorly illuminated and high contrast coral images are presented in 

Figures 21 and 22, respectively. Examples of classified images with two and three catego-
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Figure 18. Validation tests of the proposed segmentation algorithms using highly illuminated and
low contrast blue coral image (10) from Figure 15 as example of three categories: (a) original image;
(b) ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Red: blue corals, gray:
corals, and yellow: sediments.

Remote Sens. 2022, 14, 1818 11 of 22 
 

 

      
(a) (b) (c) (d) (e) (f) 

Figure 18. Validation tests of the proposed segmentation algorithms using highly illuminated and 

low contrast blue coral image (10) from Figure 15 as example of three categories: (a) original image; 

(b) ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Red: blue corals, 

gray: corals, and yellow: sediments. 

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 19. Validation tests of the proposed segmentation algorithms using low illuminated and high 

contrast blue coral image (1) from Figure 16 as example of two categories: (a) original image; (b) 

ground truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr result; 

(h) KMCr result. Red: blue corals and yellow: sediments. 

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 20. Validation tests of the proposed segmentation algorithms using low illuminated and high 

contrast blue coral image (15) from Figure 16 as example of three categories: (a) original image; (b) 

ground truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr result; 

(h) KMCr result. Red: blue corals, gray: corals, and yellow: sediments. 

3.4. Results of Automatic Segmentation of Coral Images 

The comparisons of segmentation methods for both highly illuminated and low con-

trast coral images and poorly illuminated and high contrast coral images are presented in 

Figures 21 and 22, respectively. Examples of classified images with two and three catego-

ries are presented in Figures 23–26. 

  

Figure 19. Validation tests of the proposed segmentation algorithms using low illuminated and
high contrast blue coral image (1) from Figure 16 as example of two categories: (a) original image;
(b) ground truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr
result; (h) KMCr result. Red: blue corals and yellow: sediments.

Remote Sens. 2022, 14, 1818 11 of 22 
 

 

      
(a) (b) (c) (d) (e) (f) 

Figure 18. Validation tests of the proposed segmentation algorithms using highly illuminated and 

low contrast blue coral image (10) from Figure 15 as example of three categories: (a) original image; 

(b) ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Red: blue corals, 

gray: corals, and yellow: sediments. 

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 19. Validation tests of the proposed segmentation algorithms using low illuminated and high 

contrast blue coral image (1) from Figure 16 as example of two categories: (a) original image; (b) 

ground truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr result; 

(h) KMCr result. Red: blue corals and yellow: sediments. 

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 20. Validation tests of the proposed segmentation algorithms using low illuminated and high 

contrast blue coral image (15) from Figure 16 as example of three categories: (a) original image; (b) 

ground truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr result; 

(h) KMCr result. Red: blue corals, gray: corals, and yellow: sediments. 

3.4. Results of Automatic Segmentation of Coral Images 

The comparisons of segmentation methods for both highly illuminated and low con-

trast coral images and poorly illuminated and high contrast coral images are presented in 

Figures 21 and 22, respectively. Examples of classified images with two and three catego-

ries are presented in Figures 23–26. 

  

Figure 20. Validation tests of the proposed segmentation algorithms using low illuminated and
high contrast blue coral image (15) from Figure 16 as example of three categories: (a) original image;
(b) ground truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr
result; (h) KMCr result. Red: blue corals, gray: corals, and yellow: sediments.

3.4. Results of Automatic Segmentation of Coral Images

The comparisons of segmentation methods for both highly illuminated and low con-
trast coral images and poorly illuminated and high contrast coral images are presented in
Figures 21 and 22, respectively. Examples of classified images with two and three categories
are presented in Figures 23–26.



Remote Sens. 2022, 14, 1818 12 of 22Remote Sens. 2022, 14, 1818 12 of 22 
 

 

  
(a) (b) 

Figure 21. The results of evaluating the tested segmentation algorithms using highly illuminated 
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Figure 23. Validation tests of the proposed segmentation algorithms using highly illuminated and 

low contrast coral image (1) from Figure 21 as example of two categories: (a) original image; (b) 

ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Gray: corals and yellow: 

sediments. 

  

Figure 21. The results of evaluating the tested segmentation algorithms using highly illuminated
and low contrast corals images. Images (1–8) had two categories, and (9–17) had three categories:
(a) F1-score; (b) IOU.
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Figure 22. The results of evaluating the tested segmentation algorithms using low illuminated
and high contrast corals images. Images (1–4) had two categories, and (5–8) had three categories:
(a) F1-score; (b) IOU.
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Figure 23. Validation tests of the proposed segmentation algorithms using highly illuminated
and low contrast coral image (1) from Figure 21 as example of two categories: (a) original image;
(b) ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Gray: corals and
yellow: sediments.
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3.5. Results of Automatic Segmentation of Seagrass Images

The comparisons of segmentation methods for both highly illuminated and low con-
trast seagrass images and poorly illuminated and high contrast seagrass images are pre-
sented in Figures 27 and 28, respectively. Examples of classified images with two and three
categories are presented in Figures 29–32.
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and low contrast seagrass images. Images (1–5) had two categories, and (6–9) had three categories:
(a) F1-score; (b) IOU.
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Figure 29. Validation tests of the proposed segmentation algorithms using highly illuminated and
low contrast seagrass image (1) from Figure 27 as example of two categories: (a) original image;
(b) ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Dark green: seagrass,
and yellow: sediments.
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Figure 30. Validation tests of the proposed segmentation algorithms using highly illuminated and
low contrast seagrass image (9) from Figure 27 as example of three categories: (a) original image;
(b) ground truth image; (c) FF result; (d) FR result; (e) OS result; (f) KM result. Dark green: seagrass,
gray: corals, and yellow: sediments.
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Figure 32. Validation tests of the proposed segmentation algorithms using low illuminated and
high contrast seagrass image (16) from Figure 28 as example of three categories: (a) original image;
(b) ground truth image; (c) KM result; (d) KMAc result; (e) FFCr result; (f) FRCr result; (g) OSCr
result; (h) KMCr result. Dark green: seagrass, gray: corals, and yellow: sediments.

Results presented in Figure 33 and Table 1 correspond to results in Figures 3, 9, 15,
21 and 27. Figure 33 illustrates overall accuracy for highly illuminated and low contrast
images, and Table 1 shows F1-Scorse and IOU results. Results in Figure 34 and Table 2
correspond to results in Figures 4, 10, 16, 22 and 28. Figure 34 shows overall accuracy
for poorly illuminated and high contrast images, and Table 2 presents F1-Scores and IOU
values. Table 3 illustrates the evaluation of the statistical significance of differences between
the tested algorithms.
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Figure 33. Box-plot of the overall accuracy of all highly illuminated and low contrast benthic
habitat images segmentation results based on the proposed algorithms: (a) F1-score; (b) IOU results.
AL: algae, BR: brown Algae, BC: blue Corals, CO: corals, and SG: seagrass.

Table 1. The average F1-Score and IOU results of the proposed algorithms on the tested highly
illuminated and low contrast benthic habitat images.

Benthic
Habitat F1-FF F1-FR F1-OS F1-KM IOU-FF IOU-FR IOU-OS IOU-KM

AL 0.37 0.65 0.71 0.74 0.59 0.64 0.66 0.69
BR 0.41 0.85 0.86 0.87 0.40 0.56 0.57 0.58
BC 0.38 0.65 0.66 0.70 0.48 0.58 0.58 0.60
CO 0.46 0.70 0.70 0.73 0.52 0.58 0.58 0.63
SG 0.63 0.72 0.74 0.76 0.61 0.67 0.70 0.72

Table 2. The average F1-Score and IOU results of the proposed algorithms on the tested low illumi-
nated and high contrast benthic habitat images.

Benthic
Habitat

F1
KM

F1
KMAc

F1
FFCr

F1
FRCr

F1
OSCr

F1
KMCr

IOU
KM

IOU
KMAc

IOU
FFCr

IOU
FRCr

IOU
OSCr

IOU
KMCr

AL 0.47 0.55 0.45 0.65 0.70 0.72 0.33 0.33 0.45 0.48 0.52 0.54
BR 0.76 0.77 0.42 0.78 0.77 0.84 0.41 0.39 0.35 0.40 0.39 0.46
BC 0.52 0.54 0.54 0.71 0.72 0.77 0.51 0.54 0.68 0.70 0.70 0.76
CO 0.51 0.57 0.55 0.72 0.72 0.75 0.52 0.52 0.68 0.72 0.72 0.74
SG 0.54 0.53 0.63 0.68 0.69 0.73 0.26 0.26 0.39 0.57 0.57 0.62
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Figure 34. Box-plot of the overall accuracy of all low illuminated and high contrast benthic habitat
images segmentation results based on the proposed algorithms: (a) F1-score; (b) IOU values.

Table 3. Comparison of statistically significant differences in F1-Score and IOU results between the
proposed algorithms with a confidence of 95%.

Comparison Test p-Value
t-Test F1

p-Value
Wilcoxon Test F1

p-Value
t-Test IOU

p-Value
Wilcoxon-Test

IOU

Comparison
Results

KM vs. OS 0.03
(h = 1) 0.051 (h = 0) 0.127

(h = 0) 0.154 (h = 0) Not significantly
different

KM vs. FR 0.006
(h = 1) 0.004 (h = 1) 0.037

(h = 1) 0.042 (h = 1) Significantly
different

KM vs. FF <0.001
(h = 1) <0.001 (h = 1) <0.001

(h = 1) <0.001 (h = 1) Significantly
different

4. Discussion

Benthic habitat surveys using towed cameras attached beneath motorboats have
several advantages. First, this approach can cover large habitat areas without environmental
damage. Second, the system requires only simple logistics and is economical, which
increases its utility for marine applications. Third, it can be used to monitor changes
in heterogeneous ecosystems annually. However, such surveys are performed under
inadequate natural lighting conditions that affect image quality. Thus, segmentation
algorithms need to overcome the influence of varying light and shadow.

We assessed several color spaces to eliminate the influence of varying illumination and
shadows on survey images. Images were converted to color spaces, and color information
was separated from luminance or brightness of images. This process decreased the impact
of brightness variation on segmentation. Both Hue Saturation Value (HSV) and (CIE) XYZ
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color spaces were assessed for removing illumination effects. However, these color spaces
yielded significantly lower F1-scores and IOU segmentation accuracies. However, the Cr
band from YCbCr and the (Ac) band from (CIE) LAB color space outperformed other tested
color spaces. The Cr band achieved the highest F1-scores and IOU segmentation accuracy.
Segmentation results of the KM method RGB color space were added to the assessment to
demonstrate the importance of using color spaces for images with variable lighting.

The reason that red-green bands outperform in processing underwater images from
coastal areas is often due to agricultural runoff or impurities discharged from rivers.
Therefore, both short and long wavelengths are attenuated to some extent. In these areas,
blue and green wavelengths are absorbed more efficiently, leaving more red light that
causes a brown hue [5]. Moreover, the common notion that red color is attenuated by water
more rapidly with depth than blue and green colors only holds for oceanic waters [61].

Pixel, color, thresholding, and region-based segmentation techniques with different
architectures were tested in the present study for unsupervised benthic habitat segmenta-
tion. Mean shift [62], Normalized Cut [63], Efficient graph-based [64], Ratio-contour [65],
Expectation-Maximization [66], and Slope Difference Distribution [67] methods have also
been evaluated. However, these latter methods yield relatively low F1-scores and IOU
segmentation accuracy values.

Complete comparisons among the evaluated algorithms show maximum, minimum,
and median values for tested algorithms in box plots (Figures 33 and 34). The KM method
produced the highest segmentation accuracies for all categories. Lower accuracy was found
for OS, FR, and FF methods, in that order. Additionally, we tried to integrate KM, OS, and
FR segmentation algorithms, but this ensemble produced an accuracy that was similar to
the k-means segmentation algorithm alone. The ensemble only increased segmentation
accuracy slightly for a few images. Therefore, results from integrated algorithms are
not presented.

Moreover, to evaluate the statistically significant differences between the proposed
algorithms, the parametric paired t-test and its non-parametric alternative Wilcoxon test [68]
were performed. We assessed whether the statistical differences in F1-score and IOU values
between the tested approaches were significant or not. Both tests had two output values,
the p-value and the h value. The p-value indicated the significance of the statistical null
hypothesis test. Small p-values mean strong proof against the null hypothesis. The h
value is the hypothesis test result returned as 1 or 0. If the resulted h value was 1, the null
hypothesis test was rejected. This indicates a statistically significant difference between the
compared algorithms and 0 otherwise. Overall, non-parametric tests are stronger and safer
than parametric tests, particularly when comparing a pair of algorithms [69].

As the KM method yielded the highest F1-score and IOU accuracies, we compared the
other proposed algorithms against the KM method in order to test whether the F1-score and
IOU results were significantly different between the compared methods (Table 3). Based
on the F1-score results, the paired t-test indicated a significant difference between the KM
and OS methods. Conversely, the Wilcoxon test p-value result was slightly greater than
the 0.05 significance level. As a result, the Wilcoxon test failed to reject the null hypothesis
test and indicated no statistically significant difference between these methods. Moreover,
based on the paired t-test and Wilcoxon test, there was no significant difference between
the IOU results of KM and OS methods at the 5% significance level. On the other hand, the
KM algorithm was significantly different from both FR and FF algorithms.

We assessed various benthic images with different light conditions, species diversity,
and turbidity levels to avoid statistical bias. In the majority of images, the brown algae
and the other algae were mixed in the same locations as were blue corals and other corals,
which confused all algorithms. The most challenging segmentation task was discriminating
among brown algae, other algae, and sediments. All of these habitat types display small-
sized objects and similar speckled shapes (see Figure 14). Thus, brown algae and other algae,
especially in poorly illuminated images, yielded the lowest IOU segmentation accuracy
(see Figure 34). Discriminating blue coral segments from other coral species was also



Remote Sens. 2022, 14, 1818 19 of 22

challenging because corals exhibit similar colors and shapes (see Figure 20). Conversely, the
seagrass habitat was categorized with high accuracy. Considering species heterogenicity
and the poor quality of tested images, accuracies obtained in the present study can be
considered reliable for automatic benthic habitat segmentation. Note that comparing our
segmentation accuracies with previous studies is difficult due to differences in the quality
of images used, water turbidity levels in various locations, and the variety of substrates.

These automatic segmentation results encourage more research in this field. Such
studies might assess the same methods with remotely operated vehicle (ROV) systems
with auxiliary light sources for monitoring benthic habitats in deeper seafloor areas. The
additional light source will increase image quality and segmentation accuracy. Additionally,
segmentation algorithms that can decrease light variation and shadow effects [70,71] might
be evaluated with the same poor-quality images. Finally, segmentation techniques can be
evaluated with more complex habitat images for the same targets.

Conversely, assessing the performance of deep learning algorithms trained by the seg-
mented images might lead to more robust benthic habitat monitoring systems. Integrating
automatically segmented images with known segmented locations might allow classifying
satellite images over coral reef areas.

5. Conclusions

This study used images from a towed underwater camera to evaluate the performance
of unsupervised segmentation algorithms for automatic benthic habitat classification. More-
over, we assessed various color spaces to remove illumination variation and shadow effects
from poor-quality images. The Shiraho coastal area, which includes heterogeneous blue
corals, corals, algae, brown algae, seagrass, and sediment, was used as a validation site.
Our results demonstrate superior performance for the Cr band from the YCbCr color space
to remove light variation and shadow effects. Further, we found that the KM segmentation
algorithm achieved the highest F1-scores and IOU accuracies for habitat segmentation.
The significance testing of the F1-score and IOU statistics revealed that the KM model
performed significantly better (at the 5% level) than FR and FF methods. Moreover, a
similar performance was found between the KM and OS methods. The proposed automatic
segmentation framework is fast, simple, and inexpensive for seafloor habitat categoriza-
tion. Thus, a large number of benthic habitat images can be accurately categorized with
minimal effort.
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