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Abstract: The existing neural network model in urban land-subsidence prediction is over-reliant on
historical subsidence data. It cannot accurately capture or predict the fluctuation in the sequence
deformation, while the improper selection of training samples directly affects its final prediction
accuracy for large-scale urban land subsidence. In response to the shortcomings of previous urban
land-subsidence predictions, a subsidence prediction method based on a neural network algorithm
was constructed in this study, from a multi-factorial perspective. Furthermore, the scientific selection
of a large range of training samples was controlled using a K-shape clustering algorithm in order
to produce this high-precision urban land subsidence prediction method. Specifically, the main
urban area of Kunming city was taken as the research object, LiCSBAS technology was adopted to
obtain the information on the land-subsidence deformation in the main urban area of Kunming city
from 2018–2021, and the relationship between the land subsidence and its influencing factors was
revealed through a grey correlation analysis. Hydrogeology, geological structure, fault, groundwater,
high-speed railways, and high-rise buildings were selected as the influencing factors. Reliable
subsidence training samples were obtained by using the time-series clustering K-shape algorithm.
Particle swarm optimization–back propagation (PSO-BP) was constructed from a multi-factorial
perspective. Additionally, after the neural network algorithm was employed to predict the urban
land subsidence, the fluctuation in the urban land-subsidence sequence deformation was predicted
with the LSTM neural network from a multi-factorial perspective. Finally, the large-scale urban
land-subsidence prediction was performed. The results demonstrate that the maximum subsidence
rate in the main urban area of Kunming reached −30.591 mm · a−1 between 2018 and 2021. Moreover,
there were four main significant subsidence areas in the whole region, with uneven distribution
characteristics along Dianchi: within the range of 200–600 m from large commercial areas and high-
rise buildings, within the range of 400–1200 m from the under-construction subway, and within the
annual average. The land subsidence tended to occur within the range of 109–117 mm of annual
average rainfall. Furthermore, the development of faults destroys the stability of the soil structure
and further aggravates the land subsidence. Hydrogeology, geological structure, and groundwater
also influence the land subsidence in the main urban area of Kunming. The reliability of the training
sample selection can be improved by clustering the subsidence data with the K-shape algorithm, and
the constructed multi-factorial PSO-BP method can effectively predict the subsidence rate with a mean
squared error (MSE) of 4.820 mm. The prediction accuracy was slightly improved compared to the
non-clustered prediction. We used the constructed multi-factorial long short-term memory (LSTM)
model to predict the next ten periods of any time-series subsidence data in the three types of cluster
data (Cluster 1, Cluster 2, and Cluster 3). The root mean square errors (RMSE) were 0.445, 1.475,
and 1.468 mm; the absolute error ranges were 0.007–1.030, 0–3.001, and 0.401–3.679 mm; the errors
(mean absolute error, MAE) were 0.319, 1.214, and 1.167 mm, respectively. Their prediction accuracy
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was significantly improved, and the predictions met the measurement specifications. Overall, the
prediction method proposed from the multi-factorial perspective improves large-scale, high-accuracy
urban land-subsidence prediction.

Keywords: large-scale urban land subsidence; neural network algorithm; particle swarm optimization–
backpropagation; long short-term memory network; time-series clustering

1. Introduction

Land subsidence is an environmental geological phenomenon in which regional
ground elevation decreases with the compression of the surface soil of the earth’s crust
under the action of natural and human factors [1]. It is one of the most common geological
disasters worldwide [2]. In recent years, the degree and extent of land subsidence have been
deepening and increasing along with the acceleration of urbanization in China. Meanwhile,
urban areas are the entities most affected by land subsidence owing to various factors,
such as the over-exploitation of groundwater, tunneling, and urban expansion, which
are characterized by slow genesis, long duration, a wide impact range, complex causal
mechanisms, and great difficulty in their prevention and control [2–4]. In the past 40 years,
the losses caused by land subsidence in China have reached 300 billion. Urban land
subsidence not only affects the productivity and lives of urban residents and traffic safety,
but also severely hinders sustainable socioeconomic development [1]. Therefore, it is urgent
and challenging to explore an effective method for predicting land subsidence [1].

Kunming, the capital and largest city of Yunnan Province in southwestern China, is
located in the middle of the Yunnan–Guizhou Plateau, surrounded by the Dianchi Lake
to the south and mountains on the remaining three sides. Located on China’s frontier
with Southeast and South Asia, Kunming has implemented massive urban construction
over the past two decades. During the process, a large amount of arable land and gardens
has been occupied by high-rise buildings, roads, and other structures [5]. However, this
large-scale urbanization has induced a series of geological hazards, such as landslides,
subsidence, and ground cracks. In particular, the extent, amount, and rate of ground
subsidence change from year to year, with an overall trend of increase, making it one of
the most prominent geological hazards and significantly damaging houses, roads, canals,
pipelines, and other forms of infrastructure [4]. Ground subsidence in Kunming is the loss
of ground elevation caused by a combination of natural and human factors. The major
natural factors include geological formations and hydrogeology, and the human factors
primarily consist of groundwater mining and urban construction [6,7].

Interferometric synthetic aperture radar (InSAR) technology is an all-weather mon-
itoring method, which has the advantages of large scale, low cost, high speed and high
accuracy, and can be used for the precise measurement of surface deformation, such as
in urban land subsidence [8–10], landslide monitoring [11,12], earthquake analysis [13],
infrastructure assessment [14,15], and others [16]. With the development of high-resolution
SAR (synthetic aperture radar), remote sensing technology has truly entered the era of
high resolution, presenting high potential in the refined monitoring of surface deformation.
Moreover, the data of the Earth observation satellite Sentinel-1A/B in the European Space
Agency’s Copernicus program (Global Monitoring for Environment and Security, GMES) is
free and open-access, providing users with rich and useful synthetic aperture radar data.
However, the acquisition, storage, preprocessing, and a series of time-series parameter
inversions of a large amount of image data in the monitoring area require excessive process-
ing time, posing challenges to the computer performance, disk space, and other hardware
conditions [17]. It is more challenging to monitor large-scale surface deformation. Con-
currently, atmospheric delay error and phase unwrapping error are two of the main types
of error in deformation inversion. Therefore, it is essential to handle atmospheric delay
errors and phase-unwrapping errors when obtaining surface deformation information. An
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open-source InSAR time-series analysis method, LiCSBAS (the small-baseline subset within
LiCSAR), proposed by Morishita et al. [17] for an automated Sentinel-1 InSAR processor,
can effectively solve the problem that large-scale monitoring requires a significant amount
of processing time and can overcome atmospheric delay errors and phase solution. Entan-
glement errors can be effectively controlled using LiCSBAS. Thus, it is especially suitable
for the acquisition of large-scale urban land-subsidence deformation information.

Traditional land-subsidence prediction models are mainly divided into three cate-
gories: (1) physical process models, which use factors such as soil and water combined with
geotechnics to model the physical process of land subsidence [18], based on the physical
mechanism of subsidence, and perform predictions by simulating the subsidence process;
(2) mathematical and statistical models, which usually adopt discrete time-series data to
predict future subsidence states based on the mathematical and statistical prediction of
historical subsidence [18]; and (3) neural network models, which generally employ the ac-
quired subsidence data to predict future subsidence states through neural networks [19,20].
However, physical process models possess complex parameters, and the relevant data
are difficult to obtain, significantly limiting their application [1]. The simple statistical
laws of mathematical—statistical models do not easily explain complex ground subsidence
phenomena, and mathematical–statistical models frequently lack physical and geoscientific
bases, while the accuracy of time-series methods is affected by the quality of historical
data [1,21]. In recent years, neural network models have been widely applied in many
fields [19,22,23]. Related studies revealed that the use of neural networks has achieved good
results in the prediction of various types of engineering deformation. Meanwhile, urban
land subsidence presents nonlinear characteristics, and neural networks have powerful
nonlinear mapping capabilities, laying a theoretical foundation for the prediction of urban
ground models using neural network models. However, the existing neural network mod-
els have the following three drawbacks: (i) they rely excessively on historical subsidence
data, which only play a fitting role and cannot effectively make predictions; (ii) they cannot
accurately capture or predict the fluctuations of sequence deformation and, therefore, can-
not obtain satisfactory prediction results [21]; (iii) they are limited by the training samples,
which only allow the prediction of small-scale subsidence and not large-scale subsidence. A
literature review was performed to manage the drawbacks of existing neural network mod-
els for subsidence prediction and to perform large-scale urban land-subsidence predictions.
It was demonstrated that researchers have established a land-subsidence prediction model
based on machine learning from a multi-factorial perspective [24]. Under the determination
of the nonlinear relationship between the influencing factors and land subsidence, an
XGBoost (eXtreme Gradient Boosting) land-subsidence prediction model with good results
(namely, the construction of a land-subsidence prediction model based on a neural network
algorithm from a multi-factorial perspective) can provide a solution for the existing neural
network model, which cannot perform land-subsidence prediction, and overcome the
drawback of the model’s over-reliance on subsidence data. Regarding the drawback that
existing neural network models cannot accurately capture or predict the fluctuation in the
sequence deformation, InSAR deformation time-series prediction based on a long–short
memory (LSTM) neural network has been proposed [21]. It can overcome the limitations of
previous fitting analyses, which were based only on existing data, perform a multi-factorial
prediction for a single subsidence point, and accurately capture and predict sequence
deformation. Concerning large-scale urban ground subsidence, which has numerous types
of subsidence sequence, the selection of training samples directly affects the final prediction
accuracy. Since K-shape is a new time-series clustering algorithm [25] and can efficiently
generate time-series clusters, it was chosen to cluster the subsidence time series.

The traditional artificial neural network (ANN) model, with its advantages of self-
adaptation, self-learning, nonlinear mapping, and fault tolerance, especially BP (back
propagation) neural network, has a high self-learning ability, which allows it to tackle
complex deformation problems, while its output results are influenced by the initial weights
and thresholds [21,26]. The genetic algorithm (GA) and the particle swarm optimization
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(PSO) algorithm are evolutionary computational techniques [27]. The genetic algorithm is
based on Darwin’s theory of evolution [28]. The particle swarm optimization algorithm is
inspired by the social behavior of flocks of birds and fish [28]. Both methods are employed
for the global optimization of variables to obtain better prediction results. Therefore, genetic
algorithms and particle swarm optimization algorithms can also be used to optimize the
weights and biases of neural network models and, thus, improve the prediction accuracy
of neural network models [29]. The K-shape time-series clustering algorithm proposed
by John Paparrizos et al. [25] can efficiently compare sequences and compute sequence
centers while ensuring scaling invariance, translation invariance, and transformation
invariance. The main methods include shape-based distance (SBD) and computing the
center of mass of the class (which preserves the shape and features of the class) based on
the SBD. Long short-term memory neural networks are a special type of recurrent neural
network (RNN), designed specifically for processing sequential data, and have unique
advantages in learning time-series data features [21,30]. LSTM neural networks consist of
two main components (the storage module and the gate module), which are responsible
for stabilizing the transmission of information and the control over the information passed.
Compared with traditional artificial neural networks, the storage and gate modules enable
LSTM neural networks to better capture time-series data fluctuations and obtain desirable
prediction results [31,32].

In summary, this study aims to address the drawbacks of the lack of reliable sample
data for large-scale urban land-subsidence prediction and the existing neural network
algorithms, which mostly fit, but rarely achieve prediction. Specifically, the main urban
area of Kunming was taken as the research object. LiCSBAS technology was used to obtain
the land-subsidence deformation information from 2018–2021 in the main urban area of
Kunming. The time-series clustering K-shape algorithm was adopted to cluster the acquired
land-subsidence time-series. Next, the clustered subsidence points were classified, and
hydrogeology, geological structure, fault, groundwater, high-speed railways, and high-rise
buildings were selected as the influencing factors. Subsequently, the PSO-BP neural network
algorithm was constructed to predict the urban land subsidence from a multi-factorial
perspective. Finally, the fluctuation in the urban land-subsidence sequence deformation
was predicted using the LSTM neural network from a multi-factorial perspective in order
to achieve large-scale, high-precision urban land-subsidence prediction.

2. Materials and Methods
2.1. Materials
2.1.1. Overview of the Study Area

The study area is located in Kunming, the capital of Yunnan Province, in southwestern
China, as illustrated in Figure 1a. Kunming is currently one of the only large- and medium-
sized cities experiencing ground subsidence in the western highlands of the continent
in China, with a severe subsidence area of about 300 km2. Kunming is located in a
fertile lake basin on the northern shore of Dianchi Lake, surrounded by mountains to the
north, west, and east, with an altitude of 1900 m and a latitude just north of the Tropic of
Cancer [4,7]. As of 2014, Kunming had a population of 6.6 million and an urban population
of 4.5 million [33]. Due to its low latitude and high altitude, Kunming has one of the
mildest climates in China, characterized by short, cool, dry winters, mild days and cool
nights, and long, warm, humid summers [4].

2.1.2. Geological Background

The main urban area of Kunming is located in the Late Cenozoic fault basin, which is
controlled by several Quaternary active fractures. As shown in Figure 1b, the study area
has significant neotectonic movements, which are controlled especially by the north–south
main active faults, which are mainly characterized by fault-block uplift and subsidence
cutting by faults in different directions. Since the Late Cenozoic, the compressive stress
in the north of the regional stress field has mainly been in the west, and the tensile stress
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is generated in the basin area bounded by the Puduhe fault (F54) and the Yiyun fault
(F153). As a result, five sub-blocks, namely Xishan, Puji, Sheshan, Hei Longtan, and Baiyi,
controlled by The Puji–Hangjia Village fault (F55), Heilongtan–Guandu fault (F150), and
the Baiyi–Hengchuan fault (F149), are successively pulled northward (Figure 1b). Due
to the control of the faults, the magnitude of the rift is different. Generally speaking, the
magnitude of the sag is large in the south and relatively small in the north [34].
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Figure 1. (a) is the location of the study area (the map in the upper-right corner shows the location of
Kunming), and the corresponding data are superimposed on those of the National Aeronautics and
Space Administration (National Aeronautics and Space Administration, NASA), the Jet Propulsion
Laboratory (Jet Propulsion Laboratory, JPL), and the National Imagery and Mapping Agency (NIMA),
who jointly surveyed and mapped the SRTM DEM data digital elevation model; (b) is a geological
map of the study area. Black solid lines represent Quaternary active faults, The copyright of this
geological map comes from the College of Geology Engineering and Geomatics, Chang’an University
Wu Zhu et al. [7]; (c) is a hydrogeological map of the study area.

The main urban area of Kunming features widely developed Quaternary loose sedi-
mentary layers and Quaternary accumulations of varying thicknesses distributed near the
surface. The soils are composed of lacustrine silt and clay, interspersed with multiple layers
of silt, peat, and lignite. Quaternary soils of various geneses are the main foundation soils
of the urban construction area. The spatial lithology is mainly Quaternary lithology, with
clay-like soils and sand-like soils, and gravel-like soils and soft soils are mostly intercalated
or lenticularly distributed in the main soil layers [4]. In the plane, the transition relationship
between soil layers with different properties is complex. In the profile, soil layers with
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different properties are generally interlaced in a dogtooth pattern. The distribution of the
groundwater is determined by various factors, such as the geological structure and stratum
lithology. Regarding Kunming City, the entire area takes the Dianchi Lake in the west as the
minimum discharge benchmark for surface water and groundwater, forming a naturally
structured fault–sag basin. There are various types of groundwater in the main urban
area of Kunming City, including metamorphic rock fissure water, loose rock pore water,
clastic rock fissure water, carbonate rock fissure and cave water, etc. The hydrogeological
distribution of the main urban area of Kunming City is shown in Figure 1c. The depth
of the groundwater table is shallow, and the depth of the pore water is 0–5 m. Under the
influence of the shallow depth of the groundwater table, pit-wall collapse and sand gushing
easily occur during the excavation of the foundation pit, and the improper exploitation of
the pore water can easily trigger land subsidence.

2.1.3. Second-Class Level Survey of the Surface Deformation

According to the level survey data from 1979 to 1986, there is apparent ground subsi-
dence in the local part of the Kunming urban area, roughly bounded by the Pudu River–
Xishan Fault, with fluctuating continuous subsidence in the eastern area and the subsidence
center in the area of East Station Railway Station–Xiao Banqiao. In the above subsidence
area, the central part of the Kunming city area settles slowly, while the east and west sides
settle faster and several secondary subsidence centers appear. Moreover, the early isolated
subsidence centers gradually develop into regional subsidence zones, with an annual aver-
age subsidence rate of 12.42~56.8 mm · a−1. Since 1986, the Yunnan Seismological Bureau
and the Kunming Survey and Design Institute have been measuring the second-class level
survey of urban construction in the Kunming area. After a total timespan of 11 years
(1987~1998), featuring four periods of whole-network-level monitoring work, a clearer un-
derstanding of the urban and suburban areas of Kunming land-subsidence characteristics
was developed. The subsidence amount and subsidence rate of each subsidence area are
shown in Table 1, and the distribution of the subsidence area is shown in Figure 2.

Table 1. Subsidence amount (mm) and subsidence rate (mm · a−1) of Kunming subsidence center.

Period 1987~1994 1994~1998 1987~1998

Subsidence Area Subsidence Rate Subsidence Rate Subsidence Rate

Guangwei village −140.1 −20.0 −81.3 −20.3 −221.4 −20.1
Airforce garage −138.4 −19.8 −53.7 −13.5 −192.1 −17.5

Yuhu village −44.8 −6.4 −50.3 −12.6 −95.1 −8.6
Guandu No. 9 middle

school * +159.2 +22.7 −227.1 −56.8 −67.8 −6.2

Airport −89.5 −8.1 −119.4 −29.9 −208.9 −19.0
Army hospital −186.3 −16.9 −96.1 −24.0 −282.4 −25.7

Datangzi −99.5 −9.0 −56.9 −14.2 −156.4 −14.3
Yanjiashang −44.5 −4.0 −86.5 −21.6 −131.0 −11.9
Xiaobanqiao −111.9 −16.0 −124.3 −31.1 −236.2 −21.5

Note: “+” indicates uplift; “−” indicates subsidence; “*”—the data of this measurement point do not match the
overall trend of the surrounding subsidence all the time; the subsidence requires continued observation.

2.1.4. Research Status of Subsidence Causes in the Study Area

So far, most researchers have studied the causes of subsidence in the main urban area
of Kunming. For example, Li et al. [35] investigated various controlling factors, such as
geological structure, stratum distribution, groundwater exploitation, infrastructure con-
struction, and human activities, in ground load. The results suggest that land subsidence
in Kunming is mainly affected by tectonic activities. The geomorphic sediments in faulted
basins provide conditions for the development and acceleration of land subsidence. The
previous land-subsidence area and the over-exploitation of groundwater are closely related.
However, the subsidence area has been expanding in recent years due to the increase in
human activity. Yuanyuan Ma et al. [36] comprehensively analyzed the causes of the subsi-
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dence in the Kunming area based on urban construction data, geological and hydrological
data, and meteorological data. The results revealed that the subsidence in Kunming was
induced by the soil deformation caused by the construction of the subway, large buildings,
and commercial districts. The amount of groundwater in Kunming can be effectively sup-
plemented. Thus, the land subsidence in Kunming presents significant seasonal nonlinear
subsidence with rainfall. To sum up, the subsidence of the main urban area of Kunming
is impacted by factors such as geological structure, urban construction (large commercial
areas, high-rise buildings, and subway construction), faults, hydrogeology, groundwater,
rainfall, and other factors.
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2.1.5. Data

• InSAR data

This study uses the radar data sequence acquired by ESA as the benchmark dataset.
Launched in 2014, ESA’s Sentinel-1 satellite (ESA Copernicus Open Access Hub. Available
online: https://scihub.copernicus.eu/dhus/#/home (accessed on 1 March 2018)) contains
two satellites with four imaging modes [37]. It uses the C-band to obtain radar images.
Furthermore, it can run 24 h per day, 7 days per week. In this study, we used LiCSBAS
processing technology to obtain the subsidence rate and time-series subsidence in the study
area. LiCSAR (automated sentinel-1 InSAR processor), (COMET-LiCS Sentinel-1 InSAR
portal. Available online: https://comet.nerc.ac.uk/COMET-LiCS-portal/ (accessed on
5 March 2018)) products [38] and GACOS (Generic Atmospheric Correction Online Service
for InSAR. Available online: http://www.gacos.net/ (accessed on 5 March 2018)) prod-
ucts [17] are required to use LiCSBAS software [17]. L1-level Sentinel-1 images downloaded
from ESA require a processing series to obtain differential interferograms and unwrapped
differential interferograms, resulting in a large amount of disk space, computational per-
formance, and processing time. The LiCSAR product released by COMET, a project of the
Seismic and Volcanic Structure Observation and Modeling Center of the UK Environmental
Research Council (NERC), provides free processed unwrapped maps and coherence maps,
which can be downloaded and used directly without downloading and preprocessing
steps. The product can effectively save the user’s processing time and storage time, and

https://scihub.copernicus.eu/dhus/#/home
https://comet.nerc.ac.uk/COMET-LiCS-portal/
http://www.gacos.net/
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improve the processing efficiency. The GACOS tropospheric delay-correction product re-
leased by the University of Newcastle, UK, uses the Iterative Tropospheric Decomposition
(ITD) model to separate the stratified and turbulent signals from the total tropospheric
delay and generate a high-space-resolution zenith total delay map for use in calibrating
InSAR measurements and other applications [39]. In Section 3.1, we describe our use of
the 84 orbit-raising radar images collected from 2018 to 2021 to process the radar images
with the LiCSBAS method to obtain the land-subsidence information from the main urban
area of Kunming from 2018 to 2021.

• Subsidence-Influencing-Factor Data and Other Data

The main factors influencing subsidence include the geological structure of the study
area, urban construction (large-scale commercial areas, high-rise buildings, and subways),
faults, hydrogeology, groundwater data, and rainfall. The geological structure, hydrogeol-
ogy, and fault data were derived from the National Geological Archive (National Geological
Archive. Available online: http://www.ngac.cn/125cms/c/qggnew/index.htm (accessed
on 1 January 2022)) at the Institute of Geology, part of the China Earthquake Administra-
tion (Institute of Geology, part of the China Earthquake Administration. Available online:
https://www.eq-igl.ac.cn/tzgg/info/2020/21942.html (accessed on 6 January 2022)). With
a scale of 1:200,000, we vectorized it through georeferencing, and finally obtained the ge-
ological structure, hydrogeology, and fault data in the unified coordinate system of the
study area. The data on large-scale commercial districts, high-rise buildings, and sub-
ways from 2018 to 2021 were downloaded through Bigemap (Bigemap. Available online:
http://bigemap.com (accessed on 6 January 2022)), the official map downloader in China,
to download the corresponding POI (point of interest) vector data and process them to
obtain the vector data in a unified coordinate system. The rainfall data (Precipitation
Processing System. Available online: https://arthurhou.pps.eosdis.nasa.gov (accessed
on 12 January 2022)) and groundwater data (Groundwater and Soil Moisture Conditions
from GRACE-FO Data Assimilation for the Contiguous U.S. and Global Land. Available
online: https://nasagrace.unl.edu/ (accessed on 12 January 2022)) from 2018 to 2021 were
from the National Aeronautics and Space Administration. The data format was raster data,
with a resolution of 1 km, and the data were processed to obtain raster data in a unified
coordinate system. The above data are discussed in Section 4.3. The land-subsidence data
were analyzed by grey correlation to determine whether they had a strong relationship with
the subsidence data, and they were used as the main influencing factors in the construction
of the land-subsidence prediction model.

Using the SRTM DEM data (United States Geological Survey. Available online: https:
//lpdaac.usgs.gov/ (accessed on 2 March 2018)) from a joint survey and mapping of the
National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory (JPL),
and National Imagery and Mapping Agency (NIMA), the spatial resolution was found to
be 30 m. This was used for the removal of the terrain phase, described in Section 2.2.1,
and the gray relational analysis, described in Section 3.3. High-resolution Google imagery
(Google Earth. Available online: http://www.google.cn/intl/zh-CN/earth/ (accessed on
20 January 2022)) obtained from Google Earth was used for the location annotation of the
leveling data, described in Section 2.1.3, and an overlay analysis of the urban construction
and groundwater extraction points, described in Section 3.3.2.

This experimental dataset consisted of InSAR-related data from 2018 to 2021, subsur-
face data from 2018 to 2021, rainfall from 2018 to 2021, and data on hydrogeology, geological
structures, faults, high-speed rail construction, and high-rise buildings, as well as other
data. Table 2 contains specific data and specifications.

http://www.ngac.cn/125cms/c/qggnew/index.htm
https://www.eq-igl.ac.cn/tzgg/info/2020/21942.html
http://bigemap.com
https://arthurhou.pps.eosdis.nasa.gov
https://nasagrace.unl.edu/
https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
http://www.google.cn/intl/zh-CN/earth/
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Table 2. Data sources and specifications.

Data Name Type of Data Data
Resolution/Scale Data Phase Data Source

Sentinel-1A radar image Raster 5 m × 20 m 2018-03–2021-02 European Space Agency
LiCSAR Products Raster 30 m 2018-03–2021-02 NERC and COMET

GACOS Raster 90 m 2018-03–2021-02 University of Newcastle
SRTM DEM Raster 30 m - NASA and NIMA

Google Maps imagery Raster 0.2 m 2021 Google Earth
hydrogeology Raster 1:200,000 - National Geological Archive;

Institute of Geology, China
Earthquake Administration

Geologic structure Raster 1:200,000 -
Fault Raster 1:200,000 -

Large business district Vector - 2018-03–2021-02
Bigemap map download appHigh-rise building Vector - 2018-03–2021-02

Subway Vector - 2018-03–2021-02
Global precipitation

measurements Raster 1 km 2018-03–2021-02 National Aeronautics and
Space Administration

Groundwater Raster 1 km 2018-03–2021-02

2.2. Methods

First, the LiCSBAS method was used to obtain the subsidence data for the main urban
area of Kunming. According to the obtained subsidence data, the data were clustered
using the time-series clustering K-shape algorithm. Next, the influence of hydrogeology,
geological structure, fault, groundwater, rainfall, high-speed railway construction, and
high-rise building data on urban land subsidence was analyzed. Thirdly, the PSO-BP
neural network algorithm was constructed for the clustered subsidence point data from
the perspective of multiple factors to predict the annual subsidence of the main urban area
of Kunming from 2018-03 to 2021-02. Finally, the LSTM neural network was employed to
predict the fluctuation in the subsidence sequence deformation of each subsidence point
from the perspective of multiple factors. Finally, the large-scale land-subsidence prediction
in the main urban area of Kunming was performed. The method flow is demonstrated in
Figure 3.
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2.2.1. LiCSBAS Technology to Obtain Subsidence Information

The LiCSBAS (small-baseline subset within LiCSAR) analysis method is an open-
source InSAR time-series analysis method based on the LiCSAR [1] product, which is an
automated Sentinel-1 InSAR processor. LiCSBAS can effectively solve large-scale moni-
toring that requires a significant amount of processing time and can effectively control
the atmospheric delay error and phase-unwrapping error. It is particularly suitable for
the acquisition of large-scale urban land-subsidence deformation information. According
to Equation (1), the LiCSBAS method decomposes the interference phase to obtain the
deformed phase:

ϕ ≈ ϕtopo + ϕdef + ϕatm + ϕflat + ϕnoise (1)

where ϕtopo is the terrain phase affected by the DEM error; ϕdef is the deformation phase
in the radar line of sight (LOS); ϕatm is the atmospheric delay phase; and ϕnoise is the flat
phase. When the other phases are removed, ϕ can be obtained [40].

The principal steps of the LiCSBAS method are as follows. First, the LiCSAR product
related to the area of interest is downloaded, and the external GACOS product is used to
perform atmospheric correction for tropospheric noise [41]. Next, the overall interference
quality check and loop-closure-phase difference are adopted to eliminate errors in the
interference pair, and to identify and discard factors that would degrade the results. Subse-
quently, the interferometric pairs after atmospheric correction and unwrapping error are
applied for small-baseline subset inversion to obtain the displacement time-series and rates.
Next, the rate standard deviations (STD) and a noise pixel masking index are estimated
based on multiple noises. Finally, the time series is spatiotemporally filtered to reduce
residual noise, and the filtered time series and velocity are derived.

In the experiment, the Sentinel-1 radar image LiCSAR product processed from March
2018 to February 2021 was selected, and the LiCSBAS method was used to obtain the
land-subsidence information in the main urban area of Kunming. It is expected to be used
as the crucial index data for subsequent subsidence prediction.

2.2.2. K-Shape Algorithm for Clustering

K-shape is a new time-series clustering algorithm. K-shape relies on the SBD distance
metric and the time-series shape extraction method to efficiently generate time-series
clusters. It is based on an iterative refinement process similar to that used in K-means.
Through this iterative process, K-shape minimizes the sum of squared distances and
manages to produce clusters that are homogeneous (similarity of observations within
clusters) and well separated (differences in observations from different clusters), and scales
linearly with the number of time series. The algorithm can be used to efficiently compare
sequences and computes centroids under zoom, translation, and translation invariance.
K-shape is a non-trivial example of K-means. Compared with similar attempts in the
literature [42,43], its distance measurement and centroid calculation method make K-shape
the only scalable method that is significantly better than K-means [25]. At the same time,
compared with the CLARA algorithm proposed by Gabriella Milone and Germana Scepi in
2011 [44], both K-shape and CLARA algorithms can be clustered according to shape and
are suitable for processing large data sets. K-shape focuses more on to the shape of the time
series, rather than the simple shape.

In each iteration, the K-shape algorithm performs two steps: (1) In the assignment step,
the algorithm works by comparing each time series with all the computed centroids and
assigning each time series to the closest; and (2) in the refinement step, the cluster centers
are updated to reflect the changes in cluster membership in the previous step until there is
no change in cluster membership or the maximum number of iterations allowed is reached.
In the assignment step, K-shape depends on the SBD distance metric of Formula (2). In this
paper, a brief overview of the specific flow of the K-shape algorithm is provided, and the
detailed algorithm flow is detailed in [25] (Equation (2)).
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where the maximum value
→
µ k
∗ represents the square similarity of all the other time series;

I is the identity matrix; O is a matrix of all ones; k is the number of clusters to be generated.
The K-shape clustering algorithm was used in this study to cluster the 40,901 subsi-

dence data points in the main urban area of Kunming obtained by the LiCSBAS method.
Furthermore, the value of the number of clusters k was determined according to the elbow
diagram. In other words, the intra-cluster error variance SSE (sum of squares for error) was
taken as the objective function to divide the clusters. Finally, the subsidence data of the
same time series shape were clustered. According to the elbow diagram, the clustering was
the most reasonable when k = 3. The 40,901 subsidence data points in the main urban area
of Kunming were divided into three clusters, with subsidence data points in each cluster of
7951, 11,928, and 21,022, respectively.

2.2.3. Grey Relational Analysis

The purpose of grey correlation analysis is to quantitatively reflect the correlation
between the target variable and the influencing factors so as to screen out the main factors
among the numerous influencing factors. The focus of grey correlation analysis is on rank-
ing the correlations between sequences by calculating correlations instead of calculating
specific correlation values between sequences. Therefore, the criterion for selecting factors
for the grey relational degree is which input factors are determined according to the order
of the relational degree when the number of inputs to the prediction model is fixed, rather
than whether the relational degree is higher than a certain relational value. According to
the error of the prediction model under different input numbers, the input factor of the
model is determined. The principle is to convert the statistical data corresponding to the
variable factors in the system into geometric curves. Grey relational analysis holds that the
closer the curve geometry, the greater the relational degree. The factor corresponding to
the curve is the main factor dominating the development trend of the system. The steps in
grey correlation calculation are presented in [45].

In the experiment, the target variable represents the average annual sedimentation
rate. The data from the hydrogeology, geological structure, fault, groundwater, rainfall,
subway construction, and high-rise buildings are Xm, which represents the mth influencing
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factor, and xm(n), which represents the mth influencing factor of the nth subsidence point.
Each impact factor is expressed as a series of variables (Equation (4)):

X1 = {x1 (1), x1(2), · · · , x1(n)}
...

Xi = {xi (1), xi(2), · · · , xi(n)}
...

Xm = {xm (1), xm(2), · · · , xm(n)}

(4)

Then find the correlation coefficient (Equation (5)):

γ[x0(k), xi(k)] =
minimink |x0(k)−xi(k)|+τmaximaxk |x0(k)−xi(k)|

|x0(k)−xi(k)|+τmaximaxk |x0(k)−xi(k)|
(5)

In the formula, τ take the common value of 0.5.
The correlation between X0 and Xi is obtained according to the formula (Equation (6)):

γ(X0, Xi) =
1
n

n

∑
k=1

γ[x0(k), xi(k)] (6)

In the experiment, 2000 pieces of data were randomly selected from the clustered
data to conduct grey correlation analysis using SPSSAU, an online Statistical Product and
Service Solutions (SPSS) analysis software. Additionally, the qualitative influencing-factor
faults, subway construction, and high-rise buildings were quantitatively processed through
a buffer analysis covering the study area. Finally, the distance to the fault, subway, and
high-rise buildings was determined, as shown in Figure 4. Figure 4a represents the distance
from the fault; Figure 4b represents the distance from the subway; Figure 4c represents the
distance from the high-rise building.According to the grey correlation analysis, the rela-
tionship between the influencing factors (hydrogeology, geological structure, groundwater,
rainfall, distance from faults, subway, and high-rise buildings) and target variables (the
average annual ground subsidence of the main urban area of Kunming) was obtained, and
the cause of its subsidence is discussed.
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2.2.4. Neural Network Algorithm

• PSO optimization of BP neural network algorithm

The BP neural network is a common branch of the neural network, which applies the
error back-propagation between the predicted value and the actual value to update the
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weights and biases in the BP neural network. The relationship between the input parameter
x and the output value y can be expressed as Equation (7).

y = f
(
∑ wx + b

)
(7)

where w and b represent the weight matrix and bias vector from adjacent layers, respectively,
and f represents the activation function [29].

The neural BP network learning algorithm has shortcomings, such as its slow conver-
gence speed, the ease with which it falls into local minima, and its difficult-to-determine
network structure. The particle swarm algorithm was employed to optimize the weights
and thresholds of the BP neural network. The PSO algorithm was first proposed by Ameri-
can electrical engineer Eberhart and social psychologist Kennedy in 1995, based on flocks
of birds foraging [29]. In the PSO algorithm, the population is a set of particles, and each
particle represents a potential solution to the problem, encoded by the weights and biases
of the hidden and output layers in the BP neural network. Each particle has its own velocity
and position vector. The evaluation index of the performance of each particle is the fitness
function based on the prediction error of the BP neural network. The individual particle
searches its search space and obtains the position where the fitness function reaches the
maximum value, which is called the individual optimal position. Regarding all the particles,
the position that the highest fitness function of a single particle can reach is called the global
optimal position. The new velocity and position vector for each particle is updated with
the current velocity, the individual optimal position, and the global individual optimal
position. The detailed update rules are presented in [28].

In this study, the BP neural network optimized by PSO was divided into three layers:
input layer, hidden layer, and output layer. The multi-factor PSO-BP prediction model
constructed in this experiment is illustrated in Figure 5. The input layer contains seven
neurons: hydrogeology, geological formation, groundwater, rainfall, distance to fault,
high-speed rail, and high-rise buildings. The output layer contains one neuron, which
is the settling rate. The activation functions of the hidden layer and input layer were
selected as tansig and purelin, respectively, and the training function was selected as
trainlm. According to multiple experiments, the training parameters of the PSO-BP model
under different clusters were obtained. The mean squared error (MSE) was selected as
the loss function, which can be obtained by Equation (8). The PSO-BP neural network is
trained from the training set until the performance on the training and validation sets does
not significantly improve [32]. If either of these two criteria is met, the training process of
the PSO-BP neural network is stopped. One criterion is that the mean squared error (MSE)
of the training set is below 1 × 10−8. Another criterion is that the MSE of the validation
set fails to decrease in 20 consecutive iterations, so as to prevent overfitting in the training
process. The three types of data set divided by K-shape clustering were divided into
training set, validation set, and test set, of which the training set and the validation set
accounted for 40% and 10%, respectively. Different PSO-BP models were trained, and the
remaining 50% comprised the test set. The mean squared error (MSE) was used to evaluate
the performance of the analysis and prediction. The detailed mathematical expression is
expressed in Equation (8). Finally, the subsidence rate of the main urban area of Kunming
in 2018–2021 was predicted.

MSE =
1
N

N

∑
i=1

(xi − yi)

2

(8)

where N represents the number of samples; xi represents the actual annual subsidence rate;
and yi represents the predicted annual subsidence rate.
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Figure 5. The constructed multi-factorial PSO-BP prediction model. In the figure, wih represents
the connection weight between the input layer and the hidden layer, who represents the connection
weight between the hidden layer and the output layer, bh represents the threshold of each neuron in
the hidden layer, and bo represents the threshold of each neuron in the output layer.

• LSTM neural network algorithm

LSTM networks are special types of recurrent neural network that learn long-term
dependent information [46]. If the gap between the current predicted position and the
relevant information keeps increasing, the simple recurrent neural network may lose its
ability to learn information from such a long distance away, and the performance of the
recurrent neural network is also limited. For cases such as this, in 1997, Hochreiter and
Schmidhuber proposed the long short-term memory (LSTM) network [47]. Unlike the
single-loop body structure, the LSTM network structure is a special network structure
with a three-“gate” (forgetting gate, input gate, and output gate) structure. For many
problems, LSTM networks have achieved considerable success, and they have been widely
used for sequence modeling tasks [48]. Most of the current recurrent neural networks
are implemented through the LSTM network structure. The basic LSTM neural network
structure is shown in Figure 6. The value σ represents the sigmoid function, and its output
is between 0 and 1; tanh is the hyperbolic tangent function, and its output is between −1
and 1; ht−1 represents the output of the previous cell; and Xt represents the input of the
current cell.

The first stage of the LSTM neural network decides whether to forget or remember
information in the cell state. The calculation formula of the forgetting gate is as follows
(Equation (9)):

ft = σ
(

W f ·[ht−1, Xt] + b f

)
(9)

where σ is a sigmoid activation function, ft is the forgetting gate, ht−1 is the output at time
t − 1, and Xt is the input vector at time t. The values W f and b f represent the weight vector
and bias vector of the forget gate, respectively. If the output value of ft is close to 0, this
means that the previous data have been forgotten; however, if it is close to 1, this does not
mean that the previous data have been remembered.
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The second stage of the LSTM neural network determines which new data are stored
in the cell state. Achieving this requires two steps: first, the sigmoid layer decides which
information needs to be updated, and the tanh layer generates a vector, which is an alternate
candidate value C̃t for updating, which is added to the cell state. Second, by combining the
two pieces of data, the model creates new values to update the cell state. The formula for
calculating the input gate is as follows (Equations (10) and (11)):

it = σ(Wi·[ht−1, Xt] + bi) (10)

C̃t = tanh(WC·[ht−1, Xt] + bC) (11)

where σ is a sigmoid-shaped activation function, it is the input gate, Wi and bi represent
the weight vector and bias vector of the input gate, respectively, and WC and bC represent
the updated weights and biases, respectively.

In the third stage of the LSTM neural network, the old cell state Ct−1 is updated by ft
and it. The values C̃t and Ct−1 are multiplied by ft to remove redundant information. The
new cell state Ct is obtained by updating the past state Ct−1. This is calculated as follows
(Equation (12)):

Ct = ft·Ct−1 + it·C̃t (12)

The final stage of the LSTM neural network decides what to output. First, we run a
sigmoid layer to determine which part of the cell state will be output. Next, we process the
cell state through tanh (to obtain a value between−1 and 1) and multiply it with the output
of the sigmoid gate; consequently, we output only the part of the output we determined.
This is calculated as follows (Equations (13) and (14)):

Ot = σ(WO·[ht−1, Xt] + bO) (13)

ht = Ottanh(Ct) (14)

where ht represents the new output value, Ot is the output gate, and WO and bO represent
the weight vector and bias vector of the output gate, respectively.

In this study, the multi-phase subsidence deformation of the same subsidence point
has no relationship with the distribution distance of subways, high-rise buildings, river
systems, and faults. It is mainly associated with the rainfall and groundwater data in
the corresponding time period of the month. Furthermore, the deformation of the time-
series subsidence of a single subsidence point is predicted using the LSTM neural network
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algorithm. The rainfall and groundwater data in the corresponding time period of the
month are used as the input layer, and the subsidence is the output layer. The multi-factorial
LSTM prediction model constructed in this experiment is presented in Figure 7. Following
the length of the historical sequence L, a new data set was created through a sliding window
and divided into a training set and a test set, suggesting that the first 76 periods should be
selected as training samples and the last 10 periods used as verification and test samples.
The time errors were lower than the multi-step prediction. Therefore, the single-step
prediction method was preferred in this paper to build the network model, implying that
the time step was 1 [49]. The various training parameters were set as follows: the hidden
layer node was 50 layers; the training times of Cluster 1, Cluster 2, and Cluster 3 were set
to 1400, 1000, and 1500 times, respectively; the batch size was set to 45; the rectified linear
unit (ReLU) function was selected as the neuron activation function; and the learning rate
η was 0.01. The learning rate was adjusted according to the changes in the MAE index
of the test set, and the parameters were updated using the adaptive moment estimation
(Adam) algorithm. Compared with other optimization methods, the overall performance
of the Adam algorithm in practical applications is better, and the loss function adopts the
mean absolute error. The root mean square error and mean absolute error were selected
to evaluate the prediction accuracy of the LSTM neural network (Equations (15) and (16)).
Finally, the time-series deformation and subsidence of a single subsidence point in the main
urban area of Kunming from 2018 to 2021 were predicted.

RMSE =

√√√√ N

∑
t=1

(yt − ỹt)
2

N
(15)

MAE =
1
N

∣∣∣∣∣ N

∑
t=1

yt − ỹt

∣∣∣∣∣ (16)

where yt and ỹt are the observed and predicted values of the subsidence at time t, respec-
tively, and N is the number of experimental datasets.
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3. Results
3.1. InSAR Land-Subsidence Deformation Results

The deformation rate of the main urban area of Kunming from 2018 to 2021 is illus-
trated in Figure 8a. From 2018 to 2021, the maximum land-subsidence rate in the main
urban area of Kunming was −30.591 mm · a−1. There are four significant subsidence areas
in the main urban area of Kunming City. They are unevenly distributed along Dianchi Lake.
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Except for the area of Xiaobanqiao Street, the former subsidence center, the newly added
settlement area A and the existing settlement area B have developed into new settlement
centers in the main urban area of Kunming, distributed along Dianchi Lake, indicating that
the early isolated subsidence centers are gradually developing into regional subsidence
zones. The subsidence area A is mainly located in the Rongchuang–Xinhe–Wangjiadui
community area in Kunming, Xishan District, showing a “three-core” distribution. The
maximum subsidence is located in Rongchuang, with the maximum subsidence rate of
−25.46 mm · a−1. Subsidence area B is the largest subsidence center in the main urban
area of Kunming and continues to expand from south to north to the city center. Here,
the subsidence is more severe. This area is located in Liujia Village, Caojiaqiao, Niuqiao
Village, and the Dianchi Exhibition Center, in the Guandu District. In the area of Sijia
Community–Luoya Community–Wangjia Village and Longma Community, the largest
subsidence is located near Dianchi Lake, on Huizhan North Road, with a subsidence rate
of −28.01 mm · a−1. Subsidence area C is located in the Yangfu Community–Guangwei
Community–Xinjing Community area, and Xiaobanqiao Street, in the Guandu District. The
subsidence center is located in Guangwei Community. The subsidence trend is gradually
increasing from north to south, and the subsidence near Xiaobanqiao Street has a weak-
ening trend. The largest subsidence in the region is located in the Guangwei community,
with a subsidence rate of −15.34 mm · a−1. Subsidence area D is located in the Daluoyang
community and Xiaoluoyang community, and in Luoyang Street, in the Chenggong Dis-
trict. The largest subsidence in this area is located in the Daluoyang community, with a
subsidence rate of −12.65 mm · a−1. There may be a tendency toward further subsidence.
There are many sedimentation funnels in the study area, and the three-dimensional surface
sedimentation rate is shown in Figure 8b.
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3.2. K-Shape Time Clustering Results

Figure 9a illustrates the clustering results of the 40,901 time-series subsidence data
points obtained by the K-shape algorithm, which were clustered into three categories. Due
to the presence of a large amount of data in each category, it was not easy to observe the
subsidence time series. Thus, 30 records were extracted from each of the three categories,
with the subsidence time series presented in Figure 9b.
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3.3. Grey Relational Analysis Results and Analysis
3.3.1. Grey Relational Analysis Results

The grey relational analysis was performed on the clustered data, and the results
obtained are provided in Table 3. As revealed in the table, the seven types of influencing
factor selected from the three clusters of data were highly correlated with the subsidence
rate, and the correlation results were all greater than 0.8. This suggested that the seven
selected types of influencing factor were suitable for subsequent multi-factorial model
construction.

Table 3. Grey correlation analysis results of each cluster.

Effect Factors Correlation Degree
of Cluster 1

Correlation Degree
of Cluster 2

Correlation Degree
of Cluster 3

Subway construction 0.833 0.825 0.869
Fault 0.830 0.823 0.868

High-rise buildings 0.838 0.827 0.874
Groundwater 0.842 0.840 0.884

Rainfall 0.842 0.840 0.884
Hydrogeology 0.836 0.836 0.881

Geological structure 0.838 0.836 0.869

3.3.2. Relationship between Influencing Factors and Land Subsidence

• The Influence of Urban Construction on Surface Deformation

In recent years, the construction of large-scale commercial districts, high-rise buildings,
and subways has become one of the essential factors of urban development affecting urban
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surface deformation. Figure 10a shows the superimposed result of the vector data from
the large commercial districts and high-rise buildings extracted by POI (point of interest)
and the high-resolution Google image, as well as a partial enlarged image. It can be seen
from the partially enlarged image that the vector data from the large-scale commercial
districts and high-rise buildings proposed by POI overlap with high-resolution Google
images, and all the extracted vector data of the large-scale commercial districts and high-
rise buildings are consistent with the real situation, thus proving the data’s reliability and
validity. Consequently, we performed an overlay analysis with the subsidence rate obtained
by the LiCSBAS technique in the large commercial districts and high-rise buildings, as
shown in Figure 10b. The analysis demonstrated the presence of large commercial districts
and high-rise buildings within a certain range of the subsidence area. However, this
does not indicate that subsidences will inevitably occur where large-scale commercial
districts and high-rise buildings are present. The large-scale commercial areas and high-rise
buildings had the largest subsidence within 200–600 m. This is due to the fact that the loads
of high-rise buildings and large-scale commercial areas are transferred to the foundation
soil through their foundations, which changes the original stress state in the foundation
soil layer and generates additional stress on the foundation, resulting in soil deformation
and regional subsidence. The major subsidence areas in the study area are concentrated in
Xishan District and Guandu District. As the technological, cultural, and commercial centers
of Kunming, the development of large-scale commercial areas and high-rise buildings
is essential. After an on-the-spot investigation, the subsidence areas were found to be
located in large-scale commercial areas and high-rise buildings. During the peak period of
architectural development, there were several projects under construction such as Kunming
Sunac and Dianchi Houhai, as well as the Dianchi Convention and Exhibition Center,
Wanda Plaza, and other projects. Meanwhile, the demand is increasing. In addition to the
impact of large commercial areas and high-rise buildings on the surface deformation of the
main urban area of Kunming, it can be seen from Figure 10c that the surface deformation
of the main urban area of Kunming was affected by the construction of the subway. Table 4
provides the construction and operation time of each subway line. The table implies that
the subsidence area is located around the subway; subsidence area A is located near the
first phase (L9) of Metro Line 6, and subsidence area D is located near the first phase
(L1) of Metro Line 1. The operation of these two subway lines began in 2012. It can be
demonstrated that the vibration generated during the operation of the subway would cause
damage to the ground. Subsidence has an effect. Metro Line 4 (L7) runs through subsidence
area C and is under construction from 2018 to 2020. The second phase (L5) of Metro Line
2 (L5) and Line 5 (L8) runs through subsidence area B. Owing to the excavation of deep
foundation pits and underground structure works during the construction of the subway,
the excavation of the soil will be difficult when unloading the soil. The movement of the
surface soil into the mining surface, the deformation of the enclosure structure of the deep
foundation pit, and the overall subsidence of the underground structure all cause surface
subsidence. Consequently, most of the subsidence areas are located around the subway.
Compared with the subway lines already in operation, the subway lines under construction
are more likely to cause subsidence in the surrounding land, and the subsidence is most
severe 400–1200 m from the subway under construction.
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Table 4. Timetable for construction and operation of various subway lines.

Subway Line
Time (20-)

08 09 10 11 12 13 14 15 16 17 18 19 20 21
Line 1 Phase I (L1)
Line 1 branch (L2)

Northwest Extension of Line 1 (L3)
Line 2 Phase I (L4)
Line 2 Phase II (L5)

Line 3 (L6)
Line 4 (L7)
Line 5 (L8)

Line 6 Phase I (L9)
Line 6 Phase II (L10)

Note: Red indicates the subway construction stage; green indicates the subway operation stage.
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• Influence of geological structure and faults on surface deformation

Quaternary lacustrine facies and delta facies loose sedimentary layers are widely
developed in the study area, mainly lacustrine facies silt and soft clay, interspersed with
multiple layers of silt, peat, and lignite. According to the drill holes, the Quaternary has
complex sedimentary facies transitions, both longitudinally and laterally. The northeastern
part is dominated by delta facies deposition; the southwestern part is dominated by
lacustrine facies, accounting for more than 1/2 of the section thickness, with 7–20 layers (27
at most) of peat and lignite, with a single layer thickness of 0.5–26.6 m. The sedimentary
thickness gradually increased from 100 m to more than 500 m from the northeast to the
southwest, and the cohesive soil layer also increased. In the profile, in addition to the weak
clay and silty clay layers (mostly lacustrine facies) intercalated with sand, gravel or gravel
layers (mostly alluvial or lacustrine facies), there are also sand, pebble, and gravel layers.
There are weak clay, silty clay or peat soil layers [34]. As shown in Figure 11a, the main
geological structures of the four land-subsidence areas in the main urban area of Kunming
are all lacustrine sedimentary layers, consisting of sand, clay, and peat soil, with a thickness
of 62 m. The physical and mechanical properties of the soil layer are shown in Table 5. The
water content (w) in the settlement area is generally 13~45% (up to 60%), the void ratio
(e) is 0.1~1.1 (up to 3.8), and the compressibility (α1-2) is 0.092~0.866 MPa−1 (maximum
1.793 MPa−1), indicating that the settlement area has the characteristics of self-weight
compaction, soft structure, low-degree consolidation, high compressibility, and high water
content, resulting in land subsidence. The settlement range is wide and the settlement rate
is high. The subsidence area near the surface is mainly soft soil, the mechanical properties
of the soft soil are poor, the construction of the soft soil distribution area is difficult, and
the deformation of and damage to houses and roads are common. The results revealed
that subsidence areas A and B are located at the edge of Dianchi Lake, where groundwater
is abundant and the sedimentary layer is relatively soft. The construction of subways,
high-rise buildings, and other large-scale projects can lead to sedimentary layer subsidence.
Concurrently, as shown in Figure 11b, subsidence area A is located at the intersection of the
Pudu River fault zone (north section) (F1), the Chenggong–Fumin fault zone (F2), and the
Machang–Xianjie (F5) fault, and it runs through the subsidence zone, exhibiting a cross-
intersecting shape. The Chenggong–Fumin fault zone (F2) runs through subsidence zone B,
and the Heilongtan—Guandu fault zone (F3) is nearby, demonstrating a “V”-shaped fault
interaction in the study area (Figure 11b). For the main urban area of Kunming, the impact
of the fault on the surface deformation is more significant. If there is a fault, the stability of
the soil structure is damaged and the land subsidence is aggravated. Heilongtan–Guandu
fault zone (F3) and Baiyi–Hengchong fault (F4) are nearby, although no fault zone runs
through subsidence zones C and D.
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Table 5. Physical and mechanical properties index of Quaternary lacustrine sedimentary layer soil.

Soil Type Density ρ
(g/cm3)

Water Content
w (%) Void Ratio e

Compression
Factor α1-2
(MPa−1)

Compression
Modulus Es

(0.1 MPa)

Sand 1.87~2.08 18~35 0.5~0.9 0.499~0.092 38.5~166.7
Clay 1.56~2.01 13~35 0.6~1.05 0.713~0.214 37.7~95.2

Silty clay 1.76~2.00 30~45 0.8~1.0 0.866~0.132 21.8~42.9
Peat 1.20~1.50 40~60 1.1~3.8 1.793~0.520 14.54~6.5

Gravel 1.95~2.35 15~25 0.1~0.5 0.367 455
Note: Source—Yunnan Provincial Bureau of Geology and Mineral Resources.

• Influence of Hydrogeology and Groundwater Exploitation on Surface Deformation

Land subsidence requires certain soil geological hydrogeological conditions and stress-
transition conditions. Regarding the hydrogeological conditions, confined aquifers with
abundant water that are suitable for long-term exploitation are frequently present in systems
with relatively loose water-bearing systems. Within a certain range of this mining layer, it is
beneficial to land subsidence if its top and bottom have relatively thick under-consolidated
or normally consolidated cohesive soil layers. From the perspective of stress transformation
in the soil layer, the fluctuating and substantial reduction in the confined water level has
become the basic premise for the expansion of land subsidence. The main hydrogeological
types in the study area, including metamorphic rock fissure water, loose rock pore water,
clastic rock fissure water, and carbonate rock fissure water, are displayed in Figure 12a. The
results suggested that except for subsidence area A, which is located in the fissure water
of metamorphic rocks, most of the other subsidence areas are located in the pore water
of loose rocks and lack rich amounts of water. The study area is dominated by surface
water, and the groundwater extraction in Kunming is mainly composed of karst water,
pore water, and fissure water, which is generally used for urban living-, industry, and
other purposes. The amount of groundwater exploitation is relatively large, the buried
depth of the groundwater table in the subsidence area is shallow, and the burial depth
of the pore water is generally 0–5 m. Affected by the shallow depth of the groundwater
level, problems such as pit-wall collapse, water, and sand gushing may occur during the
excavation of foundation pits, and the improper exploitation of pore water can easily cause
land subsidence.

According to the water-level monitoring data in Yunnan Province, as shown in Table 6
(see Figure 12b for the groundwater exploitation sites in the corresponding blocks), the
large-scale concentration and over-exploitation of groundwater has led to a continuous
decline in the water level of a wide range of hot water; the decline rate is increasing,
and a falling funnel has gradually formed. In the early 1980s, the burial depth of the
hot water level was generally 4~6m, and the water inflow volume of a single well was
1000~1750 m3/d. However, the current water level is generally lower than the water level
when the well was completed, and the average burial depth of the water level has increased
to 11~25 m3/d. m; the maximum decline value is more than 35 m, the average decline
rate for many years is 1.80 m/a, and the maximum is 4.59 m/a [34]. Land subsidence is
closely related to the decline in groundwater over time. The evolution of land subsidence
is a process involving the excessive exploitation of groundwater, the continuous decline
in water level, and continuous formation and expansion. After controlling the amount of
groundwater extraction, the groundwater level can gradually rise, and the land-subsidence
rate also decreases or even stops. Since the data related to groundwater exploitation could
not be obtained, we used the groundwater data released by NASA to obtain groundwater
data for the same number of days and analyzed the four randomly selected time-series
settlement points D1, D2, D3 and D4, as shown in Figure 12b. The analysis results are
shown in Figure 12c. As can be seen from the figure, the cumulative subsidence values of
the four time-series subsidence points show seasonal changes with groundwater, which is
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consistent with the high correlation between the groundwater and subsidence we obtained
through the grey correlation degree.
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Figure 12. Correlation analysis diagram of hydrogeology to surface deformation: (a) is a vector
diagram of hydrogeology in the study area; (b) is the name of groundwater exploitation in the
corresponding block (the corresponding data are superimposed on a Google image; randomly
selected relative timing point locations D1, D2, D3, D4 and P1, P2, P3, P4 were superimposed on
Google images). The analysis results are shown in (c).

Table 6. Groundwater exploitation status of each block.

Block
Number of

Mining Wells
(Eyes)

Minimum Spacing
between Production

Wells (m)

Cumulative
Drawdown of

Water Level (m)

Average Drop
in Water

Level (m/a)

Urban area 28 150 20.22~25.10 2.26
Guanshang–Jinmasi 34 100 9.18~24.88 1.32

Yangfangao–Paomashan 21 200 5.70~9.38 1.18
Haigeng sanatorium 46 150 11.50~21.30 1.62

Note: According to the survey and statistical data of Yunnan Provincial Environmental Monitoring Station [34].

• The influence of rainfall on the surface deformation

Kunming features distinct dry and wet seasons in terms of time distribution, and its
annual rainfall is 1450 mm. The rainy season is from May to October, and the rainfall in this
period accounts for about 85% of the total for the whole year. The dry season lasts from
November to April of the following year, and the rainfall during this period only comprises
about 15% of the annual total. As mentioned above, the main urban area of Kunming is
mainly composed of a lacustrine sedimentary layer, which comprises sand, clay, and peat
soil. The subsidence area is mainly soft soil near the surface, which is prone to collapse
and deformation under the action of rainfall. In this study, a superposition analysis of
the annual rainfall and the subsidence area in the corresponding time range, from 2018
to 2021, was performed to explore the influence of rainfall on the surface deformation in
Kunming. It was discovered that the average annual rainfall is more likely to lead to land
subsidence in the range of 109–117mm. Furthermore, the time-series points P1, P2, P3, and
P4 (as shown in Figure 12b) were randomly selected within the four subsidence regions, as
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presented in Figure 13. The four selected subsidence points exhibit nonlinear subsidence
and have a good correlation with rainfall. The deformation time-series fluctuates with the
change in rainfall; the main outcome is that the deformation variable increases with the
rainfall, forming a markedly accelerated process. Simultaneously, the effect of rainfall on
land subsidence is temporary, and the surface deformation will gradually tend toward the
original normal consolidation and subsidence process when the rainfall stops. The four
subsidence points, P1, P2, P3, and P4, settled faster and displayed seasonal changes. The P2
and P3 subsidence points settled the fastest, and their maximum subsidence values were
−64.45 mm and −60.75 mm, respectively. This was due to the fact that the two subsidence
points were subsided by the combined action of subways, high-rise buildings, and rainfall.
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3.4. Construction and Demonstration Application of Subsidence Prediction Model
3.4.1. Multi-Factorial PSO-BP Model to Predict Sedimentation Rate Results

The best prediction-model training parameters obtained by the constructed multi-
factor PSO-BP model for the three categories of data after several adjustments are presented
in Table 7. The training-set data from different categories (Cluster 1, Cluster 2, and Cluster 3)
were predicted by the corresponding constructed PSO-BP models for the validation and
test sets, and their corresponding mean squared errors (MSE) were as follows: 1.519, 1.465;
1.419, 1.441; and 1.485, 1.494, respectively. Specifically, the smaller the MSE, the more
the prediction model described, and the better the accuracy of the experimental data.
Meanwhile, there was no over-fitting phenomenon. The final predicted sedimentation
rate of the main urban area of Kunming from 2018–2021 is illustrated in Figure 14a. The
PSO-BP model constructed by using this paper can effectively predict a large area of urban
land subsidence, and its predicted subsidence area is consistent with the results of the
InSAR monitoring of the subsidence area. As revealed by calculating the error between
the predicted subsidence rate and the actual InSAR monitoring rate (Figure 14b), the areas
with a prediction error of less than 1.68 mm account for the largest total in the whole study
area, and the areas with a prediction error greater than 4.42 mm are mainly concentrated
near the subsidence area, especially the C subsidence area, which features the largest
error. By calculating the MSE of the predicted and monitored values for the whole study
area as 4.821 mm, according to the DZ/T 0154-2020 “Specification for Ground Subsidence
Measurement” issued by the Ministry of Natural Resources of China, the deformation
accuracy of the SBAS-InSAR is ±10 mm. Among the 24,540 predicted subsidence-rate
points, there are 24,432 deformation accuracies greater than 0 and less than ±10 mm,
accounting for about 99.5%; the deformation accuracy is higher than ±10 mm in 108 cases,
accounting for about 0.5%. This implies that the prediction accuracy meets the measurement
specification requirements. Thus, the effectiveness of the PSO-BP algorithm for predicting
the land-subsidence rate in a large urban area was verified.
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Table 7. Best training parameters of PSO-BP under different clusters.

Parameter Cluster 1 Cluster 2 Cluster 3 Parameter Cluster 1 Cluster 2 Cluster 3

Learning rate 0.8 0.8 0.8 Learning factor c1 = c2 = 1.49445 c1 = c2 = 1.49445 c1 = c2 = 1.49445
Training goal 0.001 0.001 0.001 Evolution algebra 20 20 30

Number of training 10,000 20,000 20,000 PopSize 20 25 30
Factor of momentum 0.6 0.6 0.6 Number of hidden layers 11 10 11
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Figure 14. Prediction result and prediction error of subsidence rate in LOS direction; (a) is the
prediction of the subsidence rate in the main urban area of Kunming from 2018 to 2021, using the
constructed PSO-BP; (b) is the error between the predicted subsidence rate and the actual monitoring
rate of InSAR.

3.4.2. Multi-Factorial LSTM Model to Predict Time-Series Subsidence Results

The constructed multi-factorial LSTM model was used to predict the last ten periods
of any time-series sedimentation data in each of the three types of data, and the results
are provided in Figure 15. The root mean square error (RMSE) of the three types of data
(Cluster 1, Cluster 2, and Cluster 3) are 0.445, 1.475, and 1.468 mm, respectively; the mean
absolute errors (MAE) are 0.319, 1.214, and 1.167 mm, respectively; the absolute error
ranges are 0.007~1.030, 0~3.001, and 0.401~3.679 mm, respectively. It can be observed that
the root mean square error and mean absolute error of the three types of data are very small,
and the maximum absolute error of the three types of data is 3.679 mm, which satisfies
the DZ/T 0154-2020 “Ground Subsidence Measurement Specification” issued by the Min-
istry of Natural Resources of China, with an SBAS-InSAR deformation Accuracy ±10 mm.
Therefore, it was verified that the multi-factorial LSTM model can be used to predict the
subsidence of the time series.
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4. Discussion
4.1. Influence of the Accuracy of InSAR Monitoring Results on the Prediction Model

The large-scale urban land-subsidence prediction method proposed in this paper from
the perspective of multiple factors is mainly based on the use of the subsidence rate and
time-series data obtained by InSAR technology to perform the corresponding prediction.
It can be demonstrated that the accuracy of the InSAR monitoring results directly affects
the final prediction accuracy. Due to the lack of a contemporaneous leveling survey and
GPS survey data, the accuracy of the monitoring data in this paper cannot be accurately
evaluated. To this end, the annual subsidence rate data of the study area obtained in
different historical periods were collected and compared with the annual subsidence rate
obtained by the method in this paper, as listed in Table 8. This comparison suggests that
the subsidence rates of the five selected subsidence areas, including Guangwei Village,
Xiaobanqiao, and Yuhu Village, are in good agreement with the leveling data and the data
obtained through InSAR. Thus, a field investigation on the subsidence area obtained above
was conducted to understand whether the monitoring results were in line with the actual
situation. It was revealed that the impact of subsidence on buildings and foundations can
be clearly observed in the subsidence area, as presented in Figure 16.

Table 8. Subsidence rates of the study area at different times.

Depression Area
Average Sedimentation Rate

1987~1994 1994~1998 2007~2010 2014~2016 2018~2021

Guangwei village −20.0 (*) −20.3 (*) − − −12.6
Xiaobanqiao −16.0 (*) −31.1 (*) −20.9 −19.4 −15.3
Yuhu village −6.4 (*) −12.6 (*) − − −5.1

Hewei village −2.5 −25.1 −26.8 −24.1 −16.3
Yangjia shang −4.0 (*) −21.6 (*) −6.7 − −4.5

Note: (*) marked as leveling data, not marked as InSAR monitoring data; “−” represents subsidence.
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Figure 16. Field inspection map: (a) Tilt of house caused by land subsidence, (b) Due to excessive
groundwater extraction, the surface subsides and deforms, eventually resulting in karst collapse,
(c) Ground subsidence increases the activity of ground fissures and eventually leads to the formation
of ground fissures, (d) Land subsidence will cause damage to buildings, causing building foundations
to sink and houses to crack.

In summary, LiCSBAS technology was used as a means of obtaining early large-scale
urban land-subsidence monitoring data in this study. The monitoring results can be used
to effectively control the atmospheric delay and phase unwrapping, while the monitoring
data accuracy is in line with the actual situation. It acts as a late prediction model.
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4.2. The Advantages and Disadvantages of the Constructed Multi-Factorial Prediction Model
Compared with Existing Prediction Models

The urban land-subsidence prediction model we constructed from a multi-factorial
perspective is different from that used by previous researchers, who simply used monitoring
data as the main factor. Although its subsidence prediction accuracy is high, it only
plays a fitting role. So far, a few researchers have tried to predict from a multi-factorial
perspective in other fields [6], although they could not effectively predict time-series data.
Meanwhile, large-scale subsidence prediction could not be achieved. The multi-factor
PSO-BP model we constructed can effectively predict the land-subsidence rate in large
cities. Moreover, the multi-factorial LSTM model we constructed can accurately capture
and predict the subsidence deformation of serial time series. Furthermore, the K-shape time-
series clustering algorithm was introduced in this paper to manage large-scale forecasting.
Compared with the prediction accuracy without clustering, as exhibited in Table 9, the
prediction accuracy after clustering is slightly higher than before clustering. If the training
samples are gradually reduced so that they cannot fully learn the large-scale sedimentation
rate, the prediction accuracy without clustering is lower than after K-shape clustering.

Table 9. Prediction accuracy before and after clustering.

Evaluation Index Non-Use of K-Shape Use of K-Shape

MSE 4.935 4.820
MAE 1.487 1.474

There are still some deficiencies in the multi-factorial prediction model described in
this paper. For example, the selected influencing factors were shown to be highly correlated
with subsidence through grey relational analysis. Whether the size has an impact on the
final prediction accuracy remains to be demonstrated. The data from each cluster were
obtained, and our experiment solved the drawback that the previous prediction model
could not accurately capture or predict the sedimentation deformation of the sequence time
series. However, although we obtained a suitable parameter selection for the data under
each cluster, the number of iterations for each time-series subsidence point was different,
and it was impossible to use the unified parameters to predict the entire region time-series
subsidence. Only the multi-factorial LSTM we constructed point is trained to predict each
point. It can undoubtedly increase the handling workload, which will also be studied in
follow-up research.

4.3. Analysis of InSAR Processing Limits and Error Control

In this article, we described the use of LiCSBAS technology to obtain the urban land-
subsidence deformation rate in the study area, which is limited by the LiCSAR product
released by COMET, a project of the Centre for Seismological and Volcanic Structure
Observation and Modelling of the UK Environmental Research Council (NERC). For the
research area we selected, we found that some data were missing from the coherence map
obtained under the descending orbit of the research area by querying the LiCSAR product;
therefore, although we could use the LiCSAR product under the ascending orbit to obtain
the subsidence rate along the radar’s line of sight, we could not obtain the settling rate in
the vertical direction. At the same time, LiCSBAS technology is more suitable for processing
Sentinel data, and it does not easily process ALOS PALSAR, TerraSAR-X-1, or other data.

Atmospheric delay error and phase unwrapping error are two of the main errors
in InSAR deformation inversion, and improving them can effectively improve the final
monitoring accuracy. The atmospheric delay error is corrected to reduce its effect. At
present, there are two main methods of atmospheric correction: (1) In the time series,
the data set composed of multiple interferograms is filtered to estimate the phase of
the atmospheric effects and remove them [50]; and (2) external data, such as GPS data,
meteorological observations, or other on-board sensor data, are used for calibration [51].
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The above methods have their respective advantages and disadvantages, and there is
currently no general method to eliminate atmospheric imagery. In this experiment, we chose
to introduce GACOS products for atmospheric correction, and used the overall interference-
quality inspection and loop-closure phase to eliminate the unwrapping errors [17]. Figure 17
shows the phase standard deviation correlation diagrams of 189 pairs of interferograms in
the main urban area of Kunming before and after the GACOS correction. From Figure 17a, it
can be seen that the phase standard deviation after the GACOS correction was significantly
lower than before the correction, and the maximum-phase standard deviation after the
correction reduced from 8.0 rad to 2.7 rad. From Figure 17b, it can be seen that the rate of
change of the STD before and after the correction was significantly reduced in 73.4%, and
the negative impact after the correction accounted for 26%, a total of 47 pairs. The gray line
indicates that the phase STD and its rate of change remained unchanged before and after
the correction. It can be seen that using GACOS to correct tropospheric atmospheric delay
has a certain effect.
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Figure 17. Correlation diagram of phase standard deviation before and after GACOS correction:
(a) is the phase difference before and after correction; (b) is the change rate of phase standard deviation
before and after correction. The blue is the space-time baseline generated after the overall interference
pair quality inspection, and the red is the unqualified interference pair after the loop-closure-phase
inspection, which needs to be eliminated.

The quality inspection of the overall interferometric pairs in the study area corrected
by the GACOS atmospheric delay product did not detect interferometric pairs with low
coherence and fewer effective pixels. The interferometric pairs that satisfied the quality
inspection were checked for loop-closure phase, and the threshold was set as 1.5 rad, and
we generated an interference-pair space-time baseline distribution diagram, as shown in
Figure 18. The blue is the space-time baseline generated after the overall interference-pair-
quality inspection, and the red is the unqualified interference pair after the loop-closure-
phase inspection, which needs to be eliminated.

4.4. Error Source Control Analysis and the Shortcomings of This Method
4.4.1. Error Source Control Analysis

The main limitations of the method in this paper are the various image factors in the
input layer of the neural network. In order to ensure the accuracy of the influencing factors
input by the input layer and control their errors, in Section 2.1.3, which describes the general
situation of the study area, through the discussion of the causes of urban land subsidence
in the study area by existing scholars, the factors affecting land subsidence were obtained.
On this basis, through the correlation analysis of the above-mentioned influencing factors
in Section 3.3.1, it was proven, from a quantitative point of view, that the influencing factors
selected in this paper have a high correlation with urban land subsidence, and that each
type of influencing factor selected has a high degree of correlation, above 0.8. In general, if
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the correlation between the input layer (influencing factors) and the output layer (urban
land-subsidence rate) of the neural network is greater than 0.6, a neural network model can
be established for prediction. This paper effectively guarantees the accuracy of influencing
factors and controls their errors from both qualitative and quantitative perspectives.
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4.4.2. Shortcomings of This Method

In this study, a particle swarm optimization–back propagation (PSO-BP) neural net-
work algorithm was constructed from a multi-factorial perspective to predict urban land
subsidence, and then the LSTM neural network was used to predict the sequence defor-
mation of the urban land subsidence from a multi-factorial perspective. The fluctuation in
the land subsidence eventually produced a large-scale urban land-subsidence prediction.
However, there the following two problems remain: (1) We established buffers with a
certain width range for the subways, large commercial areas, high-rise buildings, and faults
to quantitatively process them. The specific width of the buffer zone was a given number
of meters, and the prediction accuracy obtained was the best, which remains to be further
verified by future research. (2) Since large-scale hydrogeological, geological structure, and
fault data are classified data, they are not made public in China; therefore, higher and
larger-scale data could not be obtained. The accuracy of the predictions will be further
improved if these predictions can be made using larger-scale hydrogeological, geological
structure, and fault data.

5. Conclusions

Existing neural network models are over-reliant on historical subsidence data for
urban land-subsidence prediction and cannot accurately capture or predict fluctuations in
the sequence deformation. Regarding large-scale urban land-subsidence prediction, the
improper selection of training samples directly affects the final results and the prediction
accuracy. Therefore, this paper proposed a subsidence prediction method based on a
neural network algorithm from a multi-factorial perspective, given the shortcomings of
the previous neural network model in urban land-subsidence prediction. Additionally,
a K-shape clustering algorithm was adopted to select a large range of training samples.
Finally, the subsidence rate and time-series subsidence of the main urban area of Kunming
from 2018 to 2021 were predicted to explore the use of high-precision urban land-subsidence
prediction methods. The conclusions are as follows.

(1) The LiCSBAS method can effectively monitor the urban land subsidence in the
main urban area of Kunming. A new time-series method, LiCSBAS, was used to monitor
the maximum land-subsidence rate of−30.591 mm · a−1 in the main urban area of Kunming
from 2018 to 2021. There are four significant subsidence areas in the main urban area of
Kunming City, which are unevenly distributed along Dianchi Lake. The results revealed
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that land subsidence is more likely to occur within 200–600 m of large commercial areas
and high-rise buildings, within 400–1200 m of the subway currently under construction,
and within 109–117 mm of the average annual rainfall. The existence of faults will destroy
the stability of the soil structure and increase the land subsidence. The hydrogeology,
geological structure, and groundwater also have a certain influence on the land subsidence
of the main urban area of Kunming.

(2) After clustering, the multi-factorial PSO-BP model can effectively predict large-
scale urban land subsidence. The K-shape clustered data Cluster 1, Cluster 2, and Cluster 3
were predicted by the corresponding multi-factorial PSO-BP model for the validation set
and test set. The corresponding mean square errors (MSE) were as follows: 1.519, 1.465;
1.419, 1.441; and 1.485, 1.494, respectively. The smaller the MSE, the better the accuracy
of the prediction model in describing the experimental data. Moreover, there was no
overfitting phenomenon. Among the 24,540 predicted sedimentation-rate points, 24,432
had a deformation accuracy greater than 0 and less than ±10 mm, accounting for about
99.5%; and 108 had a deformation accuracy greater than±10mm, accounting for about 0.5%.
It was demonstrated that the prediction accuracy met the requirements of the measurement
specification. The prediction accuracy after clustering was slightly improved compared to
the accuracy when no clustering was used.

(3) The constructed multi-factorial LSTM can effectively capture and predict fluctua-
tions in the sequence deformation. The constructed multi-factorial LSTM model was used
to predict the next ten periods of any time-series subsidence data in the three types of data.
The root mean square errors (RMSE) of the three types of data (Cluster 1, Cluster 2, and
Cluster 3) were 0.445, 1.475, and 1.468 mm, respectively; the mean absolute errors (MAE)
were 0.319, 1.214, and 1.167 mm, respectively; the absolute error ranges were 0.007~1.030,
0~3.001, and 0.401~3.679 mm, respectively. This prediction accuracy met the requirements
of measurement specifications.

(4) The results demonstrate the application of large-scale, high-precision urban land-
subsidence prediction. The prediction model we constructed from the perspective of
multiple factors can effectively predict the land-subsidence rate and time-series subsi-
dence of large cities, suggesting that it can be used to perform prediction by inputting
the corresponding influencing factors. Our research expands the application scope of
land-subsidence prediction models from the relationship between multiple factors and
subsidence. This is different from previous studies, which adopted existing monitoring data
to build their models. This paper lays a foundation for large-scale urban land-subsidence
prediction.
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