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Abstract: Evapotranspiration (ET) represents crop water use and is a key indicator of crop health.
Accurate estimation of ET is critical for agricultural irrigation and water resource management.
ET retrieval using energy balance methods with remotely sensed thermal infrared data as the key
input has been widely applied for irrigation scheduling, yield prediction, drought monitoring and
so on. However, limitations on the spatial and temporal resolution of available thermal satellite
data combined with the effects of cloud contamination constrain the amount of detail that a single
satellite can provide. Fusing satellite data from different satellites with varying spatial and temporal
resolutions can provide a more continuous estimation of daily ET at field scale. In this study, we
applied an ET fusion modeling system, which uses a surface energy balance model to retrieve ET
using both Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) data and then
fuses the Landsat and MODIS ET retrieval timeseries using the Spatial-Temporal Adaptive Reflectance
Fusion Model (STARFM). In this paper, we compared different STARFM ET fusion implementation
strategies over various crop lands in the central California. In particular, the use of single versus two
Landsat-MODIS pair images to constrain the fusion is explored in cases of rapidly changing crop
conditions, as in frequently harvested alfalfa fields, as well as an improved dual-pair method. The
daily 30 m ET retrievals are evaluated with flux tower observations and analyzed based on land cover
type. This study demonstrates improvement using the new dual-pair STARFM method compared
with the standard one-pair STARFM method in estimating daily field scale ET for all the major crop
types in the study area.

Keywords: data fusion; evapotranspiration; Landsat; remote sensing; Google Earth Engine; water use

1. Introduction

As food production increases to meet the needs of the growing global population, the
demand of water for agriculture, especially in water-limited areas of the world, has rapidly
increased [1]. At the same time, drought is prevalent across the globe and could become
more frequent under changing climate conditions [2]. The competing demands for water
resources, especially under drought conditions, can lead to large socioeconomical impacts,
requiring management decisions to balance the needs for water between agriculture, urban
uses, and natural ecosystems [3,4]. Accurate assessments of water use at field scale can be
critical to understand spatiotemporal patterns in water requirements and help improve wa-
ter resource management and agricultural practices, for example, decisions about irrigation
timing and amount [5,6].

Evapotranspiration (ET) represents the consumptive water use by a vegetated sur-
face and is a major component of watershed water balance. Daily ET maps at field scale
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(100 m resolution or finer) can provide useful information for vegetation condition moni-
toring [7,8], drought detection [9,10], yield prediction [11] and irrigation scheduling [12,13].
While traditional ET measurement methods (e.g., lysimeter and eddy covariance flux tower)
are limited to sampling only a small area (typically of dimensions of a meter to a few hun-
dred meters), ET estimation using remotely sensed data can provide gridded water use
information over large regions, taking advantage of the recent achievements in Earth obser-
vation capabilities [14,15]. Energy balance methods, with remotely sensed thermal infrared
(TIR) observations as the key input, have been widely used for ET estimation [16]. Using
sharpened TIR data from Landsat, ET can be produced at 30 m spatial resolution every
8 (16) days under clear-sky conditions with 2 (1) functioning platforms, although the revisit
can be significantly longer in regions of persistent cloud-cover. This relatively long revisit
interval may not be adequate to capture important vegetation water-use trends, especially
during key growth and management stages, or during periods of rapid onset of “flash”
drought. The ET retrieved using Moderate Resolution Imaging Spectroradiometer (MODIS)
TIR data can be generated on a near daily basis, but at a relatively coarse spatial resolution
(250–500 m) that often does not resolve water use variability at field or sub-field scales.

To obtain the daily Landsat-scale (30 m) ET needed for field-scale monitoring applica-
tions, a data fusion method has been employed to fuse ET timeseries retrieved from Landsat
and MODIS. The Spatial-Temporal Adaptive Reflectance Fusion Model (STARFM) is a
widely used data fusion method that was originally developed to fuse surface reflectance
data from Landsat and MODIS [17]. STARFM uses spatio-statistical weighting information
derived from Landsat data and MODIS data on one or more Landsat overpass days and
MODIS data on the prediction date to obtain Landsat-like estimations on all prediction
dates between Landsat overpasses. STARFM has been successfully adapted to fuse ET data
retrieved from Landsat and MODIS and has been used in many studies in various climate
zones and land use types [9,11,18–20].

The weighting information used in STARFM to downscale MODIS product timeseries
can be derived from either a single pair of MODIS and Landsat images or two pairs
bracketing the prediction date [17]. To date, most applications of STARFM for ET fusion
have used one pair of images, since this mode is better suited for near real-time applications
and uses less imagery. However, Xue et al. [21] found that the one-pair approach often did
not adequately capture rapid changes in ET in intensively managed agricultural systems,
such as alfalfa. Additionally, under some circumstances, the one-pair approach tends to add
an artificial discontinuous change in predicted values when switching pairs. While there
are many studies exploring the impact of different image pair selection strategies in surface
reflectance fusion [22,23], no similar sensitivity study has been conducted characterizing
the use of a single pair vs. two pairs of images in ET fusion.

In this study, we tested the standard one-pair and two-pair options as well as a new
dual-pair option of STARFM in ET fusion over the Delta area in central California, and we
investigated the impact of these options on daily ET estimation over various land use types.
The study objectives are to explore the following: (1) the difference among fused daily
ET timeseries estimated using different strategies of STARFM; (2) the impact of different
STARFM methods on daily field-scale ET estimation over different land cover types.

2. Study Area

The study area, located in the Central Valley of California, is shown in Figure 1
along with land use information for 2014. This area is characterized by a wide range of
land use and crop types with variable plant and water use phenology, which provides
a complex condition for testing the capabilities of STARFM in fusing ET timeseries over
a highly heterogenous area. This area also has the advantage of having many available
clear remotely sensed observations during the growing season, which typically has low
cloud cover. Over the past years, there has been a significant increase in viticulture within
this study area, inspired by the region’s Mediterranean climate, characterized by the rainy
cold season and dry and hot summers. In addition to vineyards, many other perennial
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and annual crops are grown in the region and a large amount of water is consumed for
agriculture production. However, this area has experienced prolonged periods of drought
over the past decade, which are projected to be more frequent due to the changing climate.
To better manage water resources in this area, detailed accounting of seasonal water use
curves by crop type is needed. Several flux towers are in this study area to monitor water
and carbon fluxes that can be used as evaluation sites, as will be discussed in detail in the
Data section.
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Figure 1. Study area in the Central Valley of California, USA (left) and land-use classes from the
CROP2014 dataset (right).

3. Methods and Data
3.1. Methods
3.1.1. Evapotranspiration Retrieval Using Multi-Scale Remotely Sensed Data

The Atmosphere–Land Exchange Inverse (ALEXI) surface energy balance model and
associated flux disaggregation technique DisALEXI were used to estimate surface energy
fluxes over the study area using Landsat and MODIS TIR imagery. ALEXI/DisALEXI
are based on the Two-Source Energy Balance (TSEB) model, which was developed by
Norman et al. [24] and further refined by Kustas et al. [25,26]. In TSEB, the soil and vegeta-
tion energy components are solved separately (Equations (1) and (2)):

Rn,s = HS + LES + G0 (1)

Rn,c = Hc + LEc (2)

where the subscripts “s” and “c” represent soil and canopy energy flux components (in
W m−2), Rn is net radiation, H is sensible heat flux, LE is latent heat flux and G0 is soil heat
flux. The observed directional radiometric surface temperature is partitioned into soil and
vegetation components, which are used to constrain Rn, H and G. Daily latent heat flux (in
energy units of MJ m−2 day−1) is converted to ET (in mass units of mm day−1) by dividing
by the latent heat of vaporization (λ = 2.45 MJ kg−1).
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Combining TSEB with a simplified atmospheric boundary condition model, ALEXI/
DisALEXI can estimate evapotranspiration from regional to continental scales with re-
motely sensed thermal infrared observations and vegetation index as the key inputs. The
regional ALEXI model employs the TSEB in a time-differential mode during the morning
period to reduce sensitivity to absolute temperature errors. For more details about the
ALEXI model, see Anderson et al. [27,28]. Using time-differential land-surface temperature
(LST) observations from geostationary satellites, ET estimated using ALEXI is normally
at coarse scale, on the order of several kilometers. To obtain higher spatial resolution
ET maps, DisALEXI can be employed to disaggregate the coarse ET from ALEXI using
higher resolution LST retrievals from MODIS (500–1000 m/approximately daily) or Land-
sat (sharpened to 30 m/8–16 days). More information about DisALEXI can be found in
Anderson et al. [28–30] and Yang et al. [31].

3.1.2. GEE-DisALEXI

In this study, Landsat ET was retrieved using a version of DisALEXI that has been
recently implemented in Google Earth Engine (GEE) under the OpenET project—a collabo-
rative effort aimed at providing field-scale ET estimates over the western U.S. for improved
irrigation and water resource management [32]. The basic algorithm for GEE-DisALEXI is
the same as the standard version described above and in previous studies, but with some
differences in the input data preparation and model structure due to the specific capabilities
and constraints of GEE. These differences are discussed in more detail in Section 2.

3.1.3. Gap-Filling

STARFM requires Landsat- and MODIS-retrieved ET images be spatially filled and
MODIS-retrieved ET images additionally be temporally filled to ensure that daily MODIS
images are available. Spatial gaps in Landsat DisALEXI caused by cloud contamination or
stripes from the Landsat 7 scan-line corrector failure are filled using the method described
in Yang et al. [33]. The gaps are filled using a weighted function between a STARFM
predicted Landsat-scale ET and the original retrieved Landsat ET. Temporal gaps in MODIS-
retrieved ET are filled using the method in Anderson et al. [15]. The ratio between MODIS-
retrieved ET and ALEXI ET at 4 km is computed and smoothed using a Savitzky–Golay
filter [34]. Gap-filled daily ET is recovered by multiplying this smoothed ratio series by
daily ALEXI ET.

3.1.4. STARFM Data Fusion Method

STARFM uses Landsat and MODIS image pairs from the same day to estimate Landsat-
resolution images for other MODIS dates [17]. The original method is implemented at the
pixel level using spectrally similar pixels around the central (prediction) pixel. The change
of temporal information is obtained from MODIS images based on these similar pixels. The
final estimation is the sum of the predictions from similar pixels weighted by spectral and
spatial differences. STARFM can use a one- or two-pair option. The single-pair option uses
similar pixels from one image pair. The two-pair option uses all similar pixels from two
image pairs, usually one before and one after the prediction date.

STARFM is the first operational algorithm open to the public for data fusion. Based
on the original STARFM, several modified algorithms have developed to fuse surface
reflectances [35–37], as summarized in Zhu et al. [23]. For example, the spatial tempo-
ral adaptive algorithm for mapping reflectance change (STAARCH, [38]) uses similar
weight functions, but detects the land cover type change points from dense time series of
coarse images. To improve the accuracy of STARFM in heterogeneous areas, Enhanced
STARFM (ESTARFM, [39]) introduces a conversion coefficient estimated by linearly regress-
ing the reflectance changes of fine resolution pixels of the same endmember and coarse
resolution pixel.
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One- and Two-Pair Modes

The one-pair and two-pair options are available in the standard publicly available
STARFM package [17]. The one-pair option normally chooses an available Landsat image
close to the prediction date and pairs this with the MODIS image on the same day. Transition
between one pair and the next pair is determined by similarity between MODIS images
on the prediction and pair dates. The two-pair mode uses pairs bracketing a prediction
interval. The pair is determined for each pixel from the two bracketing pairs by selecting
the higher similarity in MODIS. For ET fusion, similarity in the ratio between MODIS ET
and ALEXI ET is used to select the optimal pair to downscale predictions [20].

Proposed Dual-Pair Mode

The proposed dual-pair mode of STARFM, like the two-pair mode, uses two pairs of
Landsat- and MODIS-retrieved ET, one pair before and another pair after the predict day
to predict Landsat-scale ET (Figure 2). However, rather than using the pair to determine an
average set of downscaling weights employed over this prediction at the pixel-level, each
pair is used to run the one-pair STARFM algorithm over the prediction interval, yielding
two high-resolution ET timeseries–one forward predicted (ET1) from the first pair and one
back predicted (ET2) from the second pair. The two ET timeseries are then merged together
at the image level using Equation (3):

ETdual−pair = W1 × ET1 + W2 × ET2

W1 = t2−t0
t2−t1

W2 = t0−t1
t2−t1

(3)

where ET1 and ET2 are the results of one-pair STARFM using pair 1 and pair 2, W is
the relative weight assigned to the results from using each pair, and t1 and t2 are the
date for the two pairs, t0 is the prediction date. Under normal conditions, W1 and W2
are estimated using the date of two pairs and the prediction day, which yields a smooth
weighted transition between the results from both pairs. However, this weight factor can
also be modified to adapt to rapid changes; for example, harvest can be estimated from
NDVI using change detection techniques [40]. In the case of a detected rapid change, the
prediction before the change date should be more related to the image pair before change,
while the prediction after the change date should be more related to the image pair after
change. In this study, we simply tested assigning W1 as 1 and W2 as 0 for pre-harvest to
only consider information from image pairs before harvest, and we tested the opposite for
postharvest to only consider information from image pairs after harvest.

3.1.5. Quality Assessment

The relative accuracy of the various pair options for STARFM was assessed at flux
tower locations using observations of daily ET. Statistical metrics including mean absolute
error (MAE), mean bias error (MBE), and root mean square error (RMSE) were used in
this study.

3.1.6. STARFM Testing Strategy

STARFM inputs used in this study include periodic ET retrievals from Landsat 7 and
Landsat 8 (30 m), as well as daily ET from MODIS (500 m). The STARFM modes tested
include the original one-pair and two-pair mode as well as the dual-pair mode proposed in
this study. To better examine the impact of different inputs on the quality of the predicted
Landsat-scale ET, various combinations of input data were tested. The following tests
are performed: (1) using Landsat 8-retrieved ET with simulated MODIS derived through
aggregation of Landsat direct retrievals to 480 m ET, to examine the performance of different
STARFM application strategies using perfectly consistent multi-source imagery; (2) using
both Landsat 7- and Landsat 8-retrieved ET and MODIS-retrieved ET to explore the time
series performance from different strategies in comparison with flux tower observations;
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(3) using only Landsat 8-retrieved ET and MODIS-retrieved ET to assess, in comparison
with test 2, the impact of temporal sampling at the Landsat scale. The time-series daily
fused ET were compared with flux tower observations and analyzed for major crop types
to look at the performance of the standard one-pair STARFM and proposed dual-pair
STARFM for different crop types.Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 17 
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3.2. Data
3.2.1. ET Model Inputs

ALEXI and DisALEXI model inputs are briefly reviewed here, with more detailed
information provided in [28,29,31].

Key remote sensing inputs to both ALEXI and DisALEXI are raster images of LST
and LAI. For the ALEXI model, LST data are obtained at two times during the morning
rise interval (typically 1.5 and 5.5 hourafter local sunrise) from the GOES-East and -West
imager instruments and resampled to a 4 km grid. LAI data are obtained from the 500 m
MODIS LAI (MCD15A3H) product. These data are spatially aggregated to the 4 km grid
and temporally interpolated to a daily time step using the Savitzky–Golay methods [15].
Albedo, another primary component of the energy balance, is estimated with the narrow-
to-broadband conversion equation developed for Landsat surface reflectances [41].

Inputs for MODIS-based disaggregation of ALEXI ET include instantaneous swath
LST data (MOD11_L2), LAI (MCD15A3) and albedo (MCD43A3). All MODIS data were
from collection 6 and went through quality check based on the associated QA data. MODIS
LST at 1 km spatial resolution was sharpened to 500 m using the thermal sharpening
method developed by Gao et al. [17].

Landsat-based disaggregation of ALEXI ET was carried out using the version of
DisALEXI on GEE using TIR and shortwave surface reflectance data from Landsat 7 and
Landsat 8 collection 1, excluding images with cloud cover exceeding 70% of the scene. The
TIR data were atmospherically corrected using the parameters and methods described
in Masahiro et al. [42], and then spatially sharpened to 30 m resolution using a thermal
sharpening method similar to that developed by Gao et al. [17]. This thermal sharpening
method was implemented into GEE using the random forest method. MODIS-consistent
Landsat-scale LAI was estimated following the method described in Kang et al. [43] using
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machine learning on GEE. A total of 1.6 Millon samples were generated from MODIS LAI
and Landsat surface reflectance data.

Surface meteorological data inputs to both ALEXI and DisALEXI, including air tem-
perature and pressure, vapor pressure, wind speed, and insolation, were obtained from the
Climate Forecast System Reanalysis (CFSR) at 0.5-degree spatial resolution and resampled
to the GOES, Landsat and MODIS scales. Land cover information used to parameterize
surface roughness and spectral characteristics at pixel scale was extracted from 2016 Na-
tional Land Cover Dataset (NLCD) at 30 m spatial resolution. The pixel level vegetation
parameters used in ET models were parameterized following Cammalleri et al. [20].

3.2.2. Flux Tower Data

Observations from several flux towers operating within the modeling domain dur-
ing the study period were used for qualitative assessment of the fused ET image time-
series. These flux tower sites are listed in Table 1 and include US-Tw3, US-Twt, SLM001
and SLM002. Data for US-Tw3 (alfalfa; doi:10.17910/AMF/1246149) and US-Twt (rice;
doi:10.17190/AMF/1246151) were extracted from the FLUXNET 2015 data set, which pro-
vides a global dataset of water and energy fluxes at ecosystem scale processed using a set
of well-established and published methods [44]. The data are quality checked, gapfilled
and a correction factor for energy fluxes estimating the deviation from energy balance
closure is estimated and provided. The SLM001 and SLM002 data were collected over
vineyards outside of Lodi, CA as part of the GRAPEX project, which provides water use
information for improved vineyard irrigation management [5]. The flux tower observations
were processed following the method described in Volk et al. [45] for gapfilling and energy
balance closure correction.

Table 1. Statistical metrics of evaluation of STARFM fused daily ET. Observation Average is the
average value from flux tower observed closed ET (mm/day); n is the total number of observations;
MAE is mean absolute error (mm/day); MBE is mean bias error (mm/day); RMSE is root mean square
error (mm/day). The grey color highlights the method of best performance, comparing dual-pair
and one-pair.

Towers
PAIRS

MAE MBE RMSE MAE MBE RMSE Observation
Average nLandsat 7&8 Landsat 8 Only

US-Twt
DualPair 0.98 0.62 1.23 1.13 0.71 1.41 4.14 797
OnePair 1.03 0.65 1.29 1.21 0.79 1.53 4.14 797

US-Tw3
DualPair 1.08 −0.48 1.32 1.11 −0.38 1.37 3.93 1090
OnePair 1.12 −0.47 1.38 1.15 −0.36 1.44 3.93 1090

SLM001
DualPair 0.82 0.43 1.02 0.85 0.42 1.05 3.94 726
OnePair 0.87 0.44 1.06 0.90 0.45 1.10 3.94 726

SLM002
DualPair 0.88 0.65 1.08 0.92 0.70 1.14 3.93 706
OnePair 0.92 0.66 1.12 0.96 0.72 1.18 3.93 706

3.2.3. Land Use Map

A detailed land use map for 2014 (CROP2014) obtained from California Department
of Water Resources website (https://gis.water.ca.gov/app/CADWRLandUseViewer/,
22 December 2021) was used for analysis of impacts of STARFM strategies on estimates of
water use by different land use types. The land use survey was prepared by Land IQ, LLC
and provided to the California Department of Water Resources for land use information.
This dataset presents approximately 50 crop and land use types of the 2014 agricultural
land use and managed wetlands for all 58 counties in California.

Figure 3 shows the percentage of main land use types in the study area in 2014 from
the land use survey data. The land use types are varied and mainly agricultural, except for
urban areas. Rice, almond and vineyards are the most common agricultural classes in this
study area, with another large portion classified as idle.

https://gis.water.ca.gov/app/CADWRLandUseViewer/
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Figure 3. Percentage of major land use types in the study area based on the 2014 land use data.

4. Results
4.1. Comparison of STARFM Strategies Using Synthetic MODIS ET Aggregated from 30 m
Landsat ET

The standard one-pair and two-pair STARFM and the proposed dual-pair STARFM
methods were first evaluated by using the fusion methods to reconstruct ET images on
Landsat overpass days, and by comparing the reconstructions with ET images directly
retrieved from the Landsat imagery. To remove the impact of spatial dissimilarity between
the Landsat and MODIS ET in the fusion process and focus on the difference in fusion
method, we used synthetic MODIS images created by aggregating the Landsat ET from
30 m to 480-m, close to the 500 m resolution of the MODIS ET timeseries. We then used the
aggregated 480 m ET as MODIS ET to pair with Landsat ET and applied STARFM in the
three modes (one, both and dual-pair). The days that are used for this test are clear Landsat
8 overpass days in 2014, including Day of Year (DOY) 141, 157, 173, 205, 221 and 237.

To highlight the differences among models, Figure 4 shows one example of the fused
ET images from the different STARFM methods for DOY 205 generated from Landsat-
synthetic MODIS pairs on bracketing dates or 173 and 221, and also compared with the
original Landsat ET on DOY 205. The one-pair result used the pair from DOY 221. All three
methods show similar spatial patterns as in the original image. However, the standard
two-pair STARFM results in lower ET patches in the northeast part of the domain, due
to pairing with DOY 173 rather than DOY 221. Figure 5 shows histograms of average ET
computed from all reconstructed images for each method in comparison with average
directly retrieved ET. The standard two-pair STARFM results shift to lower values compared
to the direct retrievals. While the standard one-pair and dual-pair method had similar
performance, the new dual-pair method better reconstructed very high and low values of ET
and compares better with the original Landsat-retrieved ET. Overall, the dual-pair results
have lower RMSE and higher R2 comparing with the one- and two-pair modes. Because
the dual-pair method outperformed the standard two-pair STARFM method in this test, we
use only the standard one-pair and dual-pair STARFM methods in the following analyses.

4.2. Evaluation of Time-Series Daily ET at Flux Tower Sites

The fused daily ET over 2014–2018 from DOY 30 to DOY 300 generated using the stan-
dard one-pair and dual-pair STARFM methods, and using both Landsat 7- and 8-retrieved
ET and only Landsat 8-retrieved ET, were compared with daily ET observations at the four
flux tower sites. At most sites, the dual-pair STARFM performs better than the one-pair
STARFM. MAE, MBE and RMSE for the dual-pair results are less than those for one-pair
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results for almost all the sites (Table 1). The exception is US-Tw3, where the MBE of the
dual-pair is slightly higher than that of one-pair.
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Figure 4. Reproduced Landsat-scale ET on DOY 2014205 using different STARFM methods comparing
with direct retrievals of Landsat ET.
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Assessing impacts of Landsat image temporal frequency, the RMSE for fused ET
timeseries using only Landsat 8-retrieved ET is higher than when both Landsat 7 and
Landsat 8 are used for both dual-pair and one-pair results (Table 1). This suggests that
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higher frequency in Landsat-like observations can improve the performance of STARFM.
Although Landsat 7 has gaps due to the SLC-off issue, including Landsat 7 images still
provides useful time-series information and helps STARFM under both dual-pair and
one-pair modes. Considering the amount of clear Landsat observations is already relatively
high, given the low cloud cover characteristic of the study area during the growing sea-
son, more frequent 30 m resolution ET retrievals—obtained from multiple Landsat-like
thermal sensors [21]—could be even more beneficial for data fusion in areas with higher
cloud coverage.

Figure 6 compares fused daily ET timeseries generated using dual-pair and one-pair
STARFM with flux tower observations from US-Twt in 2014. This site is planted in rice, with
the early season peak in ET corresponding to a period when the field is flooded for wildlife
habitat. Around DOY 100, the field was drained and planted in rice. Rapid crop growth
from DOY 130–170 lead to a second peak in ET. While ET estimated from both methods
agrees well with the observed data, there are notable periods of discrepancy particularly
when there are larger gaps between Landsat ET retrievals. Around DOY 110, the one-pair
results show a quick drop in the fused daily ET at the transition between pair dates. In
contrast, the dual-pair results are smoother and show a gradual decrease during this period,
which better represents the drainage process in the rice field.Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 17 
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4.3. Performance of Dual-Pair and Standard One-Pair STARFM over Different Crop Types

The performance of dual-pair and one-pair STARFM was further evaluated over the
major crop types in the study area. The evaluation was conducted by reproducing Landsat-
scale ET for the Landsat 8 overpass days in 2014 using the two STARFM methods and then
comparing with the original direct retrieval of Landsat ET. RMSE for all Landsat dates from
both methods are shown in Figure 7. For the crop types examined, RMSE in reconstructed
ET from both STARFM methods is typically highest at the peak of the growing season,
following the magnitude of the seasonal water use curve. Exceptions are alfalfa, which has
relatively consistent RMSE throughout the growing season, and rice where RMSE peaks in
the early growing season. The high RMSE of alfalfa is related with the frequent harvest
cycle, which is difficult to reconstruct using either method. The high RMSE for rice in the



Remote Sens. 2022, 14, 1772 11 of 16

early growing season relates to rapid changes in ET during the draining and planting stage
of cultivation.Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 17 
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Figure 7. Comparison of RMSE between dual-pair and one-pair for the tested Landsat overpass days
in 2014 for major crop types.

Comparing the results from the two STARFM methods, the dual-pair generally out-
performs the one-pair method (Figure 7) for all crops and most Landsat dates. The im-
provement using dual-pair STARFM is highest for corn on DOY 205 and rice on DOY
141. On average, the improvement is highest for corn, alfalfa, rice and sunflower, which is
possibly due to more frequent change in field conditions (harvest and replanting, flooding
and draining) or in water use patterns during different growth stages. There is relatively
low improvement for grape using dual-pair, which might relate to relatively steady water
use under irrigation. Still, even for vineyards the improvement in performance using the
dual-pair method is demonstrable.

Figure 8a shows a scatter plot comparison of ET for grape pixels on DOY 173 recon-
structed using both fusion methods with directly retrieved ET. The one-pair method has
a much broader scatter in comparison with the dual-pair method. From the box plots in
Figure 8b, the interquartile range and 1.5 interquartile range of the dual-pair results is
similar to that of the direct Landsat ET retrieval, but slightly lower. The one-pair results
have a broader interquartile range than that of the original Landsat ET, as well as higher
maximum and lower minimum values. The histogram comparison in Figure 8c shows that
the one-pair method overestimates ET in the range between 5.5 to 6.8 mm/day, while under-
estimating ET in the highest ET range. The dual-pair histogram better matches the original
distribution, underestimating when ET is higher than ~4 mm/day and overestimating rates
lower than 4 mm/day.
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exact day of harvest, as verified in imagery collected by the Phenocam installed on the 
flux tower. The red line shows dual-pair results when both pairs have the weight based 
on date as in Eq. 3. This option causes ET to decrease too early, before the harvest event 
on DOY 165. The blue line shows one-pair mode results, which give an abrupt change at 
the transition between image pairs on DOY 162, again prior to the actual harvest date. 
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factor based on the change of NDVI to more accurately capture the rapid change in ET 
caused by harvest.  

Figure 8. Performance of one-pair and dual-pair STARFM method over vineyards in the study area
for DOY2014173. (a1) The scatter plot of original Landsat ET and reproduced Landsat ET using
dual-pair method. (a2) The scatter plot of original Landsat ET and reproduced Landsat ET using the
one-pair method. (b) The box plot of original Landsat ET, reproduced ET using the dual-pair and
one-pair methods. (c) The histogram of original Landsat ET, reproduced ET using the dual-pair and
one-pair methods.

Alfalfa sites typically have multiple rounds of harvest during the growing season,
which poses challenges for data fusion methods. Here, we chose one alfalfa site (US-Tw3) to
further explore the capabilities of proposed dual-pair method with a phenology-dependent
weighting factor. Figure 9 shows time series of daily ET from the one-pair, dual-pair with
date-based weighting, and a change-adapted weighted dual-pair methods over US-Tw3
site. In the latter case, the weighting factors W1 and W2 (Equstion (3)) were set to 1 and
0 prior to harvest and 0 and 1 after harvest, with the harvest date (165) determined from
the MODIS 250 m NDVI timeseries. The fused daily ET data from the three methods have
similar trends that generally correspond well with the observed daily ET, except during
this period of rapid vegetation change. The Landsat overpass on DOY 165 captured the
exact day of harvest, as verified in imagery collected by the Phenocam installed on the flux
tower. The red line shows dual-pair results when both pairs have the weight based on date
as in Equstion (3). This option causes ET to decrease too early, before the harvest event on
DOY 165. The blue line shows one-pair mode results, which give an abrupt change at the
transition between image pairs on DOY 162, again prior to the actual harvest date. Using
the change-adapted dual-pair weighting (orange line), we can adjust the weighting factor
based on the change of NDVI to more accurately capture the rapid change in ET caused
by harvest.



Remote Sens. 2022, 14, 1772 13 of 16

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 17 

14 
 

 
Figure 9. Time series of daily fused ET using different STARFM modes over the growing season of 
2014 for US-Tw3 alfalfa site. 

5. Discussion 
5.1. Advantages and Limitations of the Dual-pair Option  

This study demonstrates better performance of the dual-pair over the one-pair 
STARFM method for all the major crop types in the study area. The fused daily ET from 
the dual-pair STARFM method compares better with the observed ET than the ET from 
the one-pair STARFM (Table 1). Both MAE and RMSE of dual-pair results are improved 
for all four flux tower sites in comparison with the observations. Comparing reproduced 
30 m ET maps using the two STARFM methods with direct retrievals of Landsat ET also 
demonstrates better performance of the dual-pair method (Figures 4, 7 and 8) for all the 
major crop types in the study area, although the difference of average ET from the two 
methods are small. The temporal variation of fused ET timeseries from the one-pair 
STARFM is larger than that from the dual-pair STARFM, while the dual-pair STARFM 
tends to smooth the peaks. The dual-pair method also better reconstructs spatial variabil-
ity in ET across the modeling domain, especially in areas that are undergoing rapid 
changes (Figure 8 a1 and a2). 

The newly developed dual-pair option has built-in weighting factors that can be 
adapted with a coupled change-detection algorithm. For pixels that do not experience ab-
rupt changes in land surface conditions between pair dates, the date-based weight is given 
to each of the dual pairs. However, if abrupt disturbance changes (e.g., fire, thinning and 
harvest) occur, such as the harvest of alfalfa around day 165 in Figure 9, the weighting 
factors can be adjusted to better capture this change, effectively decoupling post-change 
predictions from the pre-change pair date. This change-based adjustment of the weighting 
factors requires information derived from other satellite systems with temporal frequency 
higher than that of Landsat. In this study, we used MODIS NDVI as an indicator of abrupt 
changes, since the studied alfalfa site is large and fairly homogenous. In future work, we 
plan to integrate vegetation index (VI) information from combined data sources, including 
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5. Discussion
5.1. Advantages and Limitations of the Dual-Pair Option

This study demonstrates better performance of the dual-pair over the one-pair STARFM
method for all the major crop types in the study area. The fused daily ET from the dual-pair
STARFM method compares better with the observed ET than the ET from the one-pair
STARFM (Table 1). Both MAE and RMSE of dual-pair results are improved for all four flux
tower sites in comparison with the observations. Comparing reproduced 30 m ET maps
using the two STARFM methods with direct retrievals of Landsat ET also demonstrates
better performance of the dual-pair method (Figures 4, 7 and 8) for all the major crop types
in the study area, although the difference of average ET from the two methods are small.
The temporal variation of fused ET timeseries from the one-pair STARFM is larger than
that from the dual-pair STARFM, while the dual-pair STARFM tends to smooth the peaks.
The dual-pair method also better reconstructs spatial variability in ET across the modeling
domain, especially in areas that are undergoing rapid changes (Figure 8a1,a2).

The newly developed dual-pair option has built-in weighting factors that can be
adapted with a coupled change-detection algorithm. For pixels that do not experience
abrupt changes in land surface conditions between pair dates, the date-based weight is
given to each of the dual pairs. However, if abrupt disturbance changes (e.g., fire, thinning
and harvest) occur, such as the harvest of alfalfa around day 165 in Figure 9, the weighting
factors can be adjusted to better capture this change, effectively decoupling post-change
predictions from the pre-change pair date. This change-based adjustment of the weighting
factors requires information derived from other satellite systems with temporal frequency
higher than that of Landsat. In this study, we used MODIS NDVI as an indicator of abrupt
changes, since the studied alfalfa site is large and fairly homogenous. In future work, we
plan to integrate vegetation index (VI) information from combined data sources, including
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MODIS, harmonized Landsat and Sentinel-2 (HLS) and Planet data, to increase the accuracy
of disturbance detection for heterogenous areas.

The dual-pair option requires two image pairs bracketing the prediction date and
therefore is not suitable for near real-time ET monitoring where only one image pair from
the past is available. In this case, a projection from the last available image to present might
be accomplished by using a VI-dependent scaling flux such as ETo*NDVI, where ETo is
the reference ET. Therefore, both prior time-series (determined by STARFM weighted dual
pair) and the projected times-series would be responsive to changes in vegetation cover.

5.2. Impact of Landcover Type and Patch Scale

As demonstrated in Figure 7, the dual-pair STARFM method was found to outperform
the standard one-pair method for all major crop types represented in the study domain.
Characteristic water use curves for crops grown in the CA Delta region are given in
Anderson et al. [18] (Figure 18). Relative improvement was strongest in crops with more
compressed peak water use cycles (e.g., corn, tomatoes), or multi-model water use curves
(e.g., rice, alfalfa).

In general, the largest benefit of the dual-pair STARFM scheme will be realized over
smaller landcover patches (well resolved at the 30 m Landsat scale) that exhibit changes
in water use with a significantly temporal pattern than does the background vegetation
(dominating at the coarser MODIS 500 m scale). These changes are not captured by the
MODIS fusion backbone timeseries, and thus the STARFM downscaling weights evolve
rapidly between MODIS-Landsat pairs, leading to discontinuities in fused ET on the
transition date between pairs in the one-pair mode. Less benefit will be observed over
landcovers where temporal water use is more consistent from the 30 to 500 m scale, such as
in forests and natural grasslands.

5.3. Impact of Landsat ET Frequency

Comparison between the performance of the STARFM dual-pair method applied to
both Landsat 7 and 8 compared to using Landsat 8 alone (Table 1) demonstrates that data
fusion accuracy is improved with more frequent high resolution samples. The success-
ful launch of Landsat 9 will certainly benefit ET monitoring using data fusion methods,
especially for sites with sudden disturbance, rapid change, or persistent cloud cover. In-
corporation of additional Landsat-scale thermal data sources (e.g., ECOSTRESS, VIIRS,
and proposed SBG and LSTM missions) can also serve to improve temporal sampling of
moisture status at that critical field scale [21].

6. Conclusions

Data fusion has been widely used to combine data with different spatiotemporal reso-
lutions to obtain higher spatiotemporal resolution image timeseries. The one-pair STARFM
method has been used to fuse ET estimated from Landsat and MODIS for simplicity, but
it can result in a sudden change of fused values when switching image pairs. Here, we
improved the one-pair STARFM by using both pairs of images bracketing the prediction
day and developed a new dual-pair STARFM method. The dual-pair STARFM method
out-performed the standard one-pair method both in point comparisons with flux tower
observations collected in the Central Valley, CA, study area, and in reproducing Landsat-
scale ET maps directly retrieved on Landsat overpass dates. The study demonstrates that
the newly developed dual-pair STARFM method advances the one-pair STARFM for all
the major crop types in this study region. We also demonstrate the value of more frequent
Landsat observations in improving the performance of data fusion. The findings from this
study can help to improve the time series ET estimation and to provide higher quality of
information for water resource and watershed management.
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