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Abstract: Population spatialization reveals the distribution and quantity of the population in geo-
graphic space with gridded population maps. Fine-scale population spatialization is essential for
urbanization and disaster prevention. Previous approaches have used remotely sensed imagery to
disaggregate census data, but this approach has limitations. For example, large-scale population
censuses cannot be conducted in underdeveloped countries or regions, and remote sensing data lack
semantic information indicating the different human activities occurring in a precise geographic
location. Geospatial big data and machine learning provide new fine-scale population distribution
mapping methods. In this paper, 30 features are extracted using easily accessible multisource geo-
graphic data. Then, a building-scale population estimation model is trained by a random forest (RF)
regression algorithm. The results show that 91% of the buildings in Lin’an District have absolute error
values of less than six compared with the actual population data. In a comparison with a multiple
linear (ML) regression model, the mean absolute errors of the RF and ML models are 2.52 and 3.21,
respectively, the root mean squared errors are 8.2 and 9.8, and the R2 values are 0.44 and 0.18. The RF
model performs better at building-scale population estimation using easily accessible multisource
geographic data. Future work will improve the model accuracy in densely populated areas.

Keywords: population spatialization; random forest model; building scale

1. Introduction

Population spatialization data reflect the population distribution in the objective world,
and fine-scale population distribution data are essential in public health and urban plan-
ning [1–7] and facilitate mobile population monitoring, resource allocation optimization,
and urban structure analysis [3,8–11]. Most countries obtain detailed population distri-
bution maps through censuses, which have limited utility and suffer from the following
problems: (1) High costs prohibit underdeveloped countries and regions from conducting
large-scale population censuses [12,13]. (2) Long census intervals, changing administrative
boundaries, and uneven distributions of the population within administrative units do
not allow the censusing approach to reflect population changes promptly at a fine spatial
resolution [12]. Since census data cannot reveal the spatial heterogeneity of population
density in detail [6,14], the use of general multisource GIS datasets for decomposing census
data to map population distribution at fine scales has become a research hotspot [2–4,13,15].

Research on the spatial decomposition of census data into grid cells began in the
1990s [16,17]. Early studies focused on spatial interpolation problems of populations, such
as pycnophylactic interpolation [18], areal interpolation [19], intelligent interpolation [20],
and dasymetric mapping [21–26]. These methods have produced many meaningful global
datasets from typical GIS datasets, such as the Gridded Population of the World (GPW)
with a resolution of 2.5 arc-min [27,28], the Global Rural Urban Mapping Project (GRUMP)

Remote Sens. 2022, 14, 1811. https://doi.org/10.3390/rs14081811 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14081811
https://doi.org/10.3390/rs14081811
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1403-4394
https://doi.org/10.3390/rs14081811
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14081811?type=check_update&version=2


Remote Sens. 2022, 14, 1811 2 of 18

with a resolution of 30 arc-s [29,30], Landscan [6,31], WorldPop [32] and the Global Hu-
man Settlements Population Grid dataset [33]. However, these global-scale population
datasets can only be used to study population change at the macro scale. Remote sens-
ing products, satellite image products such as land cover/land use types, and nighttime
light (NTL) images are widely used as auxiliary data to map population distribution at
fine scales [5,13,15,22,23,34–36].

However, remote sensing data with medium spatial resolution lack semantic infor-
mation and cannot directly indicate land use or human presence [37]. These data have a
limited ability to extract demographic and socioeconomic characteristics associated with
human activities in complex urban environments [38–43]. Geospatial big data such as point
of interest (POI) data can compensate for these drawbacks of remotely sensed imagery. POI
data contain location information and textual descriptions that extract detailed information
about cities or social systems [44,45]. Many studies [35,38,40,46,47] have used POIs to
define functional urban areas and land use types. Moreover, the results have shown a
correlation between POI categories and population density [4,40]. Bakillah used voluntary
geographic information (VGI) to map the population distribution at the building level in
Hamburg; this approach relies only on POI and fine-grained land use/land cover data and
does not consider the spatial heterogeneity of the population distribution when calculating
the population within buildings [4]. Different geospatial big data can capture different
aspects of the ground truth [39]. Additionally, some studies have combined remote sensing
products with residential building footprints and census data to build empirically weighted
models to map building-scale population distributions [15,48]. These methods are still
challenging to apply to fine mapping of the population in China, where the urban spatial
structure is diverse and the population distribution is complex [35]. Therefore, this study
integrates multiple sources of easily accessible geospatial data to construct a population
prediction model, revealing the population distribution at the building scale.

Machine learning, which has advanced considerably in the past few decades, has
provided more efficient tools for population spatialization, and the random forest (RF)
algorithm is one of the most common and powerful supervised learning algorithms. RF
is a classification tree-based machine learning algorithm first proposed in 2001 by Leo
Breiman and Cutlery Adele [49]. It has many appealing properties, such as high classifica-
tion accuracy; the ability to model complex interactions among predictor variables; and
the flexibility to perform several types of statistical data analysis, including regression,
classification, survival analysis, and unsupervised learning [50–52]. Stevens et al. used the
RF algorithm to build a nonparametric predictive model to map the fine-scale population
distribution in Kenya, Vietnam, and Cambodia at a reduced scale of census data [13].
Methods using RF have been successfully applied to map the population density of China
at a 100 m resolution [53]. Yao et al. used the RF algorithm to analyze POIs and real-time
user density (RTUD) to reduce the street-level population distribution to the grid level [35].
Ye et al. combined POIs with multisource remote sensing data in an RF model to produce a
100 m spatial resolution gridded population map of China with a higher accuracy than the
WorldPop dataset [37]. The results of the above studies all show that the RF algorithm is
reliable and has good performance in fine-scale population spatialization; therefore, the RF
algorithm was chosen to construct the prediction model in this paper.

Although many researchers have fused remote sensing images with geospatial data
such as POI data and used machine learning algorithms to map population distributions at
a fine scale, the existing methods still have drawbacks. Countries and regions with poor eco-
nomic conditions cannot conduct large-scale population censuses, and some high-resolution
remote sensing images are confidential data. This study addresses these drawbacks by
fusing multiple sources of easily accessible geospatial data, such as building data, land
use data, NTL data, administrative district data, road data, water system data, and POI
data, using the RF algorithm to train a model to predict the population distribution at the
building scale. Section 2 includes an overview of the study area and a description of the
multiple sources of easily accessible geospatial data. Section 3 focuses on the methodology;
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it introduces how to build a multidimensional feature library using seven easily accessible
sources of geographic data, filter 30 features related to population distribution by feature
engineering, and train the prediction model using the RF algorithm. In Section 4, the pre-
diction results are mainly presented and compared with a multiple linear (ML) regression
model trained with the same dataset. The model performance is analyzed by evaluating
metrics such as absolute error compared to the actual value, mean absolute error (MAE),
root squared mean error (RSME), and R2. Section 5 presents the feature importance and
contribution analysis, and the results show that building area and self-service POI are the
two most essential features in this model. Finally, Section 6 summarizes the paper and
discusses the implications for future research in this area.

2. Data and Preprocessing

The study area in this paper is Lin’an District, Hangzhou city, Zhejiang Province,
located from 118◦21′ to 120◦30′E longitude and 29◦11′ to 30◦33′N latitude, as shown in
Figure 1. Lin’an District contains 18 subareas. In addition, CGCS2000 and the 3-degree
Gauss–Kruger zone 40 are used in the experiment.

Figure 1. Geographic location of the study area.

The following datasets are used in this study, Table 1 lists the format and source of
these data, Figures 2 and 3 show the visualization of datasets:

Table 1. Datasets used in the study area.

Dataset Format Source

Population (2017) Table Hangzhou Public Security Bureau
Buildings (2017) Polygon vector features Basic geographic information database for Hangzhou, China

Finer Resolution Observation
and Monitoring of Global Land

Cover (2017)

Grid,
30 m spatial resolution

Tsinghua University Open Data Set
(http://data.ess.tsinghua.edu.cn/, accessed on 1 December 2021)

DMSP-OLS NTL imagery (2013)
Grid,

1 × 1 km spatial
resolution

National Geophysical Data Center, USA
(https://ngdc.noaa.gov/eog/, accessed on 1 December 2021)

Road network (2017) Line vector features Basic geographic information database for Hangzhou, China
POIs (2019) Point features Baidu Map API, China

Water system Polygon vector features Basic geographic information database for Hangzhou, China
Administrative districts (2017) Polygon vector features Basic geographic information database for Hangzhou, China

http://data.ess.tsinghua.edu.cn/
https://ngdc.noaa.gov/eog/
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Figure 2. Subsets of (a) building and (b) POI data.

Figure 3. (a) Land use data, (b) NTL data, (c) road system data, and (d) water system data.

(1) Population data. The actual population data are used as model validation data in this
experiment, and the study area contains 300,722 population records.

(2) Building data. Buildings are the basic units for the experiment, and the dataset
contains 117,116 residential buildings.

(3) Land use dataset. The Finer Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC) map set is used as the auxiliary data. The data resolution is
approximately 30 m in the maps. There are 8 categories included in the dataset:
agricultural land, forest, grassland, shrubland, wetland, water, impervious surfaces,
and bare ground.

(4) DMSP-OLS NTL imagery. The fourth version of the DMSP-OLS (Defense Meteoro-
logical Satellite Program) NTL remote sensing dataset synthesized in 2013 is used as
auxiliary data for population spatialization. The resolution is approximately 1 km,
and the data were resampled to 100 m.

(5) Water systems, road networks, and POIs also affect the population distribution to
a certain extent. The study area includes 85,876 rivers, 27,706 roads, and 4524 POI
records. The detailed information for each POI is shown in Table 2. We calculated the
closest Euclidean distance from each building type to the same type of POI and used
the results as model inputs.
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Table 2. Types and counts of POIs.

No. POI Type Count No. POI Type Count

1 Medical 295 9 Nursing homes 9
2 Sports 62 10 Self-service 35
3 Education 439 11 Recreation 721
4 Parks 22 12 Government agencies 396
5 Markets 186 13 Shopping 1416
6 Gas stations 56 14 Factories 246
7 Museums 5 15 Banks 221
8 Retail 123 16 Corporations 292

3. Methods

The RF concept is based on a bagging algorithm, and a method involving the random
selection of independent variables is used in the training process of decision trees [49].
An RF contains multiple decision trees trained with a bagging-based integrated learning
technique [54]. When building an individual classification tree, for each splitting point
in the tree, a random sample containing q (1 ≤ q ≤ p) independent variables is selected
as a candidate from among p total independent variables, and the independent variables
associated with a splitting point can only be selected from q variables. The similarity
between individual classification trees with highly correlated output prediction results
can be reduced by considering only a subset of the independent variables at each splitting
point. The independent variables that have the most significant impact on performance
do not influence the (p − q)/p ratio because they are not selected as splitting points, and
other independent variables have an equal chance of being selected as split points, thus
decorrelating the effects of single trees [55].

First, a multidimensional feature library is constructed. Second, feature engineering
steps, such as filtering and standardization, are performed for the feature library, and
features related to the spatial distribution of the population are selected as explanatory
variables and included in model construction. Then, based on the RF regression algorithm,
population spatialization is performed, and the grid search method and cross-validation are
applied to adjust and optimize the model to improve performance. Finally, the population
spatialization results at the building scale in the study area are obtained and compared
with the results of an ML model to evaluate the accuracy and performance of each model.
The flowchart in Figure 4 shows the entire workflow.

Figure 4. Flowchart of RF model construction and accuracy assessment.
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3.1. Feature Engineering
3.1.1. Feature Filtering

Population spatialization requires the use of feature values related to the population
distribution as independent variables for training. For an established feature set, manual
screening is performed, and the influence on the spatial distribution of the population
is used as the feature selection criterion. Text-based feature values, such as the name of
the administrative district in which a building is located, the address of the building, the
population of each sex, the names of roads, and the name of the water system, are removed
due to the algorithmic factors used in model fitting. Furthermore, numerical-type feature
values are used as the feature data. Among these extracted feature values, numerical-type
feature values, such as those for road length and the number of floors in a building, are
removed due to issues with missing values.

Feature selection is performed to facilitate the evaluation of features, mainly with
a screening method; specifically, the importance of each dimensional feature is assessed
according to an evaluation index, and then the features are ranked and selected based on
their importance scores. To construct the model, if the variance of a dimensional feature is
minimal, the feature provides limited information, the variability in the feature is minimal,
the contribution to the model is limited, and the impact on model performance is negligible;
therefore, these types of features are removed with a low-variance filtering feature selection
method. In this method, the variance of each feature in the sample is determined, and the
features are ranked according to their magnitude of variance. By default, features with
a variance of 0 are removed, i.e., the sample features do not change. In this paper, the
threshold value is 0.8, and the number of features is not set. The final result is that all
features with variance values between 0.9 and 1 are more significant than the set threshold
value, so no features are removed.

In summary, 30 features were selected from the multidimensional feature library to
form the auxiliary dataset for model training and prediction. The specific features are
shown in Table 3.

Table 3. List of filtered features.

No. Feature Name Feature Source No. Feature Name Feature Source

1 Building footprint Building 16 Factory_EDIST POI
2 Night lighting_Min Night lighting 17 Company_EDIST POI
3 Night lighting_Max Night lighting 18 Park_EDIST POI
4 Night lighting_Ave Night lighting 19 Store_EDIST POI
5 Night lighting_Sum Night lighting 20 Gas station_EDIST POI
6 Land use type Land Use 21 Education agency_EDIST POI
7 River system_Cnt River system 22 Retail_EDIST POI
8 River system length_Min River system 23 Market_EDIST POI
9 River system length_Max River system 24 Sports facility_EDIST POI
10 River system length_Sum River system 25 Entertainment_EDIST POI
11 Water area_Min River system 26 Nursing home_EDIST POI
12 Water area_Max River system 27 Medical institution_EDIST POI
13 Water area_Sum River system 28 Bank_EDIST POI
14 Road_EDIST Road 29 Government agency_EDIST POI
15 Museum_EDIST POI 30 Self-service_EDIST POI

Min in the feature name indicates the minimum value of the feature in the building range, Max indicates the
maximum value, Avg indicates the average value, Sum indicates the total value, Cnt indicates the count, and
EDIST indicates the calculation of the closest Euclidean distance from each building data to the same type of data.

3.1.2. Feature Standardization

After filtering of the features, the value data are normalized, and the dataset is scaled
to the interval of [0, 1] to eliminate the possible problems caused by the unit differences
and different magnitudes among the multidimensional feature values. The standardization
process is divided into two main steps: decentering the mean (setting the mean to 0) and
scaling the variance (setting the variance to 1). To fairly assess the role of eigenvalues
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in population spatialization, the eigenvalues are standardized before building the model
according to the following equation.

X =
x− xmean√

(x−xmean)
2+(x+xmean)

2

n

(1)

where xmean denotes the average value of the data and n represents the number of data
points, which in the formula indicates the amount of data associated with one eigenvalue.

3.2. Model Building and Training

A total of 31 feature values in six categories, including building features, NTL features,
land use type features, water system features, road features, and POI features, are used as
the independent variable dataset, and the number of people in buildings is used as the de-
pendent variable. Python and Scikit-learn [56], a third-party open-source machine-learning
algorithm package, are used as the basis for programming, and an RF regression algorithm
is used to construct a population spatialization model and perform model training.

In constructing the model, a sampling method with replacement is used. Of the
original samples, 85% are used as the training dataset, and the remaining 15% constitute the
validation dataset, which is divided by a fixed random number to ensure the randomness
of the dataset division and the reproducibility of the experiment for the adjustment and
optimization of the model parameters.

When constructing the model, it is necessary to determine the optimal hyperpa-
rameters, and in this experiment, a grid search approach was chosen as the parameter
optimization method. The grid search method has a relatively slow run time, but after
cross-validation, the results are highly reliable. Based on the optimal parameter values
returned from the grid search method, the optimal values of each parameter applied in
the RF regression algorithm to construct the population spatialization model are shown
in Table 4.

Table 4. Optimal values of model parameters.

No. Parameter Value Value Range Optimal Value

1 bootstrap True, False True
2 oob_score True, False True
3 n_estimators 100, 200, . . . , 1500 1100
4 max_features auto, sqrt, log2 auto
5 max_depth 1, 2, . . . , 20 16
6 min_samples_leaf 1, 2, . . . , 20 19
7 min_samples_split 2, 4, . . . , 20 18

In this RF model, the first three parameters are the RF framework parameters, among
which the bootstrap parameter indicates whether bootstrap samples are used when building
trees. n_estimators is the number of trees in the forest, which impacts model performance;
when this parameter is too small, underfitting will occur, the run time will be long, and
the modeling efficiency will be reduced. oob_score indicates whether out-of-bag samples
are used to estimate the generalization score and can be used to evaluate the model’s
strengths and weaknesses, validate the model, reduce time consumption, and improve the
modeling accuracy.

The last four parameters are decision tree parameters, which mainly control the growth
process of a single decision tree in the RF. max_features is the maximum number of features
to consider when constructing a decision tree. max_depth is the maximum depth of the
decision trees. min_samples_split controls subtree splitting; when the number of samples at
the middle node is lower than the selected parameter value, the tree stops growing, i.e., no
more features are selected for division. min_samples_leaf controls the tree depth of decision
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trees; when the number of samples at a leaf node is lower than a given threshold, the tree
is pruned.

When model training and parameter optimization are completed, the population
spatialization model is constructed according to the optimal values of the determined
model parameters.

4. Results and Evaluation
4.1. RF Population Spatialization Results

The input dataset included 117,116 buildings with 30 features, and after RF model
training, the regression model predicted the population in each building. According to the
natural breaks grading method, the predicted result was divided into five levels, as shown
in Figure 5.

Figure 5. Results of the RF model.

Figure 6a shows the hexagonal bin plot and histogram of the prediction results. In this
plot, the horizontal coordinate indicates the predicted population, the vertical coordinate
indicates the actual population, and the color indicates the degree of overlap of the scattered
points at the location; the darker the color, the higher the degree. Moreover, the histogram
reflects the distribution of the number of people at the building scale.

Figure 6b shows that the number of buildings with a population in the interval of (0, 3]
is 96,625, accounting for 83% of all buildings. The number of buildings with a population
in the interval of (3, 6] is 11,474, accounting for 9% of all buildings, and the number of
buildings with a population above 15 is 2923, accounting for 2% of all buildings. Some
scattered points along the vertical axis indicate that the predicted population is higher than
the actual population, and the prediction deviation is within 30 people. Outside the interval
of [0, 30), the predicted population is significantly lower than the population denoted
by the diagonal line, which suggests that the model seriously underestimates the actual
population; the prediction deviation is within the range of [10, 70), which indicates that the
RF regression algorithm produces a significant deviation when predicting populations for
buildings with high population aggregation.
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Figure 6. (a) Hexagonal bin plot and (b) histogram of the RF model results.

The absolute error is calculated to evaluate the performance of the RF model, which is
the difference between the predicted and true values:

yerror = ypred − ytrue (2)

This variable reflects the absolute error in the population estimate for each building
and can be used to analyze the sources of error based on local conditions. The error in the
population of each building is divided into five levels and visualized by color differences,
as shown in Figure 7.

Figure 7. The error of the RF model.
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The number of buildings with prediction deviations in the interval of [0, 6) is 106,643,
accounting for 91% of all buildings. The number of buildings with errors within the interval
of [6, 20) is 8592, accounting for 7% of all buildings, and the number of buildings with
errors above 20 people is 1881, accounting for 2% of all buildings. The buildings with large
deviations from the predictions are concentrated in the eastern part of the study area, the
core area of population aggregation, indicating that the model yields poor predictions in
densely populated areas.

Moreover, three indicators are chosen to evaluate the model and predicted values: the
mean absolute error (MAE) is the average of the absolute error, which is used to evaluate
the predicted data and actual data directly; the root mean squared error (RMSE) is the
square root of the mean of the squared difference between the predicted value and the
actual observation, which is often used as a measure of the prediction results of machine
learning models; and the goodness-of-fit (R2) is used to evaluate the fit of the model to the
observed data, with a range of [0, 1].

The MAE indicator for the RF model is 2.52, indicating that the model is relatively
accurate in predicting the population at the building scale in the study area. The RMSE
indicator is 8.2, indicating that the variance of the population at the building scale is
explained by the characteristics extracted from the multisource data. The R2 indicator is
0.44, indicating that the model accurately fits 44% of the population data at the building
scale in the study area.

4.2. Comparison with an ML Regression Model

To investigate the advantages of the RF population spatialization model at the build-
ing scale, we constructed an ML regression model [57] with the same feature set. The
regularized Lasso method [58] was chosen to construct the ML regression model. Then, we
compared and analyzed the population prediction results obtained with the two algorithms.
Table 5 shows the variable information and corresponding coefficients used in the model.

Table 5. Coefficients of variables.

Variable Name Coefficient Variable Name Coefficient

Building footprint 3.45154761 Factory_ EDIST −0.09081666
Night lighting_Min 0 Company_ EDIST 0.28783718
Night lighting_Max −0.32496302 Park_ EDIST 0.17310836
Night lighting_Ave 0 Store_ EDIST −0.58551197
Night lighting_Sum −0.06787263 Gas_ EDIST −0.29694836

Land Use Type 0.1270625 Education_ EDIST 0.20848317
River system_Cnt −0.02700125 Retail_ EDIST 0.78328459

River systemlength_Min 0.16721964 Market_ EDIST −0.7959491
River systemlength_Max 0.3384865 Sports_ EDIST 0.47081309
River systemlength_Sum −0.51151035 Leisure_ EDIST −0.09139956

Water area_Min 0 Nuring_ EDIST 0.29575162
Water area_Max 0.39497887 Medical_ EDIST −0.39804979
Water area_Sum 0 Bank_ EDIST 0.26058286

Road_EDIST −0.30963247 Government_ EDIST −0.02576417
Museum_ EDIST −0.21837239 Self-service_ EDIST −0.98357816

Based on these parameters, the prediction results of the multiple linear regression
model are shown in Figure 8.
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Figure 8. Results of the ML model.

The hexagonal bin plot of the multiple linear regression results is shown in Figure 9. As
seen from the figure, most of the points are concentrated in the interval of [0, 40) and limited
to [0, 20). Some of the data in the interval are distributed along the vertical axis, indicating
that the model overestimates the actual population, and the prediction deviates from the
observations by 20–30 people. The scatter points outside this interval are significantly
lower than the actual population, and the deviation is in the range of [30, 80), indicating
that the multiple linear regression algorithm underestimates the population; however, the
degree of deviation is slightly higher than that of the RF regression algorithm.

Figure 9. Hexagonal bin plot of the ML model.

Figure 10 shows the error for the ML regression model. In this regression model, the
number of buildings with prediction deviations in the [0, 6) interval is 98,832, accounting
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for 84% of all buildings. Additionally, the number of buildings with errors in the [6, 20)
interval is 12,544, accounting for 11% of all buildings, and the number of buildings with
errors of 20 or more people is 5740, accounting for 5% of all buildings. From the perspective
of relative error, the prediction deviation for the multiple linear regression model in the
[0, 6) interval is similar to that of the RF regression model (Figure 11). However, the number
of buildings with a prediction deviation of more than 20 people is significantly higher than
that of the RF model. In the prediction results of the multiple linear regression model, the
buildings with large deviations were concentrated in the northeastern part of the study
area, and the RF algorithm does not simulate a similar result.

Figure 10. Error in the ML model.

Figure 11. Histogram of error comparison between the RF model and ML model.
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The image above shows the error comparison between the RF model and ML model.
The vertical coordinate indicates the number of buildings, while the horizontal coordinates
indicate the different intervals of absolute error values. The number of buildings with zero
error in the RF model is more than twice the number in the ML model. In addition, based
on the selected standard model metrics, the MAE for the ML model was 3.21, the RMSE
was 9.8, and the R2 was 0.18. These results were compared with the RF regression model,
as shown in Table 6.

Table 6. Comparison of model metrics.

Model Name MAE RMSE R2

Random forest 2.52 8.2 0.44
Multiple linear regression 3.21 9.8 0.18

The result indicates that the ML regression model performs poorly in terms of data
prediction accuracy and model goodness of fit compared to the RF regression model from
metric evaluation. In summary, compared with the ML regression algorithm, the population
spatialization model of population data constructed based on the RF regression algorithm
yields a better fitting result, smaller prediction bias values, and better relatively accurate
results for population prediction in densely populated areas, thus reflecting a better overall
model performance.

5. Discussion

We quantified the involvement of features in the model construction process from two
perspectives: feature importance and feature contribution. Then, the relationship between
features and the model was established to assess the model.

5.1. Feature Importance Analysis

The importance of each feature in the constructed population spatialization model
was evaluated based on the mean decrease impurity (MDI) or Gini index, a commonly used
evaluation index [59]. Suppose there are m features X1, X2, . . . , Xm. The Gini coefficient
score VIMj for the jth feature Xj at the nodes of each decision tree in the RF is calculated as

GI = 1−∑
|k|
k=1 ρmk

2 (3)

where GI is the Gini coefficient value, k is the feature category, m is the node, and ρmk is the
proportional contribution of category k at node m. Thus, the amount of change in the Gini
index generated by the branching of feature Xj at node m is

VIMjm = GIm − GIl − GIr (4)

where VIM is the feature importance score and GIl and GIr represent the amount of change
in the Gini coefficient after feature j branches at node m, respectively. Assuming that the
nodes for which feature Xj influences the construction of decision tree i are in set M, the
importance of feature Xj to decision tree i is

VIMjm = ∑m∈M VIMjm (5)

On this basis, assuming that there are n trees in the RF, the importance of the influence
of feature Xj on all decision trees in the RF construction process is

GVIMj = ∑n
i=1 VIMij (6)
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After the importance scores of all the features are calculated, the scores are normalized
to obtain the final score for each feature, as shown below for the example of feature Xj:

V
−
I MJ =

VIMj

∑c
i=1 VIMi

(7)

According to the MDI method, the importance of the constructed RF model was
calculated, and the results are shown in Figure 12. Notably, the building footprint has
the highest importance score and has the most significant influence on the features; the
next-most-important features are self-service features, sports facilities features, and road
features. The three feature types that have the lowest influence on the model are the total
water area features, total system length features, and land use type features.

Figure 12. Feature importance in the RF model.

5.2. Feature Contribution Analysis

This experiment is based on the Boruta algorithm in the R language [60] and is
performed to assess the degree of feature contributions. The features used to construct
the RF model are the explanatory variables, and the actual population of buildings in
the study area is the explanatory variable. The Boruta algorithm is used to evaluate the
correlation of features with the dependent variable, and features with high correlations with
the dependent variable are filtered and removed; rather than focusing solely on the impact
of features on model performance improvement, this approach enhances the understanding
of feature contributions [60].

After the algorithm is used to quantify the degree of feature contributions, the cor-
relations between the explanatory variables and the explained variables are assessed by
comparing the median feature Z score (Z score) with the median Z score of the best at-
tributes. The obtained results are visualized in graphical form, as shown in Figure 13.

In the figure, green denotes the correlation between the corresponding feature and
the population distribution, and the features with high correlation rankings include the
building footprint, POIs, and land use, among others. The features with the slightest
influence are the total water area, the total water system length, and the maximum water
system length.
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Figure 13. Evaluation of feature contributions.

6. Conclusions

Most previous studies on mapping population distributions have fused multisource
remote sensing data and big geospatial data such as POI data to decompose census data.
These methods have limitations for economically underdeveloped countries and regions,
which do not have access to confidential remote sensing data and cannot conduct large-
scale population censuses. This study addresses this problem by fusing multiple sources of
easily accessible geospatial data and successfully mapping the building-level population
distribution in Lin’an using the RF algorithm. First, 30 features related to population
activities are extracted from the easily accessible multisource geographic dataset and
trained using the RF algorithm, and the results are compared with actual values and ML
models. The RF model has better performance than the ML model in terms of the absolute
error, MAE, RMSE, and R2. Furthermore, the results of feature importance and feature
contribution analysis show that only a few features contribute significantly to the model
prediction results, and other features play a fine-tuning role in the prediction results, among
which the building footprint is the most important feature and is highly correlated with the
population distribution.

This study also has some shortcomings. The multisource geographic data sources
used in the experiments were released at inconsistent times: building data, road network
data, water system data, and land use data were collected in 2017; POI data were updated
in 2019; and NTL data were collected in 2013. The data will change over time, leading to
bias in model prediction in local areas. Future work will introduce additional geospatial
data and improve the algorithm to increase the accuracy of the prediction model in densely
populated areas.
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