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Abstract: Simultaneous localization and mapping (SLAM) is essential for intelligent robots operating
in unknown environments. However, existing algorithms are typically developed for specific types
of solid-state LiDARs, leading to weak feature representation abilities for new sensors. Moreover,
LiDAR-based SLAM methods are limited by distortions caused by LiDAR ego motion. To address the
above issues, this paper presents a versatile and velocity-aware LiDAR-based odometry and mapping
(VLOM) system. A spherical projection-based feature extraction module is utilized to process the raw
point cloud generated by various LiDARs, hence avoiding the time-consuming adaptation of various
irregular scan patterns. The extracted features are grouped into higher-level clusters to filter out
smaller objects and reduce false matching during feature association. Furthermore, bundle adjustment
is adopted to jointly estimate the poses and velocities for multiple scans, effectively improving the
velocity estimation accuracy and compensating for point cloud distortions. Experiments on publicly
available datasets demonstrate the superiority of VLOM over other state-of-the-art LiDAR-based
SLAM systems in terms of accuracy and robustness. Additionally, the satisfactory performance of
VLOM on RS-LiDAR-M1, a newly released solid-state LiDAR, shows its applicability to a wide range
of LiDARs.

Keywords: solid-state LiDAR; SLAM; velocity; localization; bundle adjustment

1. Introduction

Simultaneous localization and mapping (SLAM) is important for a wide range of
robotic and industrial applications. SLAM is critical for various artificial intelligence
applications, such as autonomous driving, AR/VR, and UAVs. SLAM technology is
typically implemented by vision sensors [1,2], LiDAR [3], or both [4]. However, vision
sensors have issues with scale ambiguity and illumination variations, and they require
an environment with a rich texture, resulting in unstable performance in many cases. In
contrast, LiDAR is not affected by the above issues and can provide consistently accurate
measurements across a wide range of situations since it is an active sensor. Therefore, the
LiDAR-based SLAM approach has become increasingly popular in recent years.

The core of a LiDAR-based SLAM system is scan matching. The goal of scan matching
is to determine the relative transformation between two 3D point clouds. The iterative
closest point (ICP) algorithm [5] is likely the most well-known scan matching method. The
ICP algorithm determines the relative transformation by iteratively minimizing the point-to-
point distance between the source and the target point clouds. However, the ICP approach
works best when there is a unique one-to-one correspondence between the source and the
target point clouds, which is rarely the case for real-world datasets. As a result, hundreds
of variants have been studied [6]. In [7], the point-to-plane distance was used as an error
metric instead of the point-to-point distance, which only assumes that the point clouds to be
aligned are sampled from the same surface. This method generally provides a better result
than the traditional point-to-point ICP approach. However, it is computationally intensive
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to determine the intersection point on the corresponding surface. Thus, a faster version
of point-to-plane ICP was introduced [8], which used a point-to-projection technique to
implement a faster point search. In [9], a generalized ICP (GICP) framework that considers
both point-to-point and point-to-plane distances was proposed. In addition, in [10], a scan-
to-model framework known as IMLS-SLAM was proposed, which includes an environment
model with previously localized LiDAR sweeps and a developed implicit moving least
squares (IMLS) surface representation. IMLS-SLAM achieved impressive results on the
KITTI vision benchmark [11]. However, IMLS-SLAM cannot operate in real time due to the
considerable overhead of the plane normal computations. Since real-time performance is
crucial for most ICP approaches, many ICP-based works [12–14] have employed parallel
computations to improve system efficiency. In these approaches, explicit correspondences
need to be established several times during the iterative process, which takes a considerable
amount of time. In [15], the normal distributions transform (NDT), which does not require
that explicit correspondences be found, was introduced and used for scan matching.

However, ICP variants do not attempt to remove outliers and dynamic objects, which
are common in practice, reducing the accuracy. Therefore, feature-based methods are often
used. In [16], a feature-based SLAM algorithm with low deviation and computational
complexity known as LOAM was developed. In this algorithm, edge and planar features
are extracted from raw point clouds according to the smoothness of the points in different
laser beams. During feature extraction, a large number of redundant points are removed,
which greatly improves the computational efficiency. The optimization process of LOAM is
divided into two modules. On the front end, a scan-to-scan optimization process provides
a high-frequency odometry output. On the back end, a scan-to-map optimization process
is used to improve global consistency. The LOAM framework is effective and accurate, and
it has served as the foundation for various works. For example, ref. Shan and Englot [17]
proposed a ground-optimized version of LOAM that treats the ground as a separate
feature [18]. They also proposed a two-stage pose optimization method to accelerate the
computational process and better use the ground segmentation results. Furthermore, in [19],
a truncated least squares method was used to reduce the impact of noise and mismatches.

Traditional methods use only low-level geometric features. Recently, deep learning [20]
methods have been introduced, allowing outliers to be rejected and dynamic objects
to be filtered out. Deep learning is a powerful tool that can be used to extract more
information from point clouds, resulting in more useful optimization features. In [21],
the LOAM pipeline was extended by integrating semantic information into the original
framework, effectively removing dynamic objects and greatly improving the accuracy of the
system. In [22], the Surfel-based mapping (SuMa) [23] pipeline was extended by integrating
semantic segmentation information using the FCN RangeNet++ [24]. Similar methods are
presented in [25]. However, deep learning methods usually require a significant amount of
computational resources, limiting their applicability.

Most LOAM variants use an incremental mapping method to compute the relative
pose of the current scan, which inevitably leads to drift. Inspired by the vision-based SLAM
method, π-LOAM [26] uses an indoor SLAM framework based on plane adjustment (PA)
technology to jointly optimize planes and keyframe poses. In addition, BALM [27] inte-
grates LiDAR bundle adjustment into the LOAM framework as a back-end for optimizing
all scan poses simultaneously. Compared to π-LOAM, BALM adds edge features to the
global optimization process, increasing the stability of the algorithm and allowing it to be
used outdoors.

Motion distortion is a major issue in LiDAR-based SLAM approaches. LiDAR-based
SLAM algorithms usually assume that all points in a scan are acquired at the same time, so
they have the same position during the acquisition. However, in reality, each LiDAR point is
acquired individually. Sampling is done while the LiDAR is moving, which results in each
point being sampled from a different position. This problem can be addressed by utilizing
point clouds undistorted by linear interpolation between the poses of adjacent scans [28].
Similar approaches have been used in LOAM and its variants [16,17,19]. However, since
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the poses are estimated based on the raw point clouds, which are distorted, the result
may not be sufficiently accurate. The process can be repeated several times to address this
issue, which drastically increases the computational cost [29]. Several recent studies have
directly optimized the in-scan motion to address this problem. In [29], the computationally
inefficient iterative method for distortion compensation was replaced by a noniterative two-
step method for distortion compensation. In [30], a first-order Taylor expansion was used to
approximate the linear interpolation process and iteratively solve the optimization problem.
However, this approach compares the current scan to previous scans; thus, it is insufficient,
since it is affected by the estimated motion and may lead to a suboptimal solution.

The development of hardware, which has introduced a new type of LiDAR, solid-
state LiDARs, to the consumer market, has introduced another issue. Compared with
conventional LiDARs based on mechanical rotors, solid-state LiDARs are less expensive
and have significant advantages in terms of weight and performance [31]. Although
solid-state LiDARs have several advantages, their novel properties result in challenges
for existing LiDAR-based SLAM methods. (1) Solid-state LiDARs typically have a small
field of view (FoV) and can capture only a portion of the scene’s structure, reducing the
number of features that can be extracted. (2) Solid-state LiDARs often have irregular scan
patterns, and the scan line itself can be highly curved. Furthermore, the scan patterns
of various solid-state LiDARs differ; thus, it is difficult to develop an algorithm that is
suitable for all cases. In feature extraction, the neighboring points of each point are needed
to determine the type of feature point. However, searching 3D point clouds directly is very
time consuming, so researchers usually find the nearest neighbors according to the scan line
structure of a LiDAR. As shown in Figure 1a,b, mechanical LiDARs (Velodyne HDL-32E,
Ouster OS1-64) have multiple laser–receiver pairs arranged in a vertical array, with all pairs
rotating to form a collection of parallel rings. This design greatly simplifies the feature
extraction process [32]. However, the scan patterns of solid-state LiDARs such as Livox
Horizon and RS-LiDAR-M1 differ, as shown in Figure 1c,d. Therefore, it is not trivial to
adapt algorithms developed for rotor-based mechanical LiDARs to solid-state LiDARs.
Several new algorithms have been proposed to address these issues [32–34]. However,
these methods can only be applied to specific types of LiDARs. Thus, this is still an issue
for newly developed LiDARs with different scan patterns.

Thus, in this work, a new LiDAR-based SLAM framework based on a novel feature
extraction method is proposed to solve these two problems. (1) To process various LiDAR
inputs, we convert them into spherical images by spherical projection. Based on the natural
neighborhood relationship between the points on the spherical image, we develop a new
feature extraction module. The new module uses point-to-plane distance and point-to-
line distance to accurately determine feature points. (2) For motion distortion, we model
the motion distortion as a constant motion process and then compute the pose of each
point based on the acquisition time of each point; thus, our model is more realistic, which
should have a positive impact on performance. These poses are jointly optimized in the
optimization phase. Our method can be applied with a novel sensor, RS-LiDAR-M1, and
has the potential to be used with newer solid-state LiDARs in the future, allowing this
technique to be rapidly applied to new products. The main contributions of this work are
as follows:

1. The point cloud generated by the various LiDARs is represented as a spherical image
by spherical projection for further processing. In contrast to most scan line-based
feature extraction methods, our method classifies feature points based on a more
precise point-to-plane or point-to-line distance. In addition, the features are grouped
into higher-level clusters to prevent inaccurate data associations.

2. We estimate the velocities while estimating the poses during the odometry stage. With
a small bundle adjustment, we can perform a 12-degree-of-freedom estimation for
multiple scans simultaneously, allowing us to directly obtain accurate velocities.
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3. We present an efficient method for computing the covariance matrix of the feature
points, which significantly reduces the computational complexity of bundle adjust-
ment during the mapping stage.

4. We test the performance of our algorithm on four types of LiDARs, including two
rotor-based mechanical LiDARs and two solid-state LiDARs. The experimental results
show that the proposed method can be applied successfully to these LiDARs and that
it achieves higher precision than existing state-of-the-art SLAM methods.

(a) Velodyne HDL-32E (b) Ouster OS1-64

(c) Livox Horizon (d) RS-LiDAR-M1

Figure 1. In feature extraction, the scan line structure is used to determine the neighborhood
relationship between points. In the above figure, different scan lines are represented by different
colors. Different scan lines can be parallel to one another (a,b), stacked vertically for irregular motion
(c), or responsible for different areas (d). Due to the variety of structures, it is difficult to uniformly
identify neighbors across scan lines. For example, a point on one scan line in Velodyne HDL-32E may
be a neighbor of a point with similar timestamps on another scan line; however, this is not the case
in RS-LiDAR-M1.

The remainder of this paper is organized as follows. Section 2 describes the proposed
method in detail, including the feature extraction, odometry, and mapping processes.
Section 3 presents the experiments on the different datasets. Section 4 discusses the results.
Finally, Section 5 presents the conclusions and directions for future work.

2. Method
2.1. System Overview

Figure 2 depicts the workflow of the proposed SLAM system. The system processes
raw point clouds from a 3D LiDAR and outputs scan poses and feature maps. The system
includes three main components: a versatile feature extraction module, a LiDAR odometry
module, and a LiDAR mapping module. The feature extraction module projects the point
cloud onto a spherical image and extracts planar and edge features using a patch-based
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method. A graph-based approach [35] is used to group feature points into meaningful
clusters to filter out smaller objects. Then, the remaining feature points are used in the
LiDAR odometry module to build a feature map and estimate the pose and velocity. Finally,
after the keyframe decision step, the feature point is undistorted based on the pose and
velocity estimated during the odometry stage. These undistorted features and estimated
poses are fed into the LiDAR mapping module, which uses bundle adjustment with a
larger window to produce the final result. In addition, the odometry and mapping modules
use the same logic for map maintenance, with only a few parameters differing. Moreover,
we developed a novel design in which the feature extraction and odometry modules are
implemented in the same thread and work iteratively; thus, we can use the odometry
estimation results to improve the feature extraction accuracy. This is particularly useful
for scenarios in which a car is traveling at a high speed. The details of each module are
presented in the following sections.

Motion Compensat ion

Feature Select ion

Keyframe Selection

Marginalization

 Map Maintenance

Projection

Feature Grouping

Velocity-Aware

Bundle Adjustment

Large-Scale

Bundle AdjustmentMap & Poses

Raw Scan

 Map Maintenance

Versatile Feature Extraction （Section 2.2）

LiDAR Odometry (Section 2.3)

LiDAR Mapping (Section 2.4)

Figure 2. Overview of our SLAM system, which has three main parts: a versatile feature extraction
module, a LiDAR odometry module, and a LiDAR mapping module.

In this work, the point cloud of the k-th scan is represented as Pk. The world frame
and local frame of Pk are denoted as {W} and {Lk}, respectively. For convenience, {W}
coincides with {L0}. Since Pk is acquired sequentially with the LiDAR motion, each point
in Pk is sampled at a different position, leading to ambiguity in the definition of {Lk}.
Therefore, it is important to note that we refer to the local frame {Lk} as the frame defined
by the first point in the k-th scan. Moreover, the transformation matrix from {Lk} to {W} is
denoted as Tk ∈ Special Euclidean Group(3) (SE(3)):
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Tk =

[
Rk tk
0T 1

]
, (1)

where Rk ∈ Special Orthogonal Group(3) (SO(3)) is a rotation matrix and tk ∈ R3 is
a translation vector. The velocity, which has 6 degrees of freedom, is represented as
Vk = [wT

k , vT
k ]

T , where wk = [w1, w2, w3]
T ∈ Lie algebra so(3) and vk = [v1, v2, v3]

T ∈ R3

are the angular velocity and linear velocity, respectively. The angular and linear velocities
are defined in the world frame {W}, which differs from most SLAM methods, as there is
evidence that globally defined angular errors [36] have better properties. For simplicity, we
assume that the angular and linear velocities are not coupled. Therefore, the transformation
matrix Tj

k from any point j ∈ Pk to {W} can be formulated as follows:

Tj
k =

[
exp ((sj

k − sk)wk)Rk (sj
k − sk)vk + tk

0T 1

]
, (2)

where sj
k is the timestamp of point j, sk is the start time of Pk, which is equal to s0

k , and
exp(w) is the exponential mapping so(3)→ SO(3):

exp (w) = I +
sin(‖w‖)
‖w‖ [w]× +

1− cos(‖w‖)
‖w‖2 [w]2×, (3)

where [w]× is the skew matrix of w. In addition, we define log (·) as the inverse map.
For simplicity and clarity, we define a new function g that maps point j to its transformation
matrix T j

k shown in Equation (2):

g(Tk, (sj
k − sk)Vk) = T j

k. (4)

2.2. Versatile Feature Extraction

One of our most important contributions is the proposal of a versatile and efficient
feature extraction algorithm based on spherical projection. Spherical projection is a widely
used method in the community [21,23,37]. The spherical image is capable of representing
point clouds from various LiDAR devices. As far as we know, this is the first attempt
to extract planar and edge points based on spherical projection for LiDAR-based SLAM.
A detailed analysis of each point based on the point-to-plane or point-to-line metric is
performed on the spherical image to find more accurate feature points. Then, we use a
customized connected component labeling [35] technique to group the point cloud and
filter out more outliers. Finally, the selected planar and edge features are passed to the
odometry and mapping module to obtain an estimate of the pose of the current scan.

Conventional methods distinguish feature points using a smoothness metric [16] . The
metric simply compares the distance between a point and its surrounding points, which
cannot describe a plane or edge well and easily leads to misclassification. To improve
the quality of the extracted features, we develop a new method based on the spherical
image, in which the feature point is selected based on accurate point-to-line and point-to-
plane distances.

2.2.1. Motion Prediction and Point Cloud Compensation

Current methods typically use raw point clouds for feature extraction, which implicitly
assumes that all points in a scan are acquired in the static state. However, the ego motion of
LiDAR violates this assumption; thus, a reduced feature extraction performance is expected.
In contrast, we use a coarsely undistorted point cloud for feature extraction, allowing us
to better distinguish different features. After the odometry process is completed for the
current scan, as discussed in Section 2.3, the accurate motion compensation procedure is
repeated. Therefore, our algorithm performs the distortion compensation process twice.
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Let sk be the start time of a new scan. The initial estimations of the transformation
matrix T̂k and velocity V̂k can be predicted immediately from the previous scan with the
constant motion model:{

T̂k = g(Tk−1, (sk − sk−1)Vk−1)

V̂k = Vk−1
, k ≥ 2 (5)

where Tk−1 and Vk−1 are the transformation matrix and velocity obtained from the previous
scan (see Section 2.3) and sk−1 is the timestamp of the previous scan. For the first scan,
T̂1 is set to the identify matrix, and V̂1 is set to zero. For a point j in the current point
cloud Pk, let sj

k be its timestamp; then, its transformation matrix T̂j
k can be obtained using

Equation (2). Then, the transformation matrix that projects point j into the local frame of
Pk is T̂j

Pk
= T̂k

−1T̂j
k. Assuming that pj

k is the position of point j, the new position p̃j
k after

compensation can be calculated as follows:

p̃j
k = R̂j

Pk
pj

k + t̂j
Pk

, (6)

where R̂j
Pk

and t̂j
Pk

are the rotation and translation components of T̂j
Pk

, respectively.

2.2.2. Classification of Planar Features

The planar features are classified in three steps: spherical projection, planar point
selection, and planar point grouping. In the spherical projection step, a spherical image
is generated based on the coarse undistorted point cloud. In the planar point selection
stage, a smoothness value is assigned to each point based on a fixed window and used to
select planar points. In the planar point grouping stage, connected component labeling
is employed to divide the point cloud into different planar groups. The use of an explicit
point group allows us to filter out unreliable smaller objects, thus preventing false matches
during feature tracking. Each step is explained in detail below.

Spherical Projection: For a point cloud Pk after compensation, the corresponding spher-
ical projection coordinate [u, v]T for a point p = [x, y, z]T ∈ P can be calculated as follows:

[
u
v

]
=

 M(1− arctan y
x + fle f t

fright+ fle f t
)

N(1− arcsin z
r + fdown

fup+ fdown
)

, (7)

where r =
√

x2 + y2 + z2 is the distance of the point to the origin; [ fle f t, fright], [ fdown, fup]
are the vertical and horizontal fields of view of the LiDAR in terms of the radius, respec-
tively; and M and N are the width and height of the projected image, respectively. M and
N should be selected according to the LiDAR resolution.

Planar Point Selection: A patch-based method is used to select the planar points. Each
patch is a 5× 5 square region in the image. We approximate the local plane of a patch π
using a fast method that requires only the four vertices {p11, p15, p51, p55}:

cπ =
1
4
(p11 + p15 + p51 + p55)

nπ =
(p11 − p55)× (p51 − p15)

‖(p11 − p55)× (p51 − p15)‖2

, (8)

where cπ is a planar point in π and nπ is the plane normal of π. For a point p ∈ π, the
point-to-plane distance can be calculated as dp =

∥∥nπ
T(p− cπ)

∥∥
2. The points with values

of dp less than the threshold α1 are output as πS . Finally, the smoothness τπ of patch π is
the mean value of πS .

Each point j in the image is included in several patches. Let π∗ be the patch with the
smallest smoothness value; then, the smoothness and point normal of j are given by τπ∗

and nπ∗ , respectively. Finally, the points with smoothness values less than the threshold α2
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are selected as planar points. By choosing the least smooth patch to determine the planar
points, we can prevent misclassifying points at the plane intersection.

Planar Point Grouping: We group the planar points using an adapted connected com-
ponent labeling algorithm. Connected component labeling is a technique that assigns the
same label to all connected points in an image. We consider two adjacent points p1 and p2
to be connected if they satisfy the following conditions:{

‖p1 − p2‖ < 0.5

nT
1 n2 > 0.9

, (9)

where n1 and n2 are normal vector of p1 and p2, respectively. Each connected component
represents a plane region with points that all belong to the same object. As a result, we
can filter out objects with few points, since smaller objects are most likely noise. The label
of each point serves as its feature ID. Finally, the planar features are downsampled for
later use. The feature ID is used for tracking and to determine the map features to prevent
inaccurate data associations.

2.2.3. Classification of Edge Features

The edge features are detected based on the extracted planar features. We use the same
selection-then-grouping scheme as in planar feature detection to extract the edge features.

Edge Point Selection: A two-step edge feature detection procedure is presented, in
which the coarse edge features are first selected based on the extracted planar features and
then used to identify more reliable edge features. Let pi and ni be the position and normal
vector of a point i in an image. As shown in Figure 3, a point is selected as a coarse edge
feature if any of the following three scenarios are applicable:

1. A point i is selected as an intersection edge feature if it and its neighboring point j are
planar features with different planar feature IDs. Moreover, the position and normal
of i and j must satisfy the conditions:‖pi‖2 <

∥∥pj
∥∥

2∣∣∣nT
i nj

∣∣∣ < 0.5
. (10)

2. A point i is selected as a jump edge feature if it is a planar feature with a significantly
different depth than its neighboring point j:∥∥pj

∥∥
2 − ‖pi‖2 > 1. (11)

3. A point i is selected as a thin edge feature if its two adjacent points j and k in the same
row or column satisfy the conditions:{∥∥pj

∥∥
2 − ‖pi‖2 > 1

‖pk‖2 − ‖pi‖2 > 1
. (12)

Then, a new point cloud S is obtained by downsampling the coarse edge features. For
each point p1 ∈ S , we identify two neighboring points p2 ∈ S and p3 ∈ S using a KD tree.
This tuple is represented as L. The direction vector nL and smoothness τL of the tuple L are
given as:

nL =
p3 − p2

‖p3 − p2‖2
,

τL = ‖nL × (p1 − p2)‖2.
(13)

τL also represents the distance from the center point p1 to the line formed between its two
neighboring points p2 and p3.

Similar to the case in planar feature selection, a point in S can belong to several tuples.
Let L∗ be the tuple with the smallest smoothness value. Then, the normal and smoothness
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of the point are given by nL∗ and τL∗ . Finally, the points with smoothness values greater
than the threshold β are filtered out. The remaining points in S are processed further
and grouped.

Edge Grouping: Adapted connected component labeling is used to label the edge
features. Two edge features are determined to be connected according to the above KD-tree
search result and an additional metric,

∣∣n1
Tn2

∣∣ > 0.8, where n1 and n2 are the normals of
the two edge points. Then, smaller clusters with less points are removed. The label of each
point serves as its feature ID, which is used for tracking and identifying the map features.

Thin Edge

Jump Edge

Intersection Edge

90° 

Figure 3. Our edge feature selection scheme. An intersection edge is a planar point with a smaller
depth than its neighboring points and a larger angle, e.g., 90◦, between the corresponding normal
vectors. A jump edge is a plane point with a much smaller depth than its neighboring points. A thin
edge is a point with two neighbors in the same row or column that have much larger depths. The
depth is infinite if the yellow plane with the dashed boundary does not exist.

2.3. LiDAR Odometry

The odometry module consists of two parts: Map Maintenance and Optimization.
Map maintenance uses forward tracking as its core idea, which is inspired by π-LOAM [26].
We adapted this idea based on the proposed feature extraction method and developed a
completely new feature tracking method. The developed method is more suitable for the
pose optimization used in this work. The optimization is based on the bundle adjustment.
The formulation for LiDAR bundle adjustment was first proposed by BALM [27]. However,
BALM does not provide compensation for motion distortion, which may reduce the accu-
racy. Motion distortion is caused by the ego motion of the LiDAR, which results in each
point in the point cloud being sampled at a different location. Based on the constant motion
model, a unique pose can be assigned to each point to compensate for the distortion. Our
main contribution is to jointly optimize the parameters of the constant motion model and
the pose. The constant motion model ensures that our model better matches the real point
cloud acquisition process, which can positively affect the accuracy of the estimation.

2.3.1. Map Maintenance

The map is a collection of map features, including planes and edges. A map feature is
a spherical region fixed in 3D space that accumulates feature points from new scans that
occur in its spherical region and satisfy certain conditions. Figure 4 shows an example of
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our map. We use a sliding window mechanism to ensure that the map size is bounded.
After a new scan is inserted into the sliding window, the existing map features identify
new feature points from the extracted features, and new map features are created from
the remaining feature points. When the number of scans in the sliding window exceeds a
certain size, three actions are performed to reduce the size of the map: (1) the oldest scan
is removed, (2) the associated feature points are removed from the corresponding map
feature, and (3) the map features with no feature points are removed. The detailed strategy
for tracking and creating the global features is presented below:

Feature Map

Observed Points

Figure 4. A map in 3D space. The two spheres on the right show the details of the planar and edge
features. The different colored points in the spheres correspond to the LiDAR scans of the same color.

Feature Tracking: The planar and edge features extracted from the current scan are
denoted asH and E , respectively. We start by projecting map features that are neither edge
nor planar features onto the current frame using the predicted transformation matrix from
Section 2.2.1. Let c f be the center of a map feature f , and c̃ f be the closest point to c f in the
correspondingH or E . Then, we identify all feature points Q with the same feature ID as
c̃ f that belong to the spherical region of map feature f in the corresponding H or E . An
eigenvalue decomposition of the covariance matrix of the 3D coordinates of Q is performed.
Let λ1, λ2, λ3(λ1 ≤ λ2 ≤ λ3) be the eigenvalues of Q and n1, n2, n3 be the corresponding
eigenvectors. For a planar feature, we use the following conditions to determine whether
Q should be added to f : 

λ1

λ2
< 0.1∣∣∣n1

Tn
∣∣∣ > 0.9

. (14)

For an edge feature, we use the following conditions:
λ2

λ3
< 0.2∣∣∣n3

Tn
∣∣∣ > 0.8

, (15)

where n is the normal vector or direction vector of the map feature f .
Feature Creation: New map features are created based on the remaining untracked

features. For each untracked feature point j, we locate the K nearest neighbors inH or E ,
depending on the feature type. Then, we filter out points that have a feature ID different
from j and denote the remaining points as D. We perform an eigenvalue decomposition
on the covariance matrix of D. For the planar features, if the second largest eigenvalue is
much larger than the smallest eigenvalue ( λ1

λ2
< 0.1), all points in D are extracted as new
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planar map features. For the edge features, if the largest eigenvalue is much larger than
the second largest eigenvalue ( λ2

λ3
< 0.2), all points in D are extracted as new edge map

features. Note that once a point is selected as a map feature, it is never selected again to
ensure that there are no redundant map features. Finally, the center and radius of the map
feature are calculated using D, and the normal vector or direction vector is saved.

2.3.2. Bundle Adjustment with Direct Velocity Estimation

The k-th scan in the current sliding window is denoted as Fk. The full state vector X
to be optimized in the sliding window can be expressed as follows:

X = {x1, x2, · · · , xK}, xk = {Rk, tk, wk, vk}, (16)

where K is the width of the current sliding window, and xk is the state of Fk, where xk
includes the rotation, position, angular velocity, and linear velocity ofFk in the world frame.

Each map feature that is neither planar nor angular corresponds to a residual in the
final optimization formula. Suppose f is a map feature, and pj

k, j ∈ [1, N f
k ] are the tracked

local points of f in Fk, where N f
k is the number of tracked points. N f

k can be zero if
there are no associated features in Fk. To construct the residual of f , we must first project
its observation points into the global coordinate system using the transformation matrix
obtained with Equation (2). The projection can be performed using the following equation:

p̃j
k = exp ((sj

k − sk)wk)Rkpj
k + (sj

k − sk)vk + tk, (17)

where p̃j
k is the position of pj

k in the world frame, sk is the start time of Fk, and sj
k is the

timestamp of pj
k. Equation (17) includes the velocity as a parameter, which is the main

difference between our algorithm and BALM in the odometry stage. The velocity parameter,
similar to the transformation matrix, is optimized during the final optimization process.
The mean p and covariance A f of f can be calculated as follows:

p =
1

N f

K

∑
k=1

N f
k

∑
j=1

p̃j
k

A f =
1

N f

K

∑
k=1

N f
k

∑
j=1

(p̃j
k − p)(p̃j

k − p)T

, (18)

where N f = ∑K
k=1 N f

k is the total number of feature points in f .

For a planar map feature f , the loss metric ε
f
π is the sum of the squared distances of all

tracked points to the best-fitting plane, which can be calculated as:

ε
f
π = Λ1(A f ). (19)

For the edge map feature, the loss metric ε
f
L is the sum of the squared distances of all

tracked points to the best-fitting line, which can be calculated as:

ε
f
L = Λ1(A f ) + Λ2(A f ). (20)

Λk(·) is a function that maps a matrix (·) to its k-th largest eigenvalue. The specific plane
(or line) parameters are eliminated from ε

f
π (or ε

f
L); the detailed procedure is the same as

that of BALM [27]. Since the function Λk(·) does not have a closed form, it is impossible to
calculate the Jacobian matrix directly. Fortunately, BALM provides the first- and second-
order Jacobians in closed form for the function Λk(·). Moreover, the results of επ and εL
are quadratic, but we use the Ceres solver library [38] for optimization, which requires
non-squared residuals. Therefore, we determine the final residual by directly computing
the square root of ε

f
π and ε

f
L:
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r f
π(X ) =

√
ε

f
π =

√
Λ1(A f )

r f
L(X ) =

√
ε

f
L =

√
Λ1(A f ) + Λ2(A f )

. (21)

Since we use a design with 12 degrees of freedom, it is difficult for the odometry mod-
ule to guarantee perfect convergence, severely limiting the applications of the algorithm.
This limitation can be addressed by introducing a continuous factor. This solution is very
effective and allows our algorithm to produce valid results even in degenerate situations.
The continuous factor is similar to the IMU pre-integration factor in VIO [39] and imposes
a constraint on the motion of adjacent scans. The residual term of the continuous factor in
the constant motion model can be defined as follows:

rs(xk, xk+1) =


log (exp ((sk+1 − sk)wk)RkRk+1

−1)
(sk+1 − sk)vk + tk − tk+1

wk −wk+1
vk − vk+1

, (22)

We use Mπ and ML to represent the planar and edge map features in the current
map, respectively. The final optimization problem can be expressed as a combination of
Equations (21) and (22):

arg min
X ∑

f∈ML

ρ(
∥∥∥r f

L(X )
∥∥∥2
) + ∑

f∈Mπ

ρ(
∥∥∥r f

π(X )
∥∥∥2
) +

K−1

∑
k=1
‖rs(xk, xk+1)‖2. (23)

where the Huber loss ρ is defined as follows:

ρ(s) =
{

s s ≤ 1
2
√

s− 1 s ≥ 1
. (24)

We use the pose and velocity of the oldest scan in the current sliding window as a
prior in the optimization process. The odometry factor graph is shown in Figure 5.

Scan  Pose

Planar Feature

Edge Feature

Planar Residual

Continue Residual

Edge Residual

Fixed

Figure 5. Illustration of our graph for odometry optimization. The first pose serves as a prior and is
fixed during the optimization process. The planar and edge features impose constraints on all scans
that observe them, while the constant motion model imposes constraints on neighboring scans.

2.4. LiDAR Mapping

LiDAR mapping is based on odometry with some modifications to optimize the poses.
Our process includes three enhancements: first, a keyframe selection step is added to reduce
redundancy between scans. Second, the compensated point cloud is used as the mapping
input; thus, the velocity does not need to be estimated. Third, a new formula for computing
the covariance matrix is developed, which is faster than computing the covariance matrix
directly from the raw points. The overall LiDAR mapping pipeline is similar to BALM [27]
except for two improvements. One is the use of the feature map proposed in Section 2.3.1
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and the other is the improved calculation method of the covariance matrix used in the
optimization procedure.

The first step in the LiDAR mapping algorithm is to use a selection process to convert
the new scans into keyframes, optimizing only the poses of the keyframes. To maximize
sparsity while maintaining some degree of overlap between adjacent scans, the following
criteria are used to determine if a new keyframe is needed:

1. The number of scans within the sliding window has not reached a preset value.
2. The ratio of the number of successfully tracked planar map features to the number of

newly created features is less than 2.
3. The ratio of the number of successfully tracked edge map features to the number of

newly created features is less than 1.5.
4. The time difference between the most recent frame and the last keyframe is greater

than a specified value.

Each time a new keyframe is created, we use the odometry estimation result to remove
distortions, as described in Section 2.2.1. Then, the undistorted features are added to
the current map, and the pose of the new keyframe is optimized. The map maintenance
and optimization processes are essentially identical to those in the odometry stage, and
hence, we do not describe them here. Once the sliding window is full, a marginalization
process based on the recursive form of the covariance matrix is performed [27,40], retaining
the information of all points outside the sliding window using only a few parameters.
Although the marginalization strategy is similar to those of most vision approaches, it is
much simpler. The marginalization information is retained as a fixed component of the
map feature and is added to the final covariance matrix. Moreover, the velocity can be
eliminated from Equation (17), since we use an undistorted point cloud as the LiDAR
mapping input. Therefore, Equation (17) can be simplified to:

p̃j
k = Rkpj

k + tk. (25)

The notations in the above formula are the same as those in Equation (17), except that
pj

k is the undistorted point. Then, we calculate the covariance of each map feature and
form the residual using Equation (21). In addition, the removal of the velocity leads to the
removal of the continuous factor from the optimization objective because the dimension of
the optimization is reduced. Thus, the entire optimization objective can be reduced to:

arg min
X ∑

f∈ML

ρ(
∥∥∥r f

L(X )
∥∥∥2
) + ∑

f∈Mπ

ρ(
∥∥∥r f

π(X )
∥∥∥2
). (26)

In the following section, we discuss a technique for accelerating the computation of
the covariance matrix A f in residuals.

2.4.1. Fast Computing for A f

The computation of the LiDAR residuals r f
L and r f

π can be decomposed into two steps:
the computation of the covariance matrix A f and the eigenvalue decomposition. The
formal component must be computed from all feature points of a given map feature. We
demonstrate a technique for computing A f by storing only a small matrix and vector for
each scan and eliminating the dependencies of the raw feature points. Equation (18) can be
rewritten as follows:

A f =
1

N f (
K

∑
k=1

N f
k

∑
j=1

p̃j
kp̃j

k
T

︸ ︷︷ ︸
C̃k

− 1
N f (

K

∑
k=1

N f
k

∑
j=1

p̃j
k︸ ︷︷ ︸

S̃k

)(
K

∑
k=1

N f
k

∑
j=1

p̂j
k︸ ︷︷ ︸

S̃k

)T)

=
1

N f (
K

∑
k=1

C̃k −
1

N f (
K

∑
k=1

S̃k)(
K

∑
k=1

S̃k)
T)

, (27)
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where the notations are the same as those in Equation (18). Suppose Ck = ∑Nk
j=1 pj

kpj
k

T , Sk =

∑Nk
j=1 pj

k. Equation (25) can be substituted into C̃ and S̃; after the equation is simplified,
we obtain:

C̃k = RkCkRk
T + RkSktk

T + tkSk
TRk

T + N f
k tktk

T

S̃k = RkSk + N f
k tk

. (28)

Since Ck and Sk are irrelevant to the pose of the current frame, Ck and Sk can be
calculated in advance. With Equations (27) and (28), we can perform a fast computations of
A f and reduce the large number of calculations required during the optimization process.
Since the number of scans is often small, this method for computing A f can significantly
reduce the memory requirements and computational complexity.

3. Experimental Results

We implemented the proposed algorithms in C++ and ran them using a robot operating
system (ROS) [41] on a desktop with an Intel i7-9700 CPU and 16.0 GB of RAM. To the
best of our knowledge, this is the first time that spherical projection has been used to unify
inputs from different LiDARs. We achieved results comparable to other state-of-the-art
approaches by simply adjusting some parameters for each type of LiDAR. Four types of
LiDARs were used in our evaluation: Velodyne HDL-32E, Ouster OS1-64, Livox Horizon,
and RS-LiDAR-M1. The detailed results are explained below.

3.1. Evaluation Metrics

Two metrics were used to evaluate the results of the different algorithms. The first
was the relative pose error (RPE), and the second was the end-to-end position error. The
RPE corresponds to the local drift in the trajectory. The EVO library [42] was used to
compute the RPE. All estimated trajectories were aligned with the ground truth using
Sim(3) Umeyama alignment over the EVO library. We assume that Tk and Tk+δ are the
estimated poses of the ground truth Gk and its successor Gk+δ, respectively; then, the RPE
at time k can be defined as:

RPEk = (Gk
−1Gk+δ)

−1(Tk
−1Tk+δ), (29)

The RPE has two parts: the rotation component, which is known as the relative rotation
error (RRE), and the translation component, which is known as the relative translation
error (RTE). The mean and root mean square metrics were used to combine the results of
the entire trajectory.

Moreover, the end-to-end position error was used for the Livox Horizon dataset,
because no ground truth trajectory was available.

3.2. Feature Extraction Results

Feature extraction is an important component in the SLAM algorithm and has a
considerable impact on subsequent pose estimation tasks. The Lego-LOAM method uses
the segmentation information to extract features. We compare VLOM with Lego-LOAM
using some representative scenes from the UrbanLoco dataset [43]. The results are shown
in Figure 6. The planar and edge features are colored green and red, respectively.
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(a) Lego-LOAM

(b) VLOM

Figure 6. Comparison of the feature extraction results with Lego-LOAM and VLOM. (a) Features
extracted with Lego-LOAM and (b) features extracted with VLOM. The green dots indicate planar
feature points, while the red dots indicate the edge feature points. We marked some regions at the
corresponding positions to compare the details of the two results.

VLOM detects more correct edge features than Lego-LOAM (the dashed circle in
Figure 6). Lego-LOAM misclassifies these edge features as planar features. The feature
selection module of Lego-LOAM depends on the smoothness of the scan line, which is not
suitable for accurately classifying points. The correct identification of these edge features
is crucial for stable tracking. Moreover, because VLOM uses accurate point-to-line and
point-to-plane distances to determine the feature points, VLOM does not classify planar
points as edge points (the rectangle with a solid line in Figure 6). In addition, Lego-LOAM
classifies a large number of points from nearby dynamic cars as edge features (the ellipse
with a solid line in Figure 6). However, such features are detrimental to the performance of
the algorithm. In contrast, VLOM almost completely filters out these points.

Figure 7 shows the segmentation results for the same scenes. The various colors
indicate different planes. Lego-LOAM does not segment planes; instead, it segments
connected objects. Figure 7 shows that the ground and wall points are grouped correctly.
Lego-LOAM is excellent at classifying ground points. Although VLOM divides the ground
points into multiple clusters, this has no effect on our feature selection result because each
cluster is large enough that it is not filtered out and can thus provide plane information.
This good segmentation result is critical since it allows us to use points at the intersections
of the planes as edge features. In addition, VLOM performs better near the wall than
Lego-LOAM (the rectangle in Figure 7). The excellent feature classification performance of
VLOM results in stable tracking. The segmentation results may also provide additional
information for subsequent identification and obstacle avoidance tasks.
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(a) Lego-LOAM

(b) VLOM

Figure 7. Segmentation results of Lego-LOAM (a) and VLOM (b). The various colors represent
different planes. The rectangle in the image indicates some differences between Lego-LOAM and
VLOM. The continuous color in Lego-LOAM indicates that each plane is divided into several parts.

3.3. Evaluation on Velodyne HDL-32E

The sequence, namely HK-Data20190117, in this section was taken from the UrbanLoco
dataset [43]. HK-Data20190117 were acquired with a Velodyne HDL-32E laser scanner
at a rate of 10 Hz. The ground truth was acquired with Novatel SPAN-CPT, which is an
integrated GNSS/INS navigation system with a position error of less than 2 cm. Since GNSS
signals are easily affected by occultation and weather conditions, the selected sequence
was acquired in a light urban area with good satellite visibility (as indicated by the author).
HK-Data20190117 is a challenging dataset for LiDAR-based SLAM tasks because it includes
a large number of dynamic objects, which can result in incorrect data associations and lower
localization accuracy. In addition, the sequence provides a ground-truth linear velocity,
which we used to evaluate our direct velocity estimation method.

For comparison, the most advanced pipelines were selected, including BALM, A-
LOAM [44], and Lego-LOAM; the results are shown in Table 1. A-LOAM is an open-source
implementation of the original LOAM algorithm. BALM replaces the mapping module of
LOAM with a bundle adjustment approach. Based on Table 1, we can conclude that our
method achieves higher accuracy than the other methods.

Table 1. RPEs of BALM, A-LOAM, Lego-LOAM, and VLOM produced by EVO on HK-Data20190117.
The values in bold indicate the best precision.

Dataset Method
RRE (◦) RTE (m)

Mean Value RMSE Mean Value RMSE

HK-Data20190117

BALM 0.894 1.586 0.801 1.740

A-LOAM 0.708 1.426 0.346 0.714

Lego-LOAM 0.866 1.840 0.407 0.552

VLOM 0.701 1.308 0.148 0.214

Figure 8a shows the estimated trajectories of each method versus the ground truth.
As seen in Figure 8a, VLOM agrees with the ground truth across the entire trajectory and
achieves a higher accuracy than the other methods. BALM and A-LOAM have significant
tracking losses at various positions. Figure 8b shows a representative scene in which A-
LOAM was unable to complete the tracking. This scene included many vehicles (indicated
by the rectangle in Figure 8b) that were traveling parallel to the data collection vehicle.
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As a result, the A-LOAM algorithm could not detect any movement, and the trajectory
was stationary for some time. Although Lego-LOAM performed better on this scene than
A-LOAM, Lego-LOAM was also affected to some extent, with a significant error in the end
position. BALM uses a voxel grid to capture feature associations; this method results in a
lower accuracy and thus may not be flexible enough for complex real-world scenarios. As
a result of our precise feature extraction method, VLOM is less affected by dynamic objects
and can achieve a stable tracking performance.

(a)

car

car

car

car

car

Intersection edge

(b)

Figure 8. (a) compares the estimated trajectories with the ground-truth trajectories in the HK-
Data20190117 dataset. Note that all trajectories were aligned to the ground truth according to the
EVO library. (b) shows a point cloud acquired at the position where A-LOAM begins to fail, which is
marked by the circle in (a).

To investigate the effectiveness of our feature selection scheme, we replace the feature
extraction module of BALM and A-LOAM with our method. Since Lego-LOAM must
clearly distinguish between ground features and non-ground features, it is not compatible
with our method and therefore is excluded from this evaluation. The updated algorithms
with our feature module are denoted as BALM-F and A-LOAM-F. Figure 9 shows a com-
parison of the new algorithms. The considerable tracking loss of the original methods
disappeared, and consistent trajectories were obtained. Moreover, the RMSEs of the RTEs
reached 0.286 and 0.267 for BALM-F and A-LOAM-F, respectively. This result proves that
our feature extraction module is more accurate and robust than the other methods.

3.3.1. Evaluation of the Velocity Estimate

The most important function of the odometer is the velocity estimation [45]. An
accurate velocity estimation is crucial for recovering a time-aligned point cloud that has
been distorted by the ego motion of the LiDAR. Let T̃k and sk be the odometry output and
timestamp of the k-th scan, and let the linear velocity vGT

k and angular velocity wGT
k be

the corresponding ground truth. For the BALM, A-LOAM, and Lego-LOAM methods, the
velocity can be determined according to the relative transformation of the neighboring
scans. For these methods, we define the following error metrics:

ev
k =

∣∣∣∣ 1
sk+1 − sk

∥∥∥Trans (T̃k
−1T̃k+1)

∥∥∥
2
−
∥∥∥vGT

k

∥∥∥
2

∣∣∣∣
ew

k =

∣∣∣∣ 1
sk+1 − sk

∥∥∥log (Rot (T̃k
−1T̃k+1))

∥∥∥
2
−
∥∥∥wGT

k

∥∥∥
2

∣∣∣∣, (30)

where Trans(·) and Rot(·) are the translation and rotation components of (·), respectively,
and ev

k and ew
k are the errors of the linear and angular velocities of the k-th scan, respectively.

Since the velocity is calculated explicitly in VLOM, the error can be expressed as follows:
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ev
k =

∣∣∣‖ṽk‖2 −
∥∥∥vGT

k

∥∥∥
2

∣∣∣
ew

k =
∣∣∣‖w̃k‖2 −

∥∥∥wGT
k

∥∥∥
2

∣∣∣, (31)

where ṽk and w̃k are the odometry velocity output of VLOM. The above definitions of
ew

k and ev
k are based on the L2 norm, which eliminates the difficult task of aligning the

estimated trajectory with the ground truth.

(a) (b)

Figure 9. There are clearly large errors in the origins of BALM (a) and A-LOAM (b). By replacing the
feature extraction module with our scheme, the new algorithms, BALM-F (a) and A-LOAM-F (b),
achieve impressive performance improvements.

Since the UrbanLoco dataset does not include the angular velocity, we evaluated
only the linear velocity. The results are shown in Figure 10. As seen from the magnified
area in Figure 10, the car remained in the start position for an extended period of time.
Lego-LOAM had a low stability and a large error at this stage. However, while driving,
BALM and A-LOAM performed worse than Lego-LOAM. Although Lego-LOAM showed
excellent accuracy, the region marked by the vertical dashed line in Figure 10 shows that
Lego-LOAM had substantial errors. These regions correspond to the four corners of the
overall sequence, indicating that the iterative velocity estimation algorithm cannot handle
rotation distortions. In contrast, VLOM performed well on the entire sequence. Thus, the
combination of bundle adjustment with direct velocity estimation allows for a tremendous
improvement in terms of velocity accuracy.

3.4. Evaluation on Livox Horizon

Livox Horizon is a solid-state LiDAR with a circular FoV of 81.7◦ (horizontal) × 25.1◦

(vertical) and a non-repeating scan pattern. Since solid-state LiDAR is a new technology,
there are few publicly available datasets. We selected the KA-URBAN-Schloss-2 sequence
(abbreviated as Schloss-2), which was provided in the work on LiLi-OM [34]. Schloss-2
was recorded at a typical sampling rate of 10 Hz while traveling with a sensor suite in
Karlsruhe, Germany. The total length of this sequence is approximately 1.10 km. The
walking speed is approximately 1.49 m/s. The author does not provide the ground-truth
trajectory. Therefore, the RPE is not available. For quantitative comparison, because the
sequence ends at its starting position, the end-to-end position error can be used as an
evaluation metric.
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Figure 10. Comparison of the linear velocity errors on HK-Data20190117. VLOM has a very low
error throughout the sequence, especially during the initial phase shown in the magnified area.
Lego-LOAM is more accurate than the other methods; however, it has a poor performance in the
areas marked by the gray dotted line.

A-LOAM and Lego-LOAM were developed for conventional LiDAR and thus are in-
compatible with Livox Horizon. Therefore, Livox-Horizon-LOAM (abbreviated LiHo) [46]
and BALM were used for comparison. LiHo is an LOAM variant that was adapted to Livox
Horizon with a specially designed feature extraction module. In this study, we supported
LiHo with IMU. The result is shown in Table 2, and the entry after “/” shows the result
with IMU. In addition, we directly report the LiLi-OM result from their article. LiLi-OM is a
state-of-the-art tightly coupled LiDAR inertial odometry. VLOM significantly outperforms
the LiDAR-only systems. It is worth noting that after extensive testing, we found that this
sequence has several frame losses (with a maximum time interval of 0.43 s), which nega-
tively impacts our system because relatively long time intervals violate the constant motion
assumption. This shows that our system is highly robust. Moreover, the results show that
VLOM outperforms LiLi-OM, which has a special configuration for Schloss-2. This indicates
some similarity in the roles of the direct velocity estimation and IMU, prompting us to
reconsider the value of in-scan motion for LiDARs.

Table 2. End-to-end position error (in meters) on Schloss-2. We also show the results of the IMU-
aided LiHo and LiLi-OM (denoted by the second entry after “/”). The bold indicates the best result.
Our method outperforms the IMU-aided LiHo and LiLi-OM (without loop closure), which is an
exciting result.

Dataset BALM LiHo LiLi-OM VLOM

Schloss-2 224.7/- 14.43/8.100 5.580/4.410 3.012/-

Figure 11a shows a top view of the final map of Schloss-2 produced by our method,
and Figure 11b shows a side view of a representative structure place. The color is based on
the intensity value. The map preserves fine structural details of the environment due to our
accurate estimation of the scan velocity.
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(a) (b)

Figure 11. Mapping results of our approach on Schloss-2, which are rendered based on the intensity
value: (a) top view, (b) side view. Our method produces a map with fine details, especially in the
magnified region of (b).

3.5. Evaluation on Our Campus Dataset

To test the performance of VLOM on real-world scenarios, we built a sensor suite
using a conventional LiDAR, Ouster OS1-64, and a newly released solid-state LiDAR, RS-
LiDAR-M1. RS-LiDAR-M1 has a resolution of 0.2◦ in the horizontal and vertical directions
and an FoV of 120◦ (horizontal) × 25◦ (vertical). The datasets were acquired at a frequency
of 10 Hz using an RS-LiDAR-M1 sensor installed horizontally on the front of a vehicle
and an Ouster OS1-64 sensor installed horizontally on the roof. We used an integrated
high-end Newton-M2 navigation device to obtain the ground truth. Newton-M2, when
used in conjunction with a differential GNSS, can achieve a position accuracy of 2 cm and
an attitude error of approximately 0.1◦. The complete experimental platform is shown in
Figure 12. Two sequences were collected by manually driving a car through the eastern
campus of Sun Yat-sen University. The sequence corresponding to RS-LiDAR-M1 has a
length of 5.94 km and is denoted as RS. The sequence corresponding to Ouster OS1-64
has a length of 1.37 km and is denoted as OS. The average velocity of both sequences is
approximately 6 m/s.

Ouster OS1-64

RS-LiDAR-M1

(a)

Ouster OS1-64

RS-LiDAR-M1

(b)

Figure 12. Experimental platform. (a) Front view. (b) Side view. Ouster OS1-64 and RS-LiDAR-M1
were placed on the roof and front of the vehicle, respectively.

The comparison results of BALM, A-LOAM, Lego-LOAM, and VLOM on OS are
shown in Table 3. Since A-LOAM does not support Ouster OS1-64, we performed some
minor changes. The results show that BALM has large translation errors and that our
method performs better than the other methods. Since the OS dataset was collected on a
narrow street surrounded by buildings, there are no large terrains in the dataset, resulting
in a larger error with Lego-LOAM.
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Table 3. RPEs of BALM, A-LOAM, Lego-LOAM, and VLOM produced by EVO on OS. The values in
bold indicate the best precision.

Dataset Method
RRE (◦) RTE (m)

Mean Value RMSE Mean Value RMSE

OS

BALM 1.210 2.515 16.85 435.3

A-LOAM 1.523 2.545 0.432 0.629

Lego-LOAM 2.132 3.518 0.614 0.848

VLOM 0.582 0.931 0.157 0.217

Since previous works have not included RS-LiDAR-M1, only VLOM was assessed
on the RS dataset. The ground truth aligned to Google Earth is shown in Figure 13a, and
the estimated trajectory of VLOM is shown in Figure 13b. Since there is no module that
can close the loop, drift is inevitable, yet our results rarely overlap with the ground truth.
Moreover, Figure 14 shows the deviations in the position and orientation. The error is
mainly caused by [z, roll, pitch], implying that the constraints in the vertical direction are
insufficient. Since these constraints are mainly imposed by the ground features and the
main direction of the LiDAR sensor is parallel to the ground, it is difficult to effectively
extract features.

(a) (b)

Figure 13. Trajectory of the dataset acquired with RS-LiDAR-M1. (a) Ground truth aligned to Google
Earth from a top view. (b) Comparison of the VLOM trajectory and the ground truth. The results are
presented in meters.
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Figure 14. Changes in the position and orientation contrasted with the ground truth on the RS dataset.

Evaluation of the Velocity Estimate

The velocities are compared in Figure 15. Since BALM has large errors on the OS
dataset, the corresponding data are not shown here for clarity. A-LOAM and VLOM have
overlapping curves and show similar performance; however, the magnified area at the top
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of Figure 15 shows that VLOM performs slightly better than these methods. Lego-LOAM
appears to be unstable on the OS dataset and has more jitters.

Figure 15. Comparison of velocity errors on the OS dataset, including the linear velocity error (top)
and angular velocity error (bottom).

3.6. Evaluation of Runtime

Furthermore, we calculate the average runtime of each module for all sequences used
in the experiments; the results are shown in Table 4. Since the feature extraction and LiDAR
odometry modules in VLOM operate in the same thread, we consider the total time spent
by both and report it as Feature + Odometry. To evaluate the effect of the fast covariance
calculation method proposed in Section 2.4.1, we carried out an experiment with the same
conditions as Equations (27) and (28) and report the results as Old and New, respectively.
VLOM demonstrates real-time performance capability (less than 100 ms at the LiDAR
frame rate). By comparing the Old and New results, we can conclude that the new method
effectively reduces the runtime.

Table 4. Average runtime of VLOM on HK-Data20190117, Schloss-2, OS, and RS. The results are
presented in ms.

Feature Odometry Feature + Odometry
Mapping

Old New

HK-Data20190117 22.71 20.00 42.71 73.38 53.07
Schloss-2 10.07 15.15 25.22 50.71 36.05

OS 42.39 28.50 70.89 48.27 44.14
RS 26.66 16.13 42.79 69.96 54.58

4. Discussion

Feature extraction: Feature extraction is an important component of many LiDAR-
based SLAM algorithms. The feature extraction module often determines whether the
algorithm can be used with a particular LiDAR type. The experiments in Section 3 show
that only VLOM can complete all sequences (the other methods are incompatible with
RS). In addition, the BALM algorithm supports both conventional LiDARs and solid-state
LiDARs (Livox Horizon). However, BALM uses different feature extraction modules for
conventional LiDARs and solid-state LiDARs. Depending on the LiDAR used, different
startup programs need to be executed. Without adaptation, there may be the new LiDAR
type to which BALM cannot be applied (e.g., RS -LiDAR-M1). The adaptability of VLOM
is improved by our spherical projection-based feature extraction module. In addition, the
spherical projections allow us to perform more detailed analyses of the planes and edges,
improving the quality of the extracted features. This improvement was confirmed by the
experiments with A-LOAM-F and BALM-F shown in Figure 9. Both algorithms with good
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results were developed by replacing the feature extraction modules of the original A-LOAM
and BALM algorithms.

Velocity estimation: As described in Section 3.3.1, the velocity can be estimated either
directly or based on the poses of two frames, followed by interpolation. Most open-source
algorithms are based on the latter scheme. However, this can lead to closed loops between
the pose and velocity estimates: the pose estimate requires that the velocity estimate
produces an accurate and undistorted point cloud, while the velocity estimate, in turn,
relies on the pose estimate. This type of iterative process cannot be repeated infinitely.
In fact, most algorithms perform very few iterations; thus, it is difficult to achieve an
accurate result in complex scenarios. This trend can be observed in Figures 10 and 15.
Since the HK-Data20190117 sequences were collected on a street surrounded by a complex
environment, the velocity accuracies achieved by A-LOAM, BALM, and Lego-LOAM were
lower than that achieved by VLOM; however, because the OS dataset was collected on a
campus surrounded by several buildings and few people, A-LOAM and VLOM had similar
velocity accuracies.

We assume that the LiDAR is moving at a constant speed. However, since SLAM is
a probability estimation problem, some error is acceptable, so this algorithm can work in
most real scenarios with non-constant velocity. In the experiments of this paper, a walking
sequence (Schloss-2), two driving sequences on campus (OS and RS), and a driving sequence
on a city street (HK-Data20190117) were studied. In particular, the walking sequence, which
has a high degree of randomness, is very challenging. The good performance on these
sequences proves that the algorithm in this work can handle the real-world scenarios with
non-constant motion well.

Bundle adjustment: We use the scheme proposed by BALM for bundle adjustment.
Bundle adjustment is a strategy that was first used in vision-based SLAM. In bundle
adjustment, the previous frames and current frame are optimized together, achieving
consistency over a wider range. However, when used with LiDARs, two problems arose:
first, a single point could not be used to represent a complete landmark (i.e., planes
and edges); thus, multiple points were required to determine a landmark in each frame.
However, it is not easy to determine the appropriate sets of points. Second, the distortion
of the point cloud caused by LiDAR motion led to inaccurate landmark observations.
To address the first problem, BALM uses an adaptive octree to determine the observed
point set and considers all points belonging to the same voxel as observations of the same
landmark. False associations are generated for voxels located at the intersection of two
landmarks. To address the second problem, BALM uses a LOAM variant in its front end
to estimate the velocity and compensate for the point cloud. However, in our tests, the
LOAM variant used by BALM showed poor real-time performance, which significantly
reduced the speed of the algorithm. Thus, these solutions are inadequate. The results on the
HK-Data20190117, Schloss-2, and OS sequences show that the bundle adjustment module of
BALM is not robust enough, resulting in large deviations in these sequences. We address
the first problem by using the strategy described in Section 2.3.1 to adaptively capture the
set of observations of a landmark. By incorporating the intraframe velocity estimate into
the optimization process, we can evaluate the motion compensation of the point cloud
during the bundle adjustment process, which addresses the second problem quite well.
VLOM significantly outperformed BALM on all sequences except the RS sequence, which
is not supported by BALM.

5. Conclusions

In this work, we developed a SLAM system with 12 degrees of freedom that allows for
real-time state estimation. Since the feature extraction module is designed for versatility,
VLOM is suitable for both spinning and solid-state LiDARs. In addition, by directly
estimating the velocity, we can produce a more accurate point cloud, improving the accuracy
of LiDAR mapping. We also improved the efficiency of computing the covariance matrix,
increasing the speed of bundle adjustment during the LiDAR mapping. With extensive
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tests on various LiDARs, we show that our algorithm performs better performance than
various state-of-the-art methods.

We use spherical projection to unify all inputs, primarily because the spherical image
is small and provides a fast method for finding nearest neighbors, which is important for
real-time performance. However, there are many other representation options, such as
bird’s eye view. In the future, other suitable representations can be explored to improve the
performance of the feature extraction module. In addition, the proposed algorithm does
not include a loop closure module, which is useful for reducing drift and is already used in
many SLAM algorithms. In the future, a loop closure module will be added to VLOM to
ensure long-term global consistency. In addition, IMU, GPS, and other sensors could be
combined to achieve a more stable performance. Since the linear and angular velocities are
explicitly included in the state estimation, our system may perform better with the addition
of IMU.
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