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Abstract: Low rank and sparse representation (LRSR) with dual-dictionaries-based methods for
detecting anomalies in hyperspectral images (HSIs) are proven to be effective. However, the potential
anomaly dictionary is vulnerable to being contaminated by the background pixels in the above
methods, and this limits the effect of hyperspectral anomaly detection (HAD). In this paper, a dual
dictionaries construction method via two-stage complementary decision (DDC–TSCD) for HAD is
proposed. In the first stage, an adaptive inner window–based saliency detection was proposed to
yield a coarse binary map, acting as the indicator to select pure background pixels. For the second
stage, a background estimation network was designed to generate a fine binary map. Finally, the
coarse binary map and fine binary map worked together to construct a pure background dictionary
and potential anomaly dictionary in the guidance of the superpixels derived from the first stage.
The experiments conducted on public datasets (i.e., HYDICE, Pavia, Los Angeles, San Diego-I, San
Diego-II and Texas Coast) demonstrate that DDC–TSCD achieves satisfactory AUC values, which are
separately 0.9991, 0.9951, 0.9968, 0.9923, 0.9986 and 0.9969, as compared to four typical methods and
three state-of-the-art methods.

Keywords: hyperspectral anomaly detection; adaptive inner window; saliency detection; two-stage
complementary decision; dual dictionaries construction

1. Introduction

Hyperspectral images (HSIs), which have the characteristics of a wide spectral range
and high spectral resolution, are widely utilized to discriminate physical properties of differ-
ent materials [1]. Benefitting from the rich spectral information, HSIs are active in the field
of image classification [2,3], hyperspectral unmixing [4,5], band selection [6,7], anomaly de-
tection [8,9] and target detection [10,11]. Among these applications, hyperspectral anomaly
detection (HAD), aiming to excavate the pixels with significant spectral difference relative
to surrounding pixels [12], attracts particular interest. Compared with the hyperspectral
target detection, the absence of the prior information makes HAD more challenging.

In the past decades, the visual saliency detection theory [13,14], aiming to highlight
the most attractive and distinctive regions in a scene, has been widely used in the field of
AD [15,16]. Among them, the context-aware saliency detection [17] is commonly adopted
to act as the technique to search for salient objects, due to its powerful performance. For
the HAD task, the saliency objects in HSI can be reckoned as anomalies, and, hence, the
context-aware saliency detection method may be a useful tool to detect anomalies in HSI.

Recently, the autoencoder (AE) has aroused widespread concern in the field of HAD,
due to the fact that AE has a strong ability to characterize the background and anomalies
compared with the traditional methods. Similarly, the generative adversarial network
(GAN) has attracted increasing attention, owing to the strong generalization ability in
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regard to high-dimensional, unlabeled, and limited samples [18]. With this condition,
combining AE and GAN may be helpful to perform excellent background reconstruction
and poor anomaly reconstruction.

Additionally, low rank and sparse representation (LRSR) with dual-dictionaries-based
methods are proven to be effective to detect anomalies in HSIs. The most typical LRSR
with a dual-dictionaries-based method is the PAB-DC method, which was proposed by
Huyan et al. [19]; it jointly considers the background dictionary and potential anomaly
dictionary to perform LRSR. However, for the PAB-DC method, due to its limited capability
to characterize the background and anomalies, the construction of the potential anomaly
dictionary is vulnerable to being contaminated by the background pixels, which is harmful
to the detection performance. To illustrate this situation, we provide an example to display
the construction results of background and potential anomaly dictionaries in PAB-DC,
which are separately represented in Figure 1(I-a,I-b).
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under test and the background model to measure anomaly. Subsequently, instead of the 
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Considering the above three aspects, we intended to employ the combination of AE
and GAN to assist the construction of pure background and potential anomaly dictionaries.
However, the presence of the anomalies in the training stage limits the learning effect. To
this end, a preliminary purification work should be considered in advance.

Toward this goal, we propose a dual dictionaries construction method via two-stage
complementary decision for HAD, as illustrated in Figure 2. Concretely, for the first stage,
a coarse background–anomaly separation strategy, which is implemented by the saliency
detection based on the adaptive inner window, is proposed to acquire a coarse binary map.
In the second stage, a background estimation network (BEN) is designed to yield a fine
binary map, in which the training samples for BEN’s learning stage are derived from the
guidance of the coarse binary map. Finally, the coarse binary map and fine binary map
are jointly to generate the indicators to guide the selection of the atoms for background
and potential anomaly dictionaries. Notably, the fact that there is a large number of atoms
in the background indicator will result in high computation complexity, and, hence, the
superpixels are used to act as a selector of background to further screen the atoms. To
verify the superiority of the proposed method, we visualized the construction effect of
background and potential anomaly dictionaries of proposed method, as illustrated in
Figure 1(II-a,II-b). By observing Figure 1, we can see that there is a slight difference between
PAB-DC and the proposed method on background dictionary, while atoms belonging to
the potential anomaly dictionary for the proposed method are evidently purer than those
of PAB-DC.
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Figure 2. Schematic of the proposed method. Note: “Bbmp
1 ” in “Coarse Background–Anomaly

Separation” and “LRSR based on DDC–TSCD” is the same. In addition, the “x1
bac, · · · , xSb

bac” in “ 4©”
and “ 5©” is the same.

The main contributions of this paper are as follows:

(1) A novel dual dictionaries construction method via two-stage complementary decision,
to the best of our knowledge, is first proposed to construct pure background and
potential anomaly dictionaries in this paper. To be specific, the product of both coarse
and fine binary maps acts as the indicator to sift anomalous pixels, and the sum of
them is employed to assist in selecting background pixels.

(2) A coarse background–anomaly separation strategy, which detects anomalies by per-
forming the adaptive inner window–based saliency detection, is proposed to generate
a coarse binary map. For the saliency detection, the key is that the superpixels act as
the inner windows, which can effectively alleviate the situation that the testing pixel
is affected by the pixels with similar characteristics distributed in the area between
the inner and outer windows.

(3) To obtain a fine binary map, a background estimation network, which consists of AE
and GAN, is designed to acquire a strong background reconstruction ability and poor
anomaly reconstruction effect.

(4) To reduce the number of atoms in the background dictionary, the superpixels are
employed to act as the auxiliary indicator to select the atoms in the construction of
the background dictionary.

The remainder of this paper is organized as follows. Section 2 presents the related
work. The proposed method is detailed in Section 3. Section 4 introduces the experiments
and results. In Section 5, the discussion is given. Finally, the conclusions are drawn in
Section 6.
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2. Related Work

HAD has attracted increasing attention from researchers. Among all HAD methods,
the RX detector [20], proposed by Reed-Xiaoli, is the most classical method. The RX
algorithm assumes that the background obeys the multivariate Gaussian distribution; it
establishes a background statistical model via calculating the mean value and covariance
matrix of all pixels in HSI and then computes the Mahalanobis distance between the
pixel under test and the background model to measure anomaly. Subsequently, instead
of the global statistics leveraged in original RX, the variant of the RX, termed as Local RX
(LRX) [21], utilizes the local statistics to construct the background model. Additionally, a lot
of variants based on the RX detector, such as weighted RX (WRX) [22], kernel RX (KRX) [23]
and fractional Fourier entropy RX (FrFERX) [24], are proposed to improve the detection
performance of HAD. However, it is difficult to accurately model the background, due to
the fact that the background is contaminated by the anomalies and noise to a certain extent.

To accurately model the background as much as possible, the representation-based
methods, which consist of the collaborative representation-based methods (CR); the sparse
representation-based methods (SR); and the low-rank-representation-based methods (LRR)
are widely introduced into HAD. The classical CR detector (CRD) is proposed by Li et al. [25],
assuming that the pixels belonging to the background can be linearly represented by its
neighborhood pixels via a sliding windows, while anomalous pixels are not. The back-
ground joint sparse representation method (BJSR), which is a meaningful research based
on the SR method, estimates the background through sifting the representative bases of all
local regions [26]. The LRR-based methods consider that the background has a low rank
property and the anomalies are sparse. With this condition, Zhang et al. [27] proposed the
low rank and sparse matrix decomposition (LSMAD) to construct the background model
via leveraging the low-rank characteristics of background excluding anomalies. Further-
more, constructing a background dictionary instead of background has been popularly
adopted in HAD [28]. To characterize complex distribution, Li et al. [29] proposed the low
rank and sparse decomposition model with mixture of Gaussian (LSDM–MoG), which
models the sparse component as a mixture of Gaussian, to detect anomalies in HSIs. To fully
use the local geometrical structure and spatial relationships, Cheng et al. [30] proposed the
graph and total variation regularized low-rank representation-based detector (GTVLRR)
for HAD. In the above LRR-based methods, the key is to construct a pure and compre-
hensive background dictionary, which is beneficial to improve the detection performance.
Nevertheless, the background dictionary constructed by traditional methods has a limited
capability to characterize the real complex background.

With the rapid development of deep learning [31–33], the deep-learning-based meth-
ods are extensively applied to HAD, due to its powerful capability to learn complex data
distribution. Li et al. [34] attempted to transfer the deep convolutional neural network
(CNN) into HAD. Specifically, a well-designed multilayer CNN is trained by using the
spectral differences of paired samples derived from the reference data, and then the neigh-
boring spectral differences between pixel pairs constructed by the pixel under test and
its surrounding pixels are classified through the trained CNN, with the results of similar-
ity measurement, and the output belonging to the pixel under test is achieved through
averaging these similarity results. Subsequently, CNN-based algorithms, such as the
transferred CNN based on tensor (TCNNT) [35] and autonomous hyperspectral anomaly
detection network (Auto-AD) [36], are proposed for HAD. Additionally, the AE-based
methods have attracted considerable attention, due to their powerful reconstruction ability.
Zhao et al. [37] proposed a spectral–spatial stacked AEs based on low-rank and sparse ma-
trix decomposition for HAD. Furthermore, deep generative models, including variation AE
(VAE) [38] and generative adversarial network (GAN) [39], make significant contributions
to HAD. Typically, the combination of AE and GAN is widely employed for HAD, such as
unsupervised discriminative reconstruction constrained GAN for HAD (HADGAN) [40],
semi-supervised spectral learning GAN (SSL-GAN) [41] and weakly supervised low-rank
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representation (WSLRR) [42]. However, the aforementioned methods generally fail to fully
use two-stage information, resulting in limited detection performance.

3. Methodology

In this section, a detailed introduction of the proposed method is given as follows.
Let Xo ∈ Rh×w×b represent the original HSI, in which h and w are the height and width,
respectively, and b denotes the number of spectral bands. In the following statement, the
3D cube Xo ∈ Rh×w×b is converted into a 2D matrix X ∈ Rb×N , where N = h× w is the
number of the pixels of the whole HSI. For HSIs, the background is generally viewed as
low rank, due to the fact that each background pixel can be linearly represented by some
background endmembers [43]. The anomalies appear in the HSIs with low probability and
account for only a very small part of the entire image scene, indicating that the anomalies
have sparse property [27]. Additionally, the noise always corrupts HSIs in practice; thus,
it could not be ignored. Based on above analysis, we formulate the HAD task as a matrix
decomposition problem in this paper. The HSI can be decomposed into three components:
background with low-rank property, anomaly with sparse property and noise, which are
expressed as follows:

X = B + A + E (1)

where B ∈ Rb×N , A ∈ Rb×N and E ∈ Rb×N are the background component, anomaly
component and noise component, respectively.

Considering that the background pixels are highly correlated, which means that each
of them can be linearly represented by some background pixels. Similarly, the anomalous
pixels are proved to be correlated to a certain extent [43]. As a result, the decomposition of
the HSI can be reformulated as

X = DBW + DAS + E (2)

where DBW and DAS are the low-rank component and sparse component, respectively;
DB =

{
dbi ∈ Rb×1}m

i=1 and DA =
{

dai ∈ Rb×1}n
i=1 are background and potential

anomaly dictionaries matrices, respectively; m and n separately represent the number
of atoms in the background and potential anomaly dictionaries; and W =

{
wi ∈ Rm×1}N

i=1

and S =
{

si ∈ Rn×1}N
i=1 indicate the representation coefficient corresponding to the back-

ground and anomaly components, respectively.
To model the problem (2), an objective function is formulated as follows:

min
W,S,E
‖W‖∗ + β‖S‖1 + λ‖E‖2,1

s.t. X = DBW + DAS + E
(3)

where ||·||*, ||·||1 and ||·||2,1 represent the nuclear norm, l1 norm and l2,1 norm,
respectively. β and λ are the coefficients to balance the sparse and noise terms, respectively.

3.1. Coarse Background–Anomaly Separation

The coarse background–anomaly separation (CBAS) involves generating a coarse
binary map, which is of significant importance for subsequent procedures. On the one
hand, the coarse binary map is employed as the indicator to select the training samples
(i.e., background pixels). On the other hand, the coarse binary map guides the construction
of background and potential anomaly dictionaries. The procedure of CBAS is roughly
subdivided into three key steps: superpixel segmentation, adaptive inner window–based
saliency detection and post-processing, as illustrated in Figure 2. The details can be
described as follows.

3.1.1. Superpixel Segmentation

Superpixel is a collection of adjacent pixels which are of similar color, texture and
other characteristics [44]. In the existing superpixel segmentation methods, the simple
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linear iterative clustering (SLIC) [45] algorithm has attracted widespread concern, due to
the characteristics of fast speed, high memory efficiency and excellent boundary adherence.
To this end, a SLIC-based superpixel segmentation method, which was extended from
RGB images to HSIs, was employed in this study. The SLIC method is reckoned as the
generalization version of the k-means clustering algorithm to some extent. In contrast
to the k-means clustering algorithm, the SLIC method merges the pixels with similar
characteristics in a local region rather than global scope. To be specific, the preset number
(i.e., K) of superpixels with approximately equal size is first determined, and the center
point of each superpixel acts as the initial cluster center. Then the distance between the
cluster center and pixels distributed in its local region (i.e., 2s× 2s, s =

√
N/K) is calculated.

Considering the cluster center, xc, with spatial coordinate (xc, yc) and neighborhood pixel,
xi, with spatial coordinate (xi, yi), the distance metric containing spatial distance and
spectral distance is defined as follows:

dspa(xc, xi) =

√
(xc − xi)

2 + (yc − yi)
2/
√

2s (4)

dspe(xc, xi) = cos−1(
< xc, xi >

‖xc‖·‖xi‖
) (5)

d(xc, xi) = ω× dspa + (1−ω)× dspe (6)

where dspa, dspe and d are the spatial distance, spectral distance and total distance, respec-
tively; < ·, · > denotes the inner product of two spectral vector; ‖·‖ indicates the norm
of the spectral vector; and ω represents the tradeoff parameter for balancing the spatial
distance and spectral distance.

After that, the centers of all superpixels will be updated according to the above
distance metric. Until the centers of all superpixels no longer update, the final superpixels
are formed.

3.1.2. Adaptive Inner Window–Based Saliency Detection

For HSIs, the anomalous pixel has significant spectral difference relative to its sur-
rounding pixels. In human vision system, a target that is focused on at first glance is viewed
as significant [16]. In other words, one part in an image that is first noticed is treated as
salient. For the above reasons, the saliency detection can act as an effective technique to
perform HAD.

The context-aware saliency detection (CaSD) method, proposed by Goferman et al. [17],
is an effective approach to detect the salient regions of an image, and it follows the fact that
the salient objects are strongly distinctive with both local and global surroundings. In the
existing CaSD methods [15,46] utilized in HAD, the saliency-detection result commonly
acts as the saliency weight for suppressing the background and highlighting the anomalies.
Additionally, the implementation of the saliency detection is by means of the dual rectan-
gular windows; however, the anomalous pixel under test is possibly similar to the pixels
distributed in the interval of inner and outer windows, leading to a low contrast (i.e., a
low saliency value), as shown in Figure 3a. In Figure 3a, the green rectangular box and red
rectangular box are the inner window and outer window of the pixel under test (i.e., small
blue rectangular box), respectively. By observing Figure 3a, we can see that some pixels
distributed in the area between the inner and outer windows are similar to the pixel under
test, and this will affect the result of the saliency detection.
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To resolve the above issue, we propose an adaptive inner window–based saliency
detection method in this paper. Concretely, instead of applying dual rectangular windows,
we took advantage of superpixel segmentation to yield a flurry of homogeneous regions
with similar characteristics, which were employed as the inner window to perform saliency
detection, as illustrated in Figure 3b. In Figure 3b, the irregular polygon in green and
rectangular box in red separately represent the adaptive inner window and outer window,
and the purple dashed box refers to the smallest enclosed rectangular box covering an
irregular polygon, which is used to determine the outer window with distance R. Note
that the small blue rectangular boxes in Figure 3a,b represent pixels at the same location.
Evidently, for the same pixel under test, it can see in Figure 3b that there are few pixels
which are similar to the anomalous pixel under test between the inner and outer windows,
and this is beneficial to the detection performance. In this way, the anomalous pixels
appear in the area between inner and outer windows with a low probability, and, hence,
the anomalous pixel under test have a high contrast (i.e., a high saliency value). In addition,
we directly employed the saliency detection result to determine the probability of anomaly,
rather than as a saliency weight. It is worth noting that the adaptive inner window–based
saliency detection shares the same inner window and outer window for the pixels located
in the same superpixel, while the dual rectangular windows–based saliency detection
employs a unique inner window, Rinner, and outer window, Router, for each pixel.

According to above analysis, let y indicate the pixel under test, assuming it is inside
the green irregular polygon in Figure 3b, and let xt represent the pixel distributed in the
area between the inner window and outer window (i.e., inside the red rectangular box
and outside the green irregular polygon in Figure 3b). The adaptive inner window–based
saliency detection can be calculated as follows:

dt
sal(xt, y) =

dspe(xt, y)
1 + c·dpos(xt, y)

(7)

where dspe(xt, y) and dpos(xt, y) are separately the spectral distance and position distance
between the spectral vector xt and y; and c is a constant, which has little influence on the
result, and, hence, it is set to 1 for convenience.

dspe(xt, y) = cos−1(
< xt, y >

‖xt‖·‖y‖
) (8)

dpos(xt, y) =
√
(xtr − yr)

2 + (xtc − yc)
2 (9)

where (xtr, xtc) and (yr, yc) indicate the spatial coordinates of the pixels xt and y, respec-
tively. Once all pixels distributed in the area between the inner window and outer window
have participated in the saliency detection of the testing pixel, we take the average of all



Remote Sens. 2022, 14, 1784 8 of 25

saliency values and make it a final saliency result, which can be defined by the follow-
ing equation:

davg
sal =

ΣS
t=1dt

sal
S

(10)

where S denotes the number of pixels in the area between the inner window and outer
window of the testing pixel. Through the above way, an anomaly map, d1, can be obtained.

3.1.3. Post-Processing

To generate a coarse binary map, a post-processing operation, which consists of
thresholding and area filtering, is imposed on the anomaly map, d1. A simple yet effect
method, which uses the OTSU algorithm [47] to threshold potential anomaly map, is firstly
adopted. The binary map, B, can be acquired through the following formula:

B = threshold(d1; ε) (11)

where the function threshold(·; ε) assigns 1 to a pixel if its value exceeds the threshold ε; if
otherwise, it is 0. Moreover, ε is obtained through the OTSU algorithm [47], owing to the
excellent performance in image binarization.

It is worth noting that a background object occupying voluminous pixels is possibly
reckoned an anomaly. To tackle this issue, a suppression strategy, which removes the
connected domain with large areas in the guidance of the binary map, is performed, which
is processed as follows:

Bbmp
1 = AREA_FILTERING(B; τ) (12)

where the function AREA_FILTERING(·; τ) assigns 0 to the connected domain if the
connected domain larger than the specified threshold, τ. Generally speaking, the higher
the τ, the less the removed components. With this situation, the large background object
is retained, which fails to choose background pixels as much as possible. Conversely, the
smaller the τ, the more the removed components. In this way, the anomalies with a large
area are possibly removed, and it is harmful to sift the background pixels in the following
step, due to the contamination of the anomalous pixels. Therefore, in this study, we set τ to
be N/100, where N is the number of pixels in HSI. Through the above method, a coarse
binary map, Bbmp

1 , is obtained.

3.2. Fine Background–Anomaly Separation

In this part, we recount how a background estimation network (BEN), which consists
of three subnetworks (i.e., encoder network, decoder network and discriminator network),
was constructed. The purpose of constructing the BEN was to learn an evaluator for judging
the probability of a pixel being an anomaly. The coarse binary map, Bbmp

1 , was used for
sifting the background pixels, and the selection strategy is shown as follows:

CB =
{

x(i−1)·w+j

∣∣∣Bbmp
1,(i,j) = 0 → (i, j), i ∈ [1, h], j ∈ [1, w]

}
(13)

where CB ∈ Rb×Sb represents the collection of the selected background pixels, in which Sb
indicates the number of the selected background pixels, and b denotes the number of bands
in HSI; x(i−1)·w+j ∈ Rb×1 is the pixel in row i and column j in HSI. The details of the fine
background–anomaly separation are given in the following.

3.2.1. Network Architecture

Generally speaking, the anomalous pixels only account for a small part relative to the
background pixels in HSIs [28]. Based on the above fact, we take advantage of the autoen-
coder (AE) with powerful reconstruction ability to act as a basic model of BEN, which is
beneficial to learn strong background reconstruction capability and poor anomaly recon-
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struction ability, due to the strictly imbalanced distribution of background and anomaly
in HSIs. Furthermore, in order to improve the background reconstruction capability, an
adversarial strategy was introduced into the AE. In this situation, a BEN, illustrated in
Figure 2, which is composed of AE and adversarial module, was formed.

An AE is a feed-forward neural network containing an encoder and a decoder. The
parameters of AE, including weight and bias, are updated by using the back-propagation
method [48]. The encoder is utilized to learn a mapping from the input data, x, to the latent
feature, z, and the decoder maps from the latent feature (z) to the reconstructed data, x̂.
The whole mapping process is summarized as follows:

z = fen(ωenx + ben) (14)

x̂ = fde(ωdez + bde) (15)

where fen(·) and fde(·) are the mapping function of encoder and the mapping function
of decoder, respectively; and ωen and ben separately symbolize the weight and bias of
encoder. Similarly, ωde and bde signify the weight and bias of decoder, respectively.

After an AE is formed, an adversarial strategy that involves introducing a discrimi-
nator subnetwork is adopted in AE. Here, the encoder and the discriminator subnetwork
jointly make up a generative adversarial network (GAN), and its core idea is generating new
data points with some variations via learning specific data distributions in a min-max game
way. The GAN contains two adversarial components, a generator, G, and a discriminator,
D, in which the encoder acts as the generator (G). The generator (G) strives to map the input
data (x) to the latent feature (z), which is as close as possible to the real data (z′) sampling
from the prior distribution, N(0, I). Subsequently, two samples, namely the real data (z′)
and fake data (z) (i.e., latent feature z) are fed into the discriminator (D), which attempts to
distinguish which of the two are the real data and gives the corresponding confidence. In
other words, the generator tries to fool the discriminator, and the discriminator strives to
discern the real or fake of the input in an adversarial manner.

3.2.2. Training Process

In the training stage, the selected background pixels collection, CB, was used to
discriminatively train the BEN, which is beneficial to learn the background reconstruction
ability without contamination of the anomalous pixels. The objective loss of BEN, which
contains the joint objective loss of AE and GAN, is expressed as follows:

L = LAE + α·LGAN (16)

LAE =
1
b
‖xbac − x̂bac‖2 (17)

LGAN = min
En

max
D

Ez′∼N(0,I)[log D(z′)] + Exbac∼pdata [log(1− D(En(xbac)))] (18)

where LAE and LGAN separately represent objective the loss of AE and GAN; α denotes the
tradeoff coefficient to balance LAE and LGAN , for which we empirically set it to 1 for the
optimal result; xbac and x̂bac are the input background spectral vector and reconstructed
background spectral vector, respectively; En(·) and D(·) represent the encoding operation
and discrimination operation, respectively; and pdata stands for the distribution of the
selected background pixels. Here, z′ and En(xbac) strive to gain D’s preference; in this way,
D intends to maximize the LGAN , while En does the opposite.

3.2.3. Anomaly Detection on Residual HSI

In this stage, the original HSI X = [x1, x2, . . . , xN ] ∈ Rb×N was first fed into trained
BEN and then obtained the reconstructed HSI X̂ = [x̂1, x̂2, · · · , x̂N ] ∈ Rb×N, in which the
background pixels were well reconstructed while the reconstruction of anomalous pixels was
poor, as illustrated in Figure 4. Therefore, the residual HSI XR = [xr1, xr2, . . . , xrN ] ∈ Rb×N

between the original HSI and reconstructed HSI can highlight the anomaly and suppress the
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background. In this way, we employed the residual HSI to detect anomalies via applying
the Mahalanobis distance, which can be expressed as follows:

d2,i = (xri − µ)TΣ−1(xri − µ), i ∈ [1, N] (19)

where d2,i represents the detection result of the ith pixel in HSI; and µ ∈ Rb×1 and Σ ∈ Rb×b

are the mean vector and covariance matrix of the residual HSI XR, respectively. Different
from directly applying the Mahalanobis distance on original HSI, the residual HSI has a
more discriminative characteristic in regard to the background and anomaly, and this is
helpful to detect the anomalies.
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Figure 4. Comparison of the original and reconstructed spectral information on San Diego-II. Here,
“A1_0” represents the anomalous pixel “A1” in original HSI. “A1_1” indicates the anomalous pixel
“A1” in the reconstructed HSI. Similarly, “B1_0” and “B1_1” signify the background pixel “B1” in
original HSI and reconstructed HSI, respectively.

After the detection map, d2 = [d2,1, d2,2, · · · , d2,N ] was obtained; the detection map,
d2, was first converted into the 2D matrix; and then the same post-processing operation
was used as was discussed in Section 3.1.3 to deal with the 2D matrix for acquiring a fine
binary map Bbmp

2 .

3.3. Dual-Dictionaries-Based Low Rank and Sparse Representation
3.3.1. Dual Dictionaries Construction

Generally speaking, anomalies with a strong spectral difference relative to the back-
ground can be used as a potential prior to represent the other anomalies [19]. Motivated
by this, we considered mining the potential anomalies in HSIs. Obviously, the potential
anomalies can be easily detected in Sections 3.1 and 3.2, meaning that the combination
of both can be an effective manner to construct the background and potential anomaly
dictionaries. Toward this goal, the product of two binary maps can act as a prior to construct
a potential anomaly dictionary for detecting the other anomalies. Similarly, the sum of two
binary maps can easily be considered to construct a background dictionary. In this way,
there are few background pixels contamination in the construction of the potential anomaly
dictionary; this can guarantee the purity of atoms in the potential anomaly dictionary.

Based on above analysis, we employed two binary maps (i.e., Bbmp
1 and Bbmp

2 ) to jointly
construct the background and potential anomaly dictionaries. Concretely, the index maps,
acting as the indicator for constructing background and potential anomaly dictionaries,
were first obtained by the addition operation and multiplication operation pixel by pixel,
respectively, which are formulated as follows:

Bm = Bbmp
1 ⊕ Bbmp

2 (20)

Am = Bbmp
1 ⊗ Bbmp

2 (21)

where Bm ∈ Rh×w and Am ∈ Rh×w are index maps for sifting background pixels and
anomalous pixels, respectively; and ⊕ and ⊗ represent the addition and multiplication
operations pixel by pixel, respectively.
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Once Bm and Am are obtained, the element in Bm whose value is “0” can be considered
to guide the selection of the atoms in the construction of the background dictionary;
however, this results in high computation complexity for the optimization of LRSR. To
reduce the number of atoms in the background dictionary, the superpixels and Bm are jointly
utilized to guide the selection of atoms in the construction of the background dictionary.
Similarly, Am is considered to assist in the construction of the potential anomaly dictionary.
Specifically, if an area belonging to Bm with an identical position to a superpixel contains
the elements whose values are all “0”, the corresponding superpixel will participate in
the construction of the background dictionary; otherwise, it will not. It is worth noting
that only the centroids of the selected superpixels act as the atom to form the background
dictionary in the consideration of the effectiveness and computation complexity. Different
from the above, the element whose value is “1” in Am is selected to act as the atom to
construct the potential anomaly dictionary. The details can be expressed as follows:

DB =
{

xsk

∣∣∣Bm
Sk

= 0 → k
}

, k ∈ [1, K∗] (22)

DA =
{

x(i−1)·w+j

∣∣∣Am
i,j = 1→ (i, j)

}
, i ∈ [1, h], j ∈ [1, w] (23)

where DB and DA represent the background and potential anomalies dictionaries, respec-
tively; Bm

Sk
denotes the sum of Bm with the same position as the kth superpixel; Am

i,j ∈ {0, 1}
is the element at position (i, j) in Am; K∗ is the number of the superpixels; and xsk indicates
the spectral vector corresponding to the centroid of the kth superpixel. To better understand
the construction process of background and potential anomaly dictionaries, an example is
given in Figure 5.
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map, the sum of two binary maps, the product of two binary maps, superpixel segmentation result, 
background dictionary index map and potential anomaly dictionary index map. The symbols ⊕  

Figure 5. An example to illustrate the construction process of background and potential anomaly
dictionaries on the Texas Coast. Here, (a–g) separately indicate the coarse binary map, fine binary
map, the sum of two binary maps, the product of two binary maps, superpixel segmentation result,
background dictionary index map and potential anomaly dictionary index map. The symbols ⊕ and
⊗ are addition operation and multiplication operation pixel by pixel, respectively. Note that the
elements whose values are “1” in (f,g) are employed to act as the index to select the atoms for
background and potential anomaly dictionaries.

3.3.2. Low Rank and Sparse Representation

As stated at the beginning of Section 3, the HAD task was reckoned as a matrix
decomposition problem, and it was transformed into Equation (3). With DB and DA
constructed in Section 3.3.1, to solve the LRSR problem as (3), two auxiliary variables, J and
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L, are introduced to make the objective function separable. Consequently, the problem of
(3) can be converted into the following form:

min
W, S, E, J, L

‖J‖∗ + β‖L‖1 + λ‖E‖2,1

s.t.X = DBW + DAS + E, W = J, S = L
(24)

The augmented Lagrange function of problem (24) is as follows:

l = ‖J‖∗ + β‖L‖1 + λ‖E‖2,1 + tr[Y1
T(X−DBW−DAS− E)] + tr[Y2

T(W− J)]
+tr[Y3

T(S− L)] + µ
2 (‖X−DBW−DAS− E‖2

F + ‖W− J‖2
F + ‖S− L‖2

F)
(25)

where Y1, Y2 and Y3 are the Lagrange multipliers; µ is a penalty parameter; and tr[·] refers
to the trace of a matrix. The problem (25) can be solved with the alternating direction
method of multipliers (ADMMs) method [49], of which the core idea of this is to fix other
variables while updating one variable.

(1) Update J while fixing L, E, W and S. The objective function can be derived as follows:

min
J
‖J‖∗ +

µ

2
‖J− (W +

Y2

µ
)‖2

F
(26)

(2) Update L while fixing J, E, W and S. The objective function can be derived as follows:

min
L

β‖L‖1 +
µ

2
‖L− (S +

Y3

µ
)‖2

F
(27)

(3) Update E while fixing J, L, W and S. The objective function can be derived as follows:

min
E

λ‖E‖2,1 +
µ

2
‖E− (X−DBW−DAS +

Y1

µ
)‖2

F
(28)

(4) Update W while fixing J, L, E and S. The objective function can be derived as follows:

min
W

< Y1, X−DBW−DAS− E > + < Y2, W− J > +
µ

2
(‖X−DBW−DAS− E‖2

F + ‖W− J‖2
F) (29)

(5) Update S while fixing J, L, E and W. The objective function can be derived as follows:

min
S

< Y1, X−DBW−DAS− E > + < Y3, S− L > +
µ

2
(‖X−DBW−DAS− E‖2

F + ‖S− L‖2
F) (30)

The solution of the optimization process is outlined in Algorithm 1. Note that the Φ,
Ω and Θ used in Algorithm 1 separately refer to the singular value thresholding [50], soft
thresholding [51] and l2,1 norm minimization operator [28].

Once the optimization process is terminated, the detection result can be determined
by the sparse component, DAS, as follows:

T(xi) = ‖[DAS]:,i‖2 =

√√√√ b

∑
j=1

([DAS]j,i)
2, i ∈ [1, N] (31)

where ‖[DAS]:,i‖2 represents the l2 norm of the ith column of DAS.
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Algorithm 1. Solve (25) by ADMM.

Input: HSI X = {xi}i=N
i=1 ∈ Rb×N , balance parameter λ and β.

Initialize: W = J = S = L = 0, E = 0, Y1 = Y2 = Y3 = 0, µ = 10−6, µmax = 1010, ρ = 1.2, ε = 10−6.
1: While max(‖X−DBW−DAS− E‖F, ‖W− J‖F, ‖S− L‖F) ≥ ε do
2: Update J while fixing other variables by (26):

J← Φ1/µ(W + Y2/µ)
3: Update L while fixing other variables by (27):

L← Ωβ/µ(S + Y3/µ)
4: Update E while fixing other variables by (28):

E← Θλ/µ(X−DBW−DAS + Y1/µ)
5: Update W while fixing other variables by (29):

W← (DB
TDB + I)−1

[DB
TX−DB

TDAS−DB
TE + J + (DB

TY1 − Y2)/µ]
6: Update S while fixing other variables by (30):

S← (DA
TDA + I)−1

[DA
TX−DA

TDBW−DA
TE + L + (DA

TY1 − Y3)/µ]
7: Update the three Lagrange multipliers:

Y1 ← Y1 + µ(X−DBW−DAS− E)
Y2 ← Y2 + µ(W− J)
Y3 ← Y3 + µ(S− L)

8: Update the balance parameter µ:
µ← min(ρµ, µmax)

9: End While
Output: W, S, E

4. Experiments and Results

In this section, we recount how a large number of experiments were carried out to
validate the effectiveness and superiority of the proposed method.

4.1. Datasets and Evaluation Metrics
4.1.1. Datasets

To verify the effect of the proposed method, five public datasets, including six HSIs
with different characteristics, are introduced.

HYDICE dataset [52]: The first dataset, captured by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) airborne sensor, covers an urban area of CA, USA. The
dataset has 80 × 100 spatial pixels with 175 spectral bands, ranging from 400 to 2500 nm,
and a 1-m spatial resolution. The anomalies consisting of 21 pixels are mainly cars and roofs.
The color composites and corresponding reference map are displayed in Figure 6(I-a,I-b),
respectively.
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Pavia dataset [27]: The second dataset was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS-03) sensor over the center of Pavia city in Northern Italy.
The whole HSI contains 102 spectral bands, ranging from 430 to 860 nm, and each of
them covers an area of 100 × 100 pixels, and its spatial resolution is 1.3 m. The vehicles
on the bridge are viewed as the anomalies, accounting for 68 pixels in total in the image
scene. The color composites and corresponding reference map are separately illustrated in
Figure 6(II-a,II-b).

Los Angeles dataset [42]: The third dataset was collected by the Airborne Visi-
ble/Infrared Imaging Spectro-meter (AVIRIS) sensor over the Los Angeles city in USA. The
image scene contains 100 × 100 pixels and 205 spectral bands spanning from 430 nm to
860 nm after removing corrupted bands. The spatial resolution of the HSI is 7.1 m, and the
number of total anomalous pixels is 272, which are all buildings. The color composites and
corresponding reference map are showed in Figure 6(III-a,III-b), respectively.

San Diego dataset [52]: The fourth dataset, including two HSIs with different charac-
teristics, was captured by the AVIRIS sensor covering the area of San Diego airport, CA,
USA. The pixels of two HSIs are 100 × 100 and 120 × 120, respectively, and the number of
bands totals 189 on both HSIs, in a wavelength spanning from 400 to 2500 nm. The spatial
resolutions of the HSIs are both 3.5 m. The airplanes separately occupying 134 and 58
pixels are viewed as anomalies to be detected for the two HSIs. The color composites and
corresponding reference map of San Diego-I are shown in Figure 6(IV-a,IV-b), respectively.
Similarly, Figure 6(V-a,V-b) show the corresponding color composites and reference map
for San Diego-II.

Texas Coast dataset [53]: The fifth dataset covering the Texas Coast area was obtained
by the AVIRIS sensor with 17.2 m spatial resolution. The whole HSI contains 204 spectral
bands, ranging from 450 to 1350 nm, and each of them is 100 × 100 pixels. The anomalies
(i.e., buildings) embedded in the background contain 67 pixels in total. The color composites
and corresponding reference map are exhibited in Figure 6(VI-a,VI-b).

4.1.2. Evaluation Metrics

To measure the detection results, three commonly used evaluation criteria, which
are separately the receiver operating characteristic (ROC) curve [54], the area under the
curve (AUC) [55] and the separability range [56], were introduced into HAD. The ROC
curve depicts the true-positive rate (Pd) versus the false-positive rate (Pf) corresponding
to various thresholds. For the ROC curve, the better the performance, the higher the
curve. Corresponding to the ROC curve, the AUC value was adopted. Theoretically, an
outstanding anomaly detector should have a larger AUC value that approaches 1. The
separability range generated from the boxplot characterizes the capability of the detector to
extract anomalies from the background. The boxplot displays the variation in samples of a
statistical population, which is nonparametric, without any assumption of the underlying
statistical distribution. The degree of dispersion and skewness in the data can be described
by the spacings between the different parts of the box. A better detector should have a
more obvious separation between the anomalies and background.

4.2. Experimental Setup
4.2.1. Implementation Details

The background estimation network (BEN) introduced in Section 3.2 contains three
subnetworks, in which each of them consists of four fully connected layers, and the
number of nodes over all subnetworks are respectively defined to En{b, 512, 512, Nz},
De{Nz, 512, 512, b}, D{Nz, 512, 512, 1}. Here, b represents the spectral dimension of input
HSIs, and Nz stands for the dimension of latent feature, which is empirically determined
by Reference [40]. The Leaky ReLU with slope 0.2 acts as the activation function after
each fully connected layer in all subnetworks. Considering the limitation of the number
of training samples, a dropout strategy [57] with a sampling rate of 0.5 is introduced into
BEN to prevent overfitting. For the discriminator network, a sigmoid function is imposed
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on the last layer to constrain the output to [0, 1]. The batch size of BEN in training stage
is set to the number of the training samples, and the iteration epoch is set to 1000. The
learning rate of AE and discriminator are separately 1 × 10−3 and 1 × 10−4, and the
corresponding optimizers are both Adam [58]. Additionally, the tradeoff parameter, ω, for
weighing the spectral and spatial distances in superpixel segmentation is set to 0.3 [59].
The above hyperparameters were the default in our experiments, and the user can tune
these hyperparameters for optimal results.

The experiments using our method were carried out on a running environment with
Python 3.6.13, Pytorch-gpu 1.8.2 and CUDA 10.2 by using GeForce RTX 2080Ti graphics
card. All comparative methods, except for PAB-DC, were executed by using MATLAB
R2017b on an Intel(R) Core(TM) i7-9700T CPU 2.00GHz machine with 16GB of RAM.
Similarly, PAB-DC was also performed on a running environment with Python 3.6.13.

4.2.2. Compared Methods

To verify the performance of the proposed method, seven widely used methods, which
contain four typical methods and three state-of-the-art methods, were employed for com-
parison. The first typical method is the RX detector [20], which is the benchmark of the
statistical-based methods. The remaining three typical methods are the representation-
based methods, including the collaborative representation-based method (i.e., CRD [25]),
the low rank and sparse matrix decomposition–based method (i.e., LSMAD [27]) and
the low rank and sparse representation–based method (i.e., LRASR [28]). The three
state-of-the-art methods consisting of PAB-DC [19], LSDM–MoG [29] and KIFD [52] were
proposed recently.

4.3. Parameter Analysis

With the above configured hyperparameters described in Section 4.2.1, there four are
remaining parameters to be considered that are, respectively, the number of the preset
superpixel, K, in Section 3.1.1; the distance, R, between inner and outer windows in
Section 3.1.2; and the tradeoff parameters, λ and β, in Equation (24). When K is relatively
small, there are few participants in the background dictionary, and this is harmful to
detection performance. Inversely, the computation complexity of LRSR will be very high
when K is quite large. As shown in Figure 7, to balance both aspects mentioned above, K
is set to a reasonable range, i.e., {200, 300, 400, 500, 600}. By observing Figure 7, we can
see that K has little influence on AUC value for the experimental datasets, except for the
HYDICE and Texas Coast datasets, and the proposed method achieves optimal results
when K is 400. In terms of R, the larger the R, the more complex the computation. In
contrast, the detection result is vulnerable to the R when R is relatively small. To this end,
by considering the above conditions, a group of numbers, which range from 3 to 10 at an
interval of 1, are set to analyze influence of R over the AUC value on the experimental
datasets, as illustrated in Figure 8. It can be seen that there is a significant fluctuation over
the AUC value on the HYDICE dataset with the increase of R, and it achieves a first-rank
performance when R is equal to 7. Relative to the dramatic change in the HYDICE dataset,
the AUC values for other datasets remain stable and at a high level. Additionally, we
consider both the tradeoff parameters, λ and β, together. Here, both λ and β are chosen
from {0.0001, 0.001, 0.01, 0.1, 1, 2, 5}, which is similar to PAB-DC [19]. As shown in Figure 9,
taking the Pavia and Los Angeles datasets for example, two 3D histograms are displayed
to explore the effect of λ and β over the AUC value. To acquire optimal detection results,
extensive experiments were conducted for each dataset, and corresponding best results are
listed in Table 1.
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Table 1. Optimal parameters settings for experimental datasets.

Parameters HYDICE Pavia Los Angeles San Diego-I San Diego-I Texas Coast

K 400 400 400 400 400 400
R 7 7 7 7 7 7
Λ 1 0.01 0.01 1 1 1
B 0.01 0.001 0.001 0.01 0.1 0.1

4.4. Component Analysis
4.4.1. Effectiveness Evaluation of Adaptive Inner Window–Based Saliency Detection

To validate the effect of the adaptive inner window–based saliency detection, we
compared it with the dual rectangular windows–based saliency detection. Generally
speaking, dual rectangular windows–based methods always set a group of inner and
outer windows with different scales in an (Rin, Rout) way to search for the optimal result,
whereas only the size R between the inner window and outer window can be adjusted
manually in our method. For the above reason, for fair comparison, we ensure that
the result of “Rout–Rin” is equal to R and adjust the size of inner window in the dual
rectangular windows. Considering that the searching scope of the superpixel segmentation
is 2s × 2s, we set a group of reasonable size for the inner window in the dual rectangular
windows that ranges from 3 to 11 at an interval of 2, i.e., {3, 5, 7, 9, 11}. Taking R = 7 as
an example, we conducted a series of experiments to evaluate the effectiveness of the
proposed adaptive inner window–based saliency detection, and the AUC values are shown
in Figure 10. By observing Figure 10, we can observe that the adaptive inner window–based
saliency detection is superior to that of the dual rectangular windows–based detection on
experimental datasets, except for the San Diego-II dataset. For San Diego-II, we can easily
find that adaptive inner window–based method is comparable to the dual rectangular
windows–based method. The main reason behind this is that the detection result is nearly
close to 1, and thus the improvement is not obvious. In summary, the adaptive inner
window–based saliency detection is a useful technique to detect the anomalies.
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Figure 10. Histogram of the comparison results between the adaptive inner window–based method
and dual rectangular windows–based method on experimental datasets. Here, “3”, “5”, “7”, “9” and
“11” represent the size of inner window in dual rectangular windows, “AW” denotes the adaptive
inner window.

4.4.2. Effectiveness Evaluation of Two-Stage Complementary Decision

To validate the contribution of the proposed two-stage complementary decision for
dual dictionaries construction, the dual dictionaries construction with only coarse binary
map, dual dictionaries construction with only fine binary map and dual dictionaries
construction with two-stage complementary decision were conducted on six HSIs for
comparison, which are separately represented by “Coarse”, “Fine” and “Complementary”
in Table 2. By observing Table 2, we can see that the “Complementary” achieves optimal
AUC values on overall experimental datasets compared with “Coarse” and “Fine”. Taking
the Los Angeles dataset for example, the visualization of the detection maps is displayed
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in Figure 11. Through Figure 11, it can be seen that some anomalies existed in “Coarse”
and “Fine” are submerged into the background, and this is not conductive to observation,
whereas the anomalies appeared in “Complementary” are almost highlighted. Therefore,
the combination of coarse and fine binary maps was proven to be effective for detecting
anomalies and suppressing background.

Table 2. Component analysis results for experimental datasets.

HYDICE Pavia Los Angeles San Diego-I San Diego-II Texas Coast

Coarse 0.9700 0.9622 0.9865 0.9890 0.9940 0.9955
Fine 0.9862 0.9728 0.9923 0.9916 0.9973 0.9951

Complementary 0.9991 0.9951 0.9968 0.9923 0.9986 0.9969
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Figure 11. Visualization of detection map for the Los Angeles dataset on (a) dual dictionaries
construction with only coarse binary map. (b) Dual dictionaries construction with only fine binary
map. (c) Dual dictionaries construction with two-stage complementary decision.

4.5. Detection Performance

The detection maps and three evaluation results mentioned in Section 4.1.2 jointly
verify the detection performance. The detection maps over the compared methods on
experimental datasets are visualized in Figure 12, and the corresponding AUC values are
listed in Table 3. Note that the bold number and shading number in Table 3 stand for the
best and second-best results, respectively.

For the HYDICE dataset, the proposed method achieved satisfactory detection results
with low false alarm. Obviously, LRASR and KIFD have higher false-alarm rates when
compared with other methods. Different from the low detection performance for LRASR,
KIFD’s detection performance is superior to other comparative methods, except for the
proposed method. The detection results of CRD and PAB-DC are nearly close to those of
the proposed method, whereas the detection results of RX, LSMAD and LSDM–MoG are
not as good as those of the proposed method, due to, to a large extent, the existence of false
alarms and missed inspections.

Figure 12II exhibits the detection maps over comparative methods on the Pavia dataset.
It can be seen that the anomalies are completely detected, and the corresponding AUC
value (i.e., 0.9951) is best relative to other methods. Although the anomalies are also
detected comprehensively for CRD and LRASR, the corresponding AUC values still lower
the proposed method, owing to interference of the stronger false alarm. Note that RX
and LSMAD show powerful capability in background suppression, whereas the effect
of locating anomalies (i.e., 0.9887 and 0.9842) is slightly worse than that of the proposed
method. Additionally, the detection performance for PAB-DC, LSDM–MoG and KIFD is
poor, as the anomalies are submerged into the background.
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Table 3. AUC values on different methods over five datasets.

Dataset RX CRD LRASR LSMAD PAB-DC LSDM–MoG KIFD DDC–TSCD

HYDICE 0.9857 0.9951 0.8402 0.9861 0.9955 0.9792 0.9966 0.9991

Pavia 0.9887 0.9650 0.9889 0.9842 0.8858 0.9482 0.8589 0.9951

Los Angeles 0.9887 0.9794 0.8748 0.9814 0.8757 0.9745 0.9766 0.9968

San Diego-I 0.9403 0.9412 0.8950 0.9701 0.9780 0.9339 0.9914 0.9923

San Diego-II 0.9111 0.9791 0.9853 0.9732 0.9941 0.9320 0.9922 0.9986

Texas Coast 0.9907 0.9796 0.7656 0.9928 0.9747 0.9913 0.9354 0.9969

Average 0.9675 0.9732 0.8916 0.9813 0.9506 0.9599 0.9585 0.9965

For the Los Angeles dataset, the proposed method has the highest AUC value
(i.e., 0.9968) compared with other methods. Though RX, CRD, LRASR and LSMAD demon-
strate dramatic superiority with respect to background suppression, the ability to locate
anomalies is slightly insufficient, especially for LRASR. LSDM–MoG and KIFD can excavate
the anomalies as much as possible, with a slightly larger false alarm than the proposed
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method. In addition, there is a very low AUC value (i.e., 0.8757) and high false alarm for
PAB-DC among all comparative methods.

In terms of the San Diego-I dataset, the proposed method is evidently superior to other
comparative methods in regard to the AUC value, except for KIFD, which is slightly lower
than the proposed method, whereas the false alarm of KIFD is much higher than that of
the proposed method. Although the anomalies can be completely located in RX, LRASR,
PAB-DC and LSDM–MoG, the higher false alarm is harmful to the detection performance.
Note that the ability to perform background suppression for CRD and LSMAD is better
than for other compared methods, while the effect of detecting anomalies is poor.

With respect to the San Diego-II dataset, the proposed method can detect anomalies
comprehensively and obtain a superior performance in regard to the AUC value (i.e., 0.9986)
relative to other methods. Compared with the proposed method, RX, CRD and LSMAD
have a lower false-alarm rate, while the detection effect of anomalies is not ideal. LRASR,
PAB-DC and KIFD achieve competitive detection results in regard to AUC values. Even
worse, the anomalies fail to be detected comprehensively, and the effect of background
suppression is also poor for LSDM–MoG.

For the Texas Coast dataset, the proposed method achieved optimal results for the
AUC value, which is 0.9969. For RX, CRD and LSMAD, most anomalies were detected with
a slight low false alarm. Conversely, LRASR, PAB-DC, LSDM–MoG and KIFD retained a
very high false alarm.

Furthermore, to analyze the detection performance of the comparative methods, ROC
curves are plotted in Figure 13. For better visualization, the ROC curves are shown in a
logarithmic-scale manner. By observing Figure 13, we can see that the curve of the proposed
method is higher than other methods on all experimental datasets, meaning that the effect
of locating anomalies outperforms other methods.
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Additionally, the separability range between anomaly and background is executed
on experimental datasets, as illustrated in Figure 14. By observing Figure 14, we can find
that the distance between the lower bound of the red box and the upper bound of the
green box corresponding to the proposed method is larger than that of other methods, thus
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indicating that the separability effect of the proposed method is superior to that of the
other methods. Based on the above analysis, the proposed method can be regarded as a
competitive anomaly detector for HSIs.
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5. Discussion

In this section, we analyze the experiment effect of the proposed method from two
aspects (i.e., strength and limitation) and make a parallel comparison with the state-of-the-
art models based on deep learning. As described in Section 4, a comprehensive comparison
consisting of both qualitative and quantitative perspectives was executed on experimental
datasets with four classical and three state-of-the-art methods. Concretely, we used two
qualitative metrics (i.e., ROC curve and separability range of the background–anomaly) to
evaluate the performance of the proposed method. By observing the ROC curves illustrated
in Figure 13, we can easily find that the ROC curves of the proposed method are higher than
other methods on overall experimental datasets, especially for HYDICE, Los Angeles, San
Diego-II and the Texas Coast. For the separability range of background–anomaly, we can
also see that the distance between background and anomaly is larger than other methods,
thus indicating that the discrimination of the background and anomaly is greater than that
of other methods. From the perspective of quantitative analysis, the AUC value is adopted
as the indicator to judge the performance of the proposed method. The detailed AUC
values of different experimental datasets are shown in Table 3. Through Table 3, we can
find that the average AUC value on overall datasets is up to 0.9965, which is higher than
the second best comparison method (i.e., 0.9813 for LSMAD). This means that the proposed
method outperforms other methods to a large extent. Additionally, the effectiveness of
each component proposed in this paper is also validated in Section 4.

According to the above analysis, the detection results of the proposed method are
evidently competitive relative to the comparative methods. However, due to the high
complexity of the proposed method, the computation complexity of proposed method
is clearly much higher than the most comparative methods. For a clear illustration, the
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computation time of different methods is given in Table 4. Here, the bold number and
shading number refer to the best and second-best results, respectively. By observing Table 4,
it can be seen that the computing time of the proposed method is slightly more than that of
PAB-DC, while the computing time of the other methods, excluding PAB-DC, are far less
than that of the proposed method, especially the RX detector. Clearly, the low real-time
performance will restrict the application of the proposed method in the engineering field.
Hence, it will be a good choice to lower the complexity of our method in the future.

Table 4. Computing time (in seconds) on different methods over five datasets.

Dataset RX CRD LRASR LSMAD PAB-DC LSDM–MoG KIFD DDC–TSCD

HYDICE 0.23 2.62 29.84 8.25 257.15 6.61 46.42 265.32

Pavia 0.29 9.48 39.16 13.93 352.12 8.57 56.37 364.18

Los Angeles 0.38 5.90 42.12 12.47 358.52 10.64 54.09 376.80

San Diego-I 0.33 10.15 41.60 11.61 362.68 9.21 66.59 380.19

San Diego-II 0.52 15.06 53.89 17.67 410.23 16.09 68.31 430.22

Texas Coast 0.36 7.24 44.25 12.76 354.43 11.84 63.61 370.51

Average 0.35 8.41 41.81 12.78 349.19 10.49 59.23 364.54

Additionally, considering the fact that our method is a combination of an autoencoder
and generative adversarial network, in essence, it is a deep learning-based method. There-
fore, it is necessary to make a parallel comparison with the state-of-the-art models based on
deep learning. In terms of the existing deep-learning-based methods, the deep feature or re-
construction information of the observed data is generally adopted to measure the anomaly,
which has a limited performance due to the fact that only the single-stage information is
employed in these methods. To further improve the detection performance, our method
fully uses the two-stage complementary information. Clearly, the two-stage complementary
information is obviously superior to the single-stage information, as shown in Table 2,
meaning that the proposed method is competitive to existing deep-learning-based methods.

6. Conclusions

In this paper, we proposed a novel dual dictionaries construction method via two-
stage complementary decision for HAD. To alleviate the influence of the pixels with similar
characteristics to the testing anomalous pixels, we proposed an adaptive inner window–
based saliency detection to detect anomalies. With this situation, a coarse binary map was
obtained. In order to acquire a fine binary map, a background estimation network, which
is trained with the background pixels obtained under the guidance of coarse binary map,
was designed. Finally, the coarse and fine binary maps jointly worked together to select
representative atoms for background and potential anomaly dictionaries, with the help
of superpixels. To validate the effect of the proposed method, extensive experiments on
five datasets consisting of six HSIs were conducted. The experiment results show that
the average AUC value (i.e., 0.9965) of the proposed method outperforms that of other
methods, while the average computing time (i.e., 364.54 s) of the former is lower than that
of the latter. In summary, this strategy of two-stage complementary decision paves a new
way for studying HAD.

To alleviate the poor real-time performance of the proposed method, in the future, we
will attempt to replace the two stages of the proposed method with a simpler model, which
ensures that the complexity of model is far less than that of the proposed method. Once the
model is obtained, we will further deploy it for a mobile device.
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