
����������
�������

Citation: Lin, X.; Wa, S.; Zhang, Y.;

Ma, Q. A Dilated Segmentation

Network with the Morphological

Correction Method in Farming Area

Image Series. Remote Sens. 2022, 14,

1771. https://doi.org/10.3390/

rs14081771

Academic Editors: Xiaoli Li,

Zhenghua Chen, Min Wu and

Jianfei Yang

Received: 3 March 2022

Accepted: 31 March 2022

Published: 7 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Dilated Segmentation Network with the Morphological
Correction Method in Farming Area Image Series
Xiuchun Lin, Shiyun Wa , Yan Zhang and Qin Ma ∗

College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
2019308250222@cau.edu.cn (X.L.); 2019308250126@cau.edu.cn (S.W.); 2019308250102@cau.edu.cn (Y.Z.)
* Correspondence: maq782003@cau.edu.cn

Abstract: Farming areas are made up of diverse land use types, such as arable lands, grasslands,
woodlands, water bodies, and other surrounding agricultural architectures. They possess imper-
ative economic value, and are considerably valued in terms of farmers’ livelihoods and society’s
flourishment. Meanwhile, detecting crops in farming areas, such as wheat and corn, allows for
more direct monitoring of farming area production and is significant for practical production and
management. However, existing image segmentation methods are relatively homogeneous, with
insufficient ability to segment multiple objects around the agricultural environment and small-scale
objects such as corn and wheat. Motivated by these issues, this paper proposed a global-transformer
segmentation network based on the morphological correction method. In addition, we applied the
dilated convolution technique to the backbone of the model and the transformer technique to the
branches. This innovation of integrating the above-mentioned techniques has an active impact on
the segmentation of small-scale objects. Subsequently, the backbone improved by this method was
applied to an object detection network based on a corn and wheat ears dataset. Experimental results
reveal that our model can effectively detect wheat ears in a complicated environment. For two partic-
ular segmentation objects in farming areas, namely water bodies and roads, we notably proposed a
morphological correction method, which effectively reduces the number of connected domains in the
segmentation results with different parameters of dilation and erosion operations. The segmentation
results of water bodies and roads were thereby improved. The proposed method achieved 0.903
and 13 for mIoU and continuity. This result reveals a remarkable improvement compared with the
comparison model, and the continuity has risen by 408%. These comparative results demonstrate
that the proposed method is eminent and robust enough to provide preliminary preparations and
viable strategies for managing farming area resources and detecting crops.

Keywords: farming area images segmentation; small-scale objects; morphology process; global
transformer; dilated convolution layer

1. Introduction

In the 21st century, the population is increasing, and the rapid growth of human society
has consumed numerous natural resources and seriously contaminated the environment.
In order to coordinate the relationship between the strikingly rapid development rate and
environmental resources of farming areas, and to continuously improve human living
standards and carry out sustainable development, we must monitor and protect the envi-
ronmental resources of farming areas at four levels: (1) Arable land—ensuring the quantity
and quality of arable land is of primary importance for maintaining sustainable agricultural
development [1]. (2) Grassland [2]—grassland is a renewable natural resource that covers
about 1/2 of the total global land area, and is the most fundamental means of production
and base for developing grassland livestock farming. (3) Woodland—woodland is an
integral component of forest resource assets, and the source of forest material production
and ecological services [3], whose area and value are mainly evaluated when conducting
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economic benefits assessment. (4) Water—human economic flourishment and agricultural
production, including hydroelectric power generation, irrigation, shipping, fisheries, also
rely on water. Each of these four levels can be monitored and protected with the assistance
of computer technology.

Thanks to the prosperous trends in computer technology in the remote sensing field,
enormous technical support has been provided for remote monitoring and protection of
farming areas in the field of computer vision. M. H. Elagouz et al. [4] used satellite data
and remote sensing techniques to detect and supervise the transformation of land use or
cover in the Egyptian Nile Delta. Willians Ribeiro Mendes et al. [5] intended to create an
intelligent fuzzy inference system underlying precise irrigation knowledge. They ultimately
established a system aiming to construct particular maps to manipulate the rotation speed
of the central pivot, and satellite images were employed. Karim Ennouri et al. [6] suggested
that due to the evolution of remote sensing technologies, satellite information has been
regarded as the primary data source to monitor high-dimension crop growth conditions.
In addition, the emergence of digital image processing methods have also made crop
condition observation and decision-making straightforward.

Among the above techniques, aerial image segmentation is of particular interest in the
agricultural research space. Previous scholars in this field have laid a solid foundation and
achieved remarkable breakthroughs. To perform a fig plant segmentation in top-view RGB
(red, green, blue) images, Jorge Fuentes-Pacheco et al. [7] proposed an encoder–decoder
convolutional neural network (CNN) that classifies each pixel as crop or non-crop. They
introduced the approach to the research institution and performed it on an aerial image
dataset. The new network achieved an average accuracy of 93.85%. A manual ground
truth segmentation with pixel precision was adopted to compare different algorithms.
Satoki Tsuichihara et al. [8] created a farm management system that used aerial images
of grass to detect weeds and precisely determine the quantity and location for applying
fertilizers. Broad-leaved weeds may be detected with an accuracy of roughly 80% using a
region segmentation method based on deep learning. Cow groups and locations can be
located with higher volumes of cow manure by comparing the GPS data from the overall
sensors. Maximilian Johenneken et al. [9] suggested an autonomous system to detect and
categorize the cause of damage to grasslands. The strategy entailed using CNN for the
semantic segmentation of grasslands. They constructed an RGB baseline and evaluated
multimodal architectures, resulting in a joint representation of elevation information and
spectrum. Experimental results demonstrate that incorporating late fusion with elevation
features enriches the network’s all-around performance over the RGB baselines. Weitao
Wang, Qin Ma et al. [10] validated the merits of combining multi-spectral (MS) and
synthetic aperture radar (SAR) data to enhance classification accuracy, particularly in
fog and cloud obscured areas. Additionally, they proposed an adaptive feature fusion
method based on an attention mechanism and experimented with two patch construction
methodologies. Experiments revealed that the suggested method with single-size patches
produced the most favorable outcomes—a 0.91 average f1-score and 93.12% accuracy, to be
exact. These outcomes suggested that by incorporating MS and SAR data with appropriate
feature fusion methods, full-time and all-weather remote sensing monitoring of grassland
resources is conceivable, effectively enhancing the self-adjusting capability of grasslands.

Even though the merits of progress and relatively high efficiency by current aerial im-
age segmentation strategies are noticeable, they tend to be restricted to ideal circumstances,
such as the desired premise with high-qualified aerial images. In other words, there are
still various obstacles in this field.

1. Multi-scale problem: one object in the image may occupy different frame sizes caused
by the distance between the camera and the shooting object. The problem of multiple
poses (or multiple perspectives) of the object is caused by the different shooting
angles. External lighting conditions and weather would cause poor image quality
and illuminance.
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2. Adjacent pixels are too similar to the image information in the receptive field (adja-
cent pixels are just on the boundary of the desired segmentation area), resulting in
oscillation and distortion of the edges of the corresponding segmentation area.

3. Pixel imbalance in different categories or instances in the same image is another
barrier. The difficulty of segmenting different objects is not the same.

Driven by these preliminary requirements and relevant research in this area, this paper
proposes a global farming area segmentation network using a morphological method to
perform segmentation of farming areas (such as arable land, grasslands, woodlands, etc.) in
aerial images, thereby resolving the aforementioned issues in the management of farming
area resources. The principal contributions in this paper are as follows:

1. The global-transformer structure was proposed to simplify the number of transformer
parameters while retaining its core ability to extract global features.

2. Applying dilated convolutional layers to the backbone further improves the segmen-
tation capability of small-scale objects.

3. A morphological method was used to reduce the number of connected domains for
segmenting water bodies and roads in farming areas, so the segmentation effect could
be as smooth and coherent as possible, with reduced noise.

Apart from these prominent contributions, limitations also exist in this study. (1) The
road category—which retains comparatively the worst segmentation effect in the dataset—
has a narrow shape in images, resulting in comprehensive model performance degradation.
(2) The optimized segmentation performance of road categories is still insufficient, even
though a separate model was selected. (3) Superior segmentation outcomes are based on
an exceptional recognition rate. These limitations are future difficulties that the authors of
this paper will strive to break through, and are the focus of subsequent research.

The subsequent sections of this paper are organized as follows: (1) The Related Work
section demonstrates the preliminary theories and knowledge in the relative research field.
(2) The Materials and Methods section describes the dataset and methods we employed,
including the data pre-processing. (3) Important metrics, functions, settings, and training
strategies are discussed in the Experiment section. (4) The Results and Discussion section
illustrates the experimental results and provides a comparison. (5) The Conclusions section
summarizes this study.

2. Related Work

Deep convolutional neural networks have been evolving, bringing continuous break-
throughs in image classification tasks. These models can integrate low, medium, or high-
level features and then perform end-to-end classification, and the level of features can be
enriched by applying deeper models. It is universally acknowledged that the effective-
ness of a neural network is strongly related to the number of layers. In general, taking
AlexNet [11,12] and VGG [13,14] as examples, the deeper the network, the better the results
and the more difficult it is to train.

In contrast, the network’s training cost grows drastically as the depth rises further,
while the results do not improve or even degrade. To resolve this issue, the deep residual
learning framework ResNet [15] was proposed, with deeper network layers, more straight-
forward optimization, and more excellent training results corresponding to the depth.

However, training a deep model is much more complicated than designing a deep
model, such as the gradient instability problems. Fortunately, these issues have been
tackled to some extent by regularization, allowing networks with tens of layers to converge
by stochastic gradient descent (SGD) [16] and backward propagation (BP) algorithms.

Another problem is that when deeper layers are able to converge, the accuracy of the
network starts to plunge substantially. This degradation is not related to overfitting and
brings about a more significant training error. This obstacle indicates that not all models
are easy to train, and that shallow models may work better than deeper models that simply
repeat the model’s layer.
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Based on these excellent backbones, multiple segmentation networks were presented.
We refer to the task with only one label (merely distinguishing categories) as semantic seg-
mentation [17]. With regard to distinguishing different individuals of the same category, we
refer to this as instance segmentation [18]. Since instance segmentation often only discrimi-
nates countable targets, the concept of panoptic segmentation was proposed by Alexander
Kirillov et al. [19] in 2019 to realize both instance segmentation and semantic segmentation.
Currently, the majority of the successful algorithms in image segmentation derive from the
same pioneer: the fully convolutional network (FCN) suggested by Long et al. [20]. The
FCN converts classification networks into a network structure for segmentation tasks and
demonstrates that the segmentation problem can be implemented end-to-end in network
training. For instance, the structure of UNet [21] is a U-shaped structure for encoding
(downsampling) and then decoding (upsampling), keeping the input and output sizes the
same. SegNet [22] is somewhat similar to UNet. It adopts an encoding–decoding structure.
Such a structure mainly utilizes deconvolution and up-pooling. The decoder achieves
nonlinear upsampling by pooling index, calculated by the maximum pooling operation of
the encoder corresponding to the decoder.

The parameters in the backbones and segmentation networks are adjusted and opti-
mized by the loss function. In regard to the different sorts of loss functions, softmax loss
(cross-entropy loss with softmax) is the most common loss function in deep learning, which
consists of three components: a fully connected layer, softmax function, and cross-entropy
loss. The pipeline of softmax loss is as follows: first, an encoder is used to learn the features
of the data, followed by the use of a fully connected layer, the softmax function, and finally
cross-entropy is used to calculate the loss. More loss functions were proposed for different
research areas and particular problems. For instance, the DIC loss function, an ensemble
similarity measure function, is popularly used in medical image segmentation. Moreover,
the BCE loss function creates a criterion that measures the binary cross entropy between
the target and the input probabilities. In this study, we incorporated the Lovasz softmax
loss and softmax loss and employed this combination.

3. Materials and Methods
3.1. Materials
3.1.1. Dataset Analysis

The dataset employed in this paper is from the Baidu Remote Sensing Image Parcel
Segmentation Contest. It is divided into two categories, a training set and an A/B test
set, where the training data set contains 140,000 images with a resolution of 256 × 256 in
jpg format. The A/B test set is derived from homogeneous images, where A possesses
10,000 images and B retains 20,000 images. The test set A is adopted for model evaluation
in the evaluation stage, and the ultimate model performance is subject to the results of test
set B.

The segmentation method used in this paper is also based on the 7:1:2 ratio commonly
used in computer vision training strategies. Specifically, nearly 70% of the data are used
for model training, 10% for evaluation, and 20% for testing to determine the final model
performance. This ratio is adopted for segmentation because the model requires a large
amount of data for training and a small amount of data for evaluation and testing.

As Table 1 depicts, there is a noticeable category imbalance in the training data, such as
buildings, roads, and grasslands, which account for 2.79%, 0.35%, and 1.96%, respectively.
In contrast, the single category of arable land accounts for more than 50%. It is also apparent
from the pre-training and validation of the baseline models that all models have meager
recognition rates in terms of the roads and grasslands categories. Therefore, resolving the
issue of data imbalance between categories significantly impacts the performance of the
subsequent models.
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Table 1. Dataset distribution details.

Class Label Percent

Buildings 0 2.79
Arable lands 1 50.87
Woodlands 2 17.87
Water body 3 17.74

Roads 4 0.35
grasslands 5 1.96

Others 6 7.38
Unlabeled 255 1.03

3.1.2. Data Preprocessing

With regard to the pre-processing, the training images were normalized; in terms of
data enhancement, image flipping and zoom enhancement approaches were applied in
accordance with the rotation invariance of remote sensing images, as displayed in Figure 1.

Figure 1. Examples of basic image preprocessing methods.

Specifically, image enhancement has the following four roles:

1. Avoid overfitting. When the dataset has some distinctive features, for example, when
the images in the dataset are basically taken from the same scene, using related
methods such as neural style transfer can avoid the model learning information that
is irrelevant to the target.

2. Improve the model’s robustness and reduce the sensitivity towards images. When the
training data are in a comparatively ideal state and encounter some exceptional cases,
such as occlusion, brightness, blur, etc., it is prone to misidentification. Hence, adding
noise and mask to the training data is essential to improve the model’s robustness.

3. Expand training data and thereby enhance the model’s generalizability.
4. Take the employed dataset in this paper as an example; the extreme imbalance between

positive and negative samples is prone to particular pattern recognition problems.
Some data enhancement methods for fewer samples have a favorable influence on
tackling the uneven proportion issue of samples.
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In this paper, after applying the above simple data enhancement method implemented
by an affine transformation, more complex data enhancement methods were also carried
out. The reason for this attempt is to further improve the model’s performance. In Section
sec: discussion_aug, we will explicitly compare the changes in model performance when
different data augmentation methods are applied.

1. Remote Erasing. This method is adapted from [23], similar to Cutout [24]. More
specifically, remote erasing utilizes random pixels to fill a random-sized mask area,
while Cutout uses fixed pixels to fill a square mask area. The remote erasing process
is illustrated in Algorithm 1.

Algorithm 1 Remote erasing process

1: Input: Image I; Erasing probability p;
2: Output: Erased image I∗;
3: Initialization: p1
4: if p1 < p then
5: Ie = Rand Area
6: I(Ie) = Rand Color
7: I∗ = I
8: return I∗

9: end

2. Puzzle Block. The core idea of this method lies in dividing the image into s × s lattices,
and each lattice is masked with a certain probability, say 0.5. Inevitably, a tiny target
will be wholly masked out.

3. Stockade Mask. This method co-opted GridMask [25] and FenceMask [26]. Compared
with the above two methods, the proposed stockade mask method is more fine-
grained, preventing the square and large-grained masks from irreversibly affecting
the small targets.

Figure 2 exhibits the visualization of these data enhancement methods mentioned above.

Figure 2. Data pre-processing methods. (A) is Remote Erasing; (B) is Puzzle Block; (C) is
Stockade Mask.

3.2. Methods
3.2.1. Overview

This paper proposed a transformer-based global feature extraction method to better
segment objects at different scales in farming areas aerial images, such as arable lands and
water bodies, and improve remote sensing images’ anti-interference capability. Compared
with other segmentation network models, our method possesses the following innovations:

1. The global-transformer branch is added to the backbone to extract the global features,
which is especially valuable for the segmentation of small-scale objects;
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2. In order to reduce the number of connected domains in the segmentation results, a
morphological correction module is added after the segmentation network to evaluate
the connectivity of objects such as water bodies and roads in farming area images.

The overall framework of the model is shown in Figure 3.

Figure 3. Illustration of our model.

3.2.2. Global Transformer

The transformer has been modified to simplify the structure and reduce the number of
network parameters. Meanwhile, it still has the potential to provide effective global feature
extraction capability [27], which provides an idea of how to adapt the transformer network
to small data size. Nevertheless, there are still some drawbacks in this study, such as: in
simplifying the structure of the transformer, the number of parameters is declined, but at
the same time, the global feature extraction ability of this structure is also decreased; in
Gansformer [27], the transformer is still used for processing ultra-high resolution images,
but how to apply it to small-scale images is still unknown.

Based on the above analysis, this paper further simplified the network structure
based on the parallel structure of the transformer. As Figure 3 depicts, in order to offset
the massive number of parameters, the considerable training set corresponding to these
parameters, and the exponential increase in training time, we retained only the encoder
and decoder employed by the transformer to extract global features. This change would
inevitably reduce feature extraction capability, so this paper applied the dilated convolution
to the backbone. The primary purpose is to provide global feature extraction capability in
the transformer branch and obtain a larger scale of the receptive field in the backbone with
fewer parameters, i.e., global feature extraction capability.

3.2.3. Dilated Pyramid Backbone

As can be seen in Figure 3, the dilated pyramid backbone can be divided into two
parts: dense porous spatial pyramidal pooling with dense atrous spatial pyramid pooling
and spatial convolutional neural network. The former fuses the input and output of the
small sampling rate cavity convolution layer. It then inputs the fused features into the
subsequent cavity convolution layer with a large sampling rate to obtain dense multi-scale
contextual information. The latter is based on the former, and each output is spatially
convolved in different directions to capture more dense multi-scale contextual information.
Therefore, the proposed semantic segmentation method further improves the accuracy of
the segmentation results by capturing richer contextual information.

The dilated pyramid backbone can effectively increase the receptive field of the convo-
lution kernel, which is calculated as Equation (1) shows, where R denotes the size of the
receptive field, k denotes the size of the convolution kernel, and r denotes the size of the
sampling rate.
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R = (r − 1)× (k − 1) + k (1)

Stacking two dilated convolution layers can produce a larger range of receptive fields,
assuming that the receptive field sizes of the two-cavity convolution layers are R1 and R2,
respectively. The size of the receptive field Rnew is then produced after stacking is shown in
Equation (2).

Rnew = R1 + R2 − 1 (2)

The dilated pyramid backbone includes more valid pixel information in the compu-
tation of the feature map than the ASPP model. That is because the ASPP uses a large
sampling rate of the atrous convolution to convolve the feature map with very sparse pixels,
compared to the standard convolution with the same receptive field.

Figure 4 shows the effect of different structures of the dilated convolution layer on
pixel sampling. The left panel shows the ASPP structure with a single dilated convolution
layer of sampling pixels of a one-dimensional signal, with a convolution kernel size of three
and a sampling rate of six. Moreover, the sampling rates are three and six, respectively.
The figure on the right shows the pixel sampling of a one-dimensional signal in the dilated
pyramid structure using a stack of two dilated convolution layers, both with a convolution
kernel size of three and sampling rates of three and six, respectively.

Figure 4. The effect of dilated convolution layers with different structures on pixel sampling.

Table 2 shows the receptive field size for different combinations of sampling rates.

Table 2. Different combinations of sampling rates.

Sampling Rates Size of Receptive Field

3 7
6 13
12 25
18 37
6, 12 37
3, 6, 12 43
3, 12, 18 67
3, 6, 12, 18 79

3.2.4. Morphology Module

This paper improved the connectivity to improve the model’s segmentation effect for
narrow objects like water bodies and roads. We introduced the morphology module after
the segmentation network. This module is mainly responsible for two processing tasks:
one is to perform the morphology closure operation, dilation, and then erosion, and set
different dilation and erosion coefficients, respectively, to obtain the connectivity effect; on
the other hand, it removes the tiny area noise.

Figure 5A illustrates that the initial segmentation result of roads is unsatisfactory, and
a large number of unconnected regions and pixel blocks are generated.
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Figure 5. Visualization of the effect of reducing the number of connected domains. (A) Initial seg-
mentation result of roads; (B) Optimized segmentation result after applying morphology processes.

By expanding these discrete regions to form a completed connected domain and then
eroding them, both the discrete segmented regions are connected, and the segmentation re-
sults are restored by erosion. Figure 6A,B demonstrate the visualization of the morphology
module dilation and erosion of the original segmentation result.

Figure 6. Process of morphology module reduces the number of connected domains and re-
moves noise. (A) Large noise in the segmentation; (B) Small noise in the segmentation.

Figure 6B, meanwhile, reflects that the small noise in the segmentation result can be
removed by adjusting the coefficient of dilation and erosion, more specifically, rendering
the erosion coefficient more considerable than the dilation coefficient. The slight noise at the
markers is removed by a slight dilation and a more effective erosion operation. Figure 5B
indicates the optimization effect of applying the above principle to the segmentation results
on this dataset.
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4. Experiment
4.1. Evaluation Metrics

The semantic segmentation task is essentially a classification task, where the object of
classification is each pixel in the input image. Therefore, when evaluating the performance
of a semantic segmentation task, the relevant performance metric of the classification task
is frequently utilized. More specifically, depending on the combination of the actual and
predicted categories of the classification objects, four classification results will be obtained.
Each of these four combinations yields TP (True Positive), when the predicted result is
the same as the true label, and others, FP (False Positive), FN (False Negative) and TN
(True Negative), as shown in Table 3. This table is only used to indicate how the above four
parameters are defined, not to indicate the specific values of these parameters.

Table 3. Confusion matrix of classification indicators.

Ground Truth

Positive Negative

Prediction Positive TP FP
Negative FN TN

where Positive represents the positive sample, while Negative represents the negative
sample. TP denotes that the actual category of the sample is positive, and the predicted
category is also positive, alleged “True Positive”. FP denotes that the actual category
of the sample is negative, whereas the predicted category is positive, entitled “False
Positive”. FN indicates that the actual category of the sample is positive, but the predicted
category is negative, alleged “False Negative”. TN means that the actual category of the
sample is negative; meanwhile, the predicted category is also negative, which is called
“True Negative”.

On this basis, mIoU is the most commonly used performance metric in semantic
segmentation to measure the degree of overlap between the predicted and actual regions,
as portrayed in Figure 7.

Figure 7. Calculation process of IoU metric.

Equation (3) provides the explicit computation process:

mIoU =
1

m + 1

m

∑
i=0

pii

∑m
j=0 pij − pii

(3)

Apart from calculating mIoU, we undertook the evaluation in terms of continuity
metrics of the region based on the combination of characteristics of remote sensing tasks
and evaluation metrics of the tournament where the dataset originated from. This metric is
calculated as shown in Equation (4).
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Continuity =
1
p

p

∑
i=1

1
c

c

∑
j=1

1
m

m

∑
k=1

1
n

(4)

where p represents the number of valid images, c denotes the number of valid categories in
the ith graph, m denotes the number of connected domains in the jth category of ground
truth in the ith graph, and n denotes the kth connected domain in the jth category of the ith
graph, divided into n parts.

4.2. Rebalance the Class-Imbalance

The “hard balance” and “soft balance” are two strategies to cope with the category
imbalance problem. The intuitive manifestation of category imbalance is the conspicuous
gap between the amount of positive and negative samples. Automatically, the solution is to
diminish the quantity difference, including expanding the positive samples and lowering
the number of negative samples. Solving category imbalance by adjusting the number
of categories is the idea of “hard balance”. Generally, it is always challenging to obtain
additional new samples, so “hard balance” is performed by growing the number of positive
samples (oversampling) or decreasing the number of negative samples (undersampling).
The rudimentary effect of category imbalance is that it causes the model to focus too
much on counterexamples during training, resulting in a model that is biased against
counterexamples. Therefore, “soft balance” (also called rebalance in the category) ensures
that the model focuses less on counterexamples by assigning smaller weights to the loss
values of counterexamples; meanwhile, giving larger weights to the loss values of positive
samples. Since the samples for semantic segmentation are pixels, it is hard to undertake
“oversampling” and “undersampling” of the pixels in the image, so this paper chooses the
“rebalance” method to address the imbalance issue.

The weights used for “rebalance” are usually negatively related to the actual number
of categories. In other words, the larger the number of categories, the smaller the weights;
meanwhile, the smaller the number of categories, the larger the weights. A typical median
rebalance weight is calculated by taking the median nmedian of the sample size of all cate-
gories as the numerator, and the actual sample size of each category ni as the denominator,
as shown in Equation (5).

wi =
nmedian

ni
, i = 1, 2, · · · , m (5)

i represents the category, and m indicates the total number of categories. Equation (5) is
brought into the loss function equation to obtain the weighted and rebalanced loss function,
as shown in Equation (6).

Loss = − 1
N

N

∑
i=1

m

∑
c=1

wi ˆyi,cln(yi,c) (6)

The model performance comparison before and after rebalancing is shown in Table 4,
and the experimental results show that this method can effectively improve the model
performance on this dataset.

Table 4. Comparison results of rebalancing method.

Method Precision Recall mIoU Continuity

baseline 0.870 0.859 0.864 13
rebalanced 0.917 0.883 0.901 13

4.3. Experiment Settings

This subsection presents the relevant parameter settings for the final training underly-
ing the previous content. After analyzing the above, due to the exceptionally unbalanced
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distribution of categories in the dataset, this paper eventually adopted median rebalanced
weights for processing, and the weights are presented in Table 5.

Table 5. Corresponding weights of each class after rebalance.

Class Weight

Buildings 0.70
Arable lands 0.04
Woodlands 0.11
Water body 0.11
Roads 5.6
Grasslands 1
Others 0.26
Unlabeled 1.90

The platform configuration for model training and prediction in this paper is displayed
in Table 6.

Table 6. Platform configuration for model training and prediction.

Item Description
Optimizer Adam

Initial Learning Rate 0.01

OS Ubuntu 20.04.4 LTS
CPU Intel i9-10900KF 3.7 GHz
GPU RTX 3080 10 GB

Memory 32 GB

4.4. Training Strategies

Regarding the selection of loss functions, due to the existence of category imbalance,
this study tested the softmax loss, weighted softmax loss, and Lovasz softmax loss. Each
loss function has its own merits and drawbacks, which leads to the use of a single loss
function for model training that may fail to help the model achieve acceptable performance.
Therefore, this paper incorporated Lovasz softmax loss and softmax loss and applied this
combined loss function.

For each method model that was compared, we trained and tested on the dataset to
find the most suitable method for the farming area. Figures 8 and 9 display the trend in
accuracy and loss during the training process.

Figure 8. Training curves of accuracy against number of epochs (red: training set; blue: validation set).

The model parameters used in this paper are selected as the optimal parameters when
the loss function converges on the training set in Figure 9.
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Figure 9. Training curves of loss against number of epochs (yellow: training set; green: validation set).

5. Results
5.1. Validation Results

In this paper, we first tested the performance of an unoptimized model simply relying
on the existing backbone and segmentation network. Afterward, we tested the model’s
performance with the same training set and strategy. We found that after the global-
transformer module assisted the backbone in extracting the global features, the model’s
mIoU improved significantly from 0.827 to 0.901. However, the continuity of the model
did not improve at all. This paper thereby added the morph-module based on image
morphology to the above model. The final continuity metric was dropped to 13, which was
only 40.6% of the baseline, and the optimization effect was pronounced. Table 7 exhibits
the performance of the proposed model on the validation set.

Table 7. Segmentation results of our model.

Model Precision Recall mIoU Continuity

UNet 0.882 0.807 0.812 29
PSPNet 0.824 0.762 0.787 53
HRNet 0.801 0.759 0.776 49

DeepLab 0.882 0.813 0.839 26

ours − baseline 0.842 0.825 0.827 32
baseline + global-transformer 0.917 0.886 0.903 29

baseline + global-transformer + morph-module 0.917 0.883 0.901 13

In this paper, it is found from comparing other networks with ours that the perfor-
mance of the proposed baseline model based on the attention mechanism is still inferior to
that of DeepLab. This difference is particularly pronounced in the continuity metric, 26 for
DeepLab, compared to 32 for the baseline model. The reason mainly lies in the fact that
the attention mechanism was merely applied to the feature extraction stage. After adding
the graphical morphology processing module to the segmentation network, the continuity
metric of this model was significantly improved from 32 to 13, which was significantly
superior to all the comparison models. In terms of mIoU, DeepLab and UNet are ahead of
PSPNet and HRNet with 0.839 and 0.812, respectively. Nevertheless, they are still lagging
behind the final score of 0.907 for this model.

After discussing the above, we can conclude that our model has distinct advantages in
both mIoU and continuity. This is partly due to the optimization of the feature extraction
module of the segmentation network, and partially due to the separate optimization of
water bodies, roads, and other categories that are more complicated to segment and prone
to multi-connected domains after segmentation. Figure 10 illustrates the strength of this
model compared to the comparative model in categories with difficult segmentation and
unbalanced training.
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Figure 10. Visualization of segmentation results. (A) our model; (B) UNet; (C) PSPNet; (D) HRNet;
(E) DeepLab.

From the figure provided, the segmentation results of this model, after the enhance-
ment of the morphology module, significantly decline in the number of connected domains
of water bodies compared with other models. The segmentation effect of this model can
still improve the connectivity of the segmented area compared with other models in the
category of roads, where the samples are incredibly unbalanced.

Concerning the segmentation effect, this model exceeds other comparative models
in terms of mIoU and continuity for the weakly typed category, i.e., the category with
unbalanced samples. That is primarily due to the following unique data treatments in
this category.

5.2. Testing of the Model on Other Remote Sensing Datasets

The aerial images dataset released by Northwestern Polytechnical University in 2016
was employed to validate our model’s performance on other remote sensing datasets. This
dataset is an open-source level 10 geospatial remote sensing dataset, containing 800 images
in total—650 object images and 150 background images, with ten categories of objects:
aircraft, vehicles, ships, ports, baseball fields, athletic fields, bridges, basketball courts,
tennis fields, and oil tanks [28]. Since this dataset is used for the object detection task, we
added the detection network after the backbone of our model, retrained it, and conducted
experiments. Experimental results are exhibited in Table 8.

Table 8. Validation of the applicability of the model in this paper on other remote sensing datasets.

Model Input Size Precision Recall mAP FPS

SSD 300 × 300 83.96 80.23 87.64 33.7
512 × 512 86.43 86.26 91.27 32.3

FSSD 300 × 300 89.76 94.37 94.85 32.9
512 × 512 93.75 96.89 96.31 32.2

RefineDet 300 × 300 94.34 98.28 96.81 27.8
512 × 512 94.91 98.49 96.97 25.3

EfficientDet L2 300 × 300 92.10 95.33 94.98 20.8
512 × 512 93.24 95.98 95.14 20.2

Faster RCNN 300 × 300 82.87 78.32 90.13 25.0
512 × 512 85.29 76.91 92.20 46.7

YOLO v3 608 × 608 94.92 98.43 96.93 52.1
YOLO v4 608 × 608 94.38 98.51 97.42 57.5
YOLO v5 608 × 608 95.98 98.57 97.51 60.3

ours 300 × 300 95.87 97.13 96.89 21.3
512 × 512 95.91 97.89 97.62 20.4
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5.3. Model Validation for Small-Scale Objects Detection

Since the main innovation of this paper is to improve the feature extraction ability of
the backbone, we applied the backbone improved by this method to the object detection
network. Meanwhile, the backbone was tested on corn and wheat ears—typical small-
scale crops. The corn and wheat ears images were collected from the corn-101 variety
provided by the DABEINONG Group, the scientific plantation of the West Campus of
China Agricultural University, and the internet. The detection results are presented in
Table 9.

Table 9. Validation results of feature extraction capability for small-scale objects.

Task Category—Dataset Model Accuracy mAP

classification—corn

SVM 83.18% -
VGGNet 19 93.92% -
ResNet 50 95.08% -
DenseNet 161 96.18% -
ours 96.32% -

object detection—wheat head

YOLO v3 - 0.651
YOLO v5 - 0.696
SSD - 0.583
ours - 0.699

To further demonstrate the detection results of the model, Figure 11 displays the
representative detection results.

Figure 11. Validation results of our model for small-scale object feature extraction capability on wheat
ears dataset. Red boxes: the detected wheat ears.

Figure 11 illustrates that our model can effectively detect wheat ears in a natural scene
with a complex environment. Moreover, the model still has high accuracy when the wheat
ears are in extremely high density, reflecting our model’s strong feature extraction ability.

6. Discussion
6.1. Validation of Backbone

In addition to the dilated convolution and transformer structures used in this paper,
other structures are used in different CNN models to extract features, such as the block idea
in ResNet and the attention module. Therefore, this section will show the comparison exper-
iments after replacing the backbone of the model with these two modules’ representative
networks: SENet and ResNet.

Table 10 indicates that the backbone using the combination of dilated convolution and
transformer has a superior ability to extract features compared to SENet and ResNet. To be
more specific, it has higher Precision and Recall scores. Hence, it can be concluded that the
improved method proposed in this paper has better feature extraction capability.
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Table 10. Comparison results of backbone feature extraction ability.

Backbone Precision Recall mIoU Continuity

ResNet 50 0.869 0.858 0.864 14
ResNet 152 0.874 0.855 0.872 9

SENet 0.903 0.865 0.881 12
ours 0.917 0.883 0.901 13

6.2. Weakly Class Processing

As demonstrated in Section 3.1.1, the accuracy of the model is shallow for identifying
roads and grasslands categories, resulting in a comprehensively deficient performance of
the model. Therefore, in this paper, some additional work was done to train the model for
these two categories:

1. For the road category, we first extracted a binary dataset from the original training
set and then performed a separate binary training; here, we operated a combination
of U-Net+Dice loss training to obtain the predicted road binary results. Eventually,
a straightforward judgment condition, such as the matching degree of road class on
two labels, was applied to override the overall prediction outcome.

2. The prediction results revealed that the grassland category is prone to be mispredicted
as arable lands. Therefore, the separate training for grassland was conducted by
extracting the two categories of arable lands and grasslands for triple classification.
Afterward, the same network training as that of the main model was applied. Eventu-
ally, grassland coverage in the total prediction results only occurred between the two
grassland and arable land categories.

6.3. Connectivity Metrics Optimization

The connectivity metrics are particularly prominent only for the water body and road
categories, and there are two principal optimization strategies:

1. Accuracy: To start with, we must guarantee a high classification accuracy for these two
categories. The accuracy of the water body category is high enough, but the accuracy
of the road category is still particularly low. Therefore, the recognition accuracy of the
road category needs to be improved.

2. Connectivity: The consideration of connectivity can start from two aspects, one
is from the model, selecting or improving the model to improve the connectivity
integrity of the prediction results, and the other is the post-processing step to optimize
the connectivity.

In this paper, we co-opted image morphology to improve the connectivity. The
same treatment was carried out for both water bodies and roads. Firstly, the morphology
was closed, and the dilation and erosion coefficients were set differently to improve the
connectivity effect. Subsequently, the slight area noise was eliminated.

As illustrated in Figure 12, the road category is shown in blue, the left one is the
unprocessed image, and the middle one is the morphological processed image.

6.4. Model Enhancement
6.4.1. Single Model Enhancement

Prediction enhancements for a single model typically include multi-scale prediction
and flipping prediction. In order to control the prediction time, this paper only performed
the prediction enhancement by flipping left and right, and flipping up and down once,
i.e., flipping before prediction and then flipping back after getting the labels. Single
model enhancement mainly improves prediction stability, so performing it too many times
is unnecessary.
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Figure 12. Comparison of segmentation image continuity. (A) is the segmented image without
morphology module processing; (B) is the processed image; (C) is the ground truth.

6.4.2. Model Combination Enhancement

Model combination enhancement is a model integration method, and the commonly
used model integration methods include bagging, boosting, and stacking. This paper
ultimately employed the hard voting method for multi-model prediction results, mainly
aiming for reasoning time optimization. Multi-model enhancement mainly relies on the
independence between models, so the lower the correlation between models, the better the
integration effect.

6.5. Validation of Data Enhancement Methods

In addition to the fundamental data enhancement methods, such as flipping, folding,
mirroring, etc., this paper also used advanced enhancement methods requiring a certain
amount of computations. These methods invoke more computations, so this section
discusses whether it is reasonable to use these enhancement methods. We have done many
ablation experiments, and the results are given in Table 11.

Table 11. Ablation experiment result of different pre-processing methods.

Remote Erasing Puzzle Block Stockade Mask Precision Recall mIoU Continuity

X X X 0.917 0.883 0.901 13
X 0.901 0.893 0.897 15

X 0.899 0.875 0.882 13
X 0.913 0.883 0.904 14

0.862 0.859 0.860 17

Table 11 indicates that the model’s performance decreases significantly when only
utilizing the basic augmentation method, compared to the previous experimental results
in this paper. Moreover, all of these enhancement methods have improved the model’s
performance. Stockade Mask has the most significant effect on the model, improving by
4.9%, 3.4%, 3.7%, and 2.0% in precision, recall, mIoU, and continuity, respectively.

6.6. Limitation

The worst segmentation effect in this dataset is the road category, resulting in the
degradation of the overall model performance. To be more precise, this category has the
traits of slimness and length in the image. Although this paper has selected a separate
model for the road category for training, the outcome is unsatisfactory. To optimize the
segmentation effect of this category, the focus is on improving its connectivity metrics.
Although the segmentation effect has been improved by morphological processing, the
prerequisite—a favorable recognition rate—is required. Achieving superior segmentation
results in the case of a low recognition rate is difficult. Therefore, to further improve the
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segmentation of these images, optimizations of the recognition rate should be considered
in future work.

7. Conclusions

Farming areas have substantial socio-economic value in terms of farmer livelihoods,
societal prosperity, and agricultural research. Detecting crops (such as wheat and corn) in
farming areas permits the supervision of farming area production, and is significant for man-
aging agricultural resources. Motivated by this practical significance, this paper proposed
a global-transformer segmentation network based on the morphological correction method.
The suggested model tackled the drawbacks of current image segmentation methods—their
homogeneity and insufficiency in segmenting multiple objects in farming areas, as well
as small-scale objects such as corn and wheat. Moreover, unlike traditional models, our
model incorporated the dilated convolution technique and the transformer technique in
the backbone and the branches, respectively. Because this innovation improved the feature
extraction capability of the model’s backbone, the backbone enhanced by this method was
applied to an object detection network on a corn and wheat ear dataset. Experimentally,
our model can satisfactorily detect wheat ears in a complicated environment.

The proposed method can improve the global feature extraction ability of the model
while simplifying the model structure and reducing the number of parameters, which can
satisfactorily enhance the segmentation effect of small-scale objects. The morphological
correction method can process the initial segmentation results, effectively minimizing the
number of connected domains of narrow objects such as water bodies and roads, making
the segmentation results smooth and coherent. The method finally reached 0.903 in mIoU
and 13 for continuity, implying that the proposed scheme is as effective as expected, and
is superior to other comparison models. More precisely, the continuity has risen by 408%.
These outcomes reveal that the proposed method is superior and validated on diverse
datasets, demonstrating its fine generalizability. This method can provide rudimentary
preparations and viable strategies for detecting crops and managing farming area resources.

As described in Section 5, the effect of morphological correction is based on the
segmentation effect. Therefore, further enhancing the segmentation accuracy of remote
sensing images, especially in small-scale objects, will be the future work and subsequent
research interest of the authors in this paper.
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