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Abstract: The tone reservation (TR) approach is mainly adopted to reduce the peak-to-mean envelope
power ratio (PMEPR) of orthogonal frequency division multiplexing (OFDM) waveform with low
TR ratio (TRR) in classic 4G communication systems. However, for the OFDM integrated radar and
communication waveform, high TRR is necessary to simultaneously maintain the radar detection
performance as well as communication performance. For cases with high TRR, the traditional
waveform optimization algorithms have low execution efficiency and a poor PMEPR convergence
level, and thus a new algorithm is needed. This paper proposes a new PMEPR optimization algorithm
based on conjugate gradient. Firstly, by introducing the concept of Lp-norm, the PMEPR of the OFDM
waveform is accurately remodeled as the objective function of the waveform optimization problem.
Secondly, the conjugate gradient of the objective function is analytically derived to form the basis
of the efficient PMEPR optimization. Finally, a PMEPR optimization algorithm based on the Polak–
Ribière–Polyak (PRP) conjugate gradient is proposed. The simulation results verified the proposed
algorithm in terms of optimization efficiency, as well as convergence level, and the initial experimental
results suggested the practicality of the proposed algorithm.

Keywords: integrated radar and communications; orthogonal frequency division multiplexing;
peak-to-mean envelope power ratio; conjugate gradient

1. Introduction

Radar sensing and wireless communication are the two most common and important
applications in modern radio technology. They are designed and developed independently
according to different functions and frequency bands. Among them, radar is mainly used
for target detection and identification, and the purpose of communication is to realize
information transmission between devices. With the increasing requirements for high-
quality communications and radar detection capabilities, the demand for radio frequency
bandwidth is increasing, which makes the limited spectrum resources overcrowded. The in-
tegration of radar and communications is an effective way to solve the above problem [1–6].

The main challenge for the development of the integrated radar and communications
is to find a waveform that can be used for both radar detection and communication infor-
mation transmission. This is also a hot issue in the research of the integrated radar and
communications. The researchers designed a variety of integrated radar and communi-
cation waveforms that fall into two main categories: multiplexing-waveform [7–11] and
identical-waveform. The identity-waveform includes the radar-based waveform, which
is a modified radar waveform with embedded communications information [12–16], and
the communications-based waveform, which is the traditional communications waveform,
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or their modified versions [17–21], the most famous being the orthogonal frequency division
multiplexing (OFDM) integrated waveform.

As a multi-carrier modulation waveform, OFDM is widely used in radar, commu-
nications, and the integrated radar and communications. Compared with single-carrier
waveforms, OFDM has many advantages, such as the availability of processing gains at the
receiver, efficient spectrum utilization and good anti-multipath performance. However, due
to the multi-carrier characteristics of OFDM, the superposition of subcarriers with the same
phase usually results in a high peak-to-mean envelope power ratio (PMEPR). The high
PMEPR problem is one of the most detrimental aspects in an OFDM integrated radar
and communication system, as it degrades the efficiency of the power amplifier (PA) and
causes nonlinear distortion [22], resulting in the degradation of radar and communication
performance. Therefore, it is necessary to reduce PMEPR.

In order to reduce PMEPR, many methods have been proposed. Specifically, refs. [23,24]
studied the method of generating a low PMEPR waveform by modulating the amplitude-
phase. Although a closed form expression is given and is easy to apply, the obtained
PMEPR is much higher than the optimal value, and the fixed modulation method limits
the flexibility of these waveforms. Many techniques to reduce PMEPR have been proposed
in communications [25–28]. The simplest technique is the limiting filter technique, which
causes in-band distortion and deteriorates BER performance. Selective mapping (SLM) and
partial transmission sequence (PTS) are known technologies, which may require that side
information be transmitted as well. If the side information is received incorrectly at the
receiver, the BER performance degrades. Tone reservation (TR) technology is proposed by
Tellado [29], in which a small number of unused subcarriers are reserved to generate peak-
canceling signal, and the rest are used to carry arbitrary information. Here, the ratio of the
reserved subcarriers to the total number of subcarriers is defined as the TR ratio (TRR). TR
does not need to transmit side information to the receiver, nor will BER decrease. The goal
of TR is to find the reserved subcarriers that minimize PMEPR, which is expressed as the
PMEPR optimization problem. This problem can also be formulated as a quadratically
constrained quadratic program (QCQP) problem. Although the optimum QCQP problem
exists, it requires high computational complexity. Sub-optimal solutions are typically
employed. Specifically, ref. [30] proposed scaling the filtered limiting noise (i.e., generated
by clipping the OFDM signal to a predetermined threshold) generated in the first iteration
under TR constraints to generate peak-canceling signal. In addition, refs. [31–33] proposed
a search method to solve the sub-optimal solutions. In [34], the peak of the signal was
expressed in Lp-norm, and the PMEPR optimization technique was proposed based on the
Lp-norm gradient.

The above TR methods are all proposed under low TRR, where the average power of
the peak-canceling signal is excluded from the calculation of the average power in PMEPR.
Since PMEPR is affected by the peak and valley of the waveform at the same time, ref. [19]
introduced the coefficient of variation of envelopes as the objective function for waveform
optimization, and developed an iterative least squares algorithm. However, this method is
only applicable for a small number of subcarriers.

High resolution capability and long detection range are the goals of radar systems.
Resolution is closely related to waveform bandwidth. With the increasing resolution of
radar, the demand for waveform bandwidth is also increasing. This means that we reserve
more subcarriers to obtain a lower PMEPR to achieve a longer radar detection range while
maintaining a desired communication data rate. However, the high TRR implies that
the average power of the peak-canceling signal in the PMEPR optimization problem is
non-negligible, which means that the PMEPR reduction effect of the traditional TR method
may be poor. Therefore, for the PMEPR optimization problem under high TRR, this paper
transforms the PMEPR representation, which is difficult to directly optimize, into the ratio
of the Lp-norm (with a large p) of the instantaneous power to the average power as the
optimization objective function. We then propose an efficient and fast algorithm based on
the classic Polak–Ribière–Polyak (PRP) conjugate gradient algorithm (PRP-CGA), which
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is denoted as PRP-CG-based PMEPR optimization algorithm (PRP-CGPOA). In addition,
some initial experiments are carried out to demonstrate the practicability of the proposed
algorithm in terms of radar SNR and communication BER performance.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
OFDM signal model, review the traditional PMEPR optimization problem and transform it
into a new optimization problem based on Lp-norm with a large p. In Section 3, we give the
gradient analytical model of the objective function and discuss the proposed PRP-CGPOA.
Simulation and experimental demonstration results are given in Section 4. Finally, Section 5
summarizes the conclusions.

2. Integrated Signal Model

Consider a complex-valued OFDM waveform with N orthogonal subcarriers, where
Nr subcarriers are reserved for a PMEPR reduction, and the others are used for data
transmission. TRR is defined as R = Nr/N (1 ≤ Nr < N). Let R = {i0, i1, . . . , iNr−1}
represent the index set of the reserved subcarriers, andRc denote its complementary set
in {−N/2, . . . , N/2 − 1}. Therefore, the discrete-time OFDM waveform, after J times
oversampling, is computed via an inverse discrete Fourier transform (IDFT) as

s(n) =
N/2−1

∑
k=−N/2

(Xk + Ck)e
j2π n

JN k (1)

where n = 0, 1, . . . , JN− 1. Xk, k ∈ Rc and Ck, k ∈ R represent the k-th modulated complex
symbol in the information symbols X and the reserved symbols C, respectively, and Xk = 0
for k ∈ R and Ck = 0 for k ∈ Rc.

Denote s = [s(0), . . . , s(JN − 1)]T ∈ CJN×1. Then, (1) can be expressed in matrix form,
i.e.,

s = sc + FRC (2)

where sc = FIX represents the initial transmit waveform, FI and FR denote columns of the
IDFT matrix F =

(
Fk

n

)
JN×N

=
(

ej2π n
JN k
)

JN×N
indexed inRc andR, respectively.

The PMEPR of s is defined as the ratio of the maximal instantaneous power to the
average power

PMEPRs(n) =

max
0≤n≤JN−1

|s(n)|2

E[|s(n)|2] (3)

where E
[
|s(n)|2

]
= Pc + ∑

k∈R
|Ck|2 is the average power, Pc is the total energy of X. Actually,

when J ≥ 4, (3) is accurate enough to approximate the continuous-time counterpart [25].
For the traditional PMEPR optimization problem, TRR is typically low, with a value of

5–15% [35]. Then, E
[
|s(n)|2

]
≈ Pc. The calculation for PMEPR can be simplified as

PMEPRC =

max
0≤n≤JN−1

|s(n, C)|2

Pc
(4)

here, s(n) , s(n, C) = sc(n) + FR,nC, where FR,n is the n-th row of FR. Thus, C must be
chosen to minimize the maximum of the time-domain waveform, i.e.,

C(opt) = arg min
C

max
0≤n≤JN−1

|s(n, C)| (5)

Then, (5) can be formulated as a QCQP [29], i.e.,

min
C

ξ

s.t. |s(n, C)| ≤ ξ, n = 0, 1, . . . , JN − 1
(6)
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The communication community has developed different approaches to solve the
problem in (6), such as [29–35].

Deformation of the Optimization Problem

In this paper, we focus on the PMEPR optimization problem of OFDM integrated
radar and communication waveform, i.e.,

min
C

PMEPRC =

max
0≤n≤JN−1

|s(n, C)|2

Pc + ∑
k∈R
|Ck|2

(7)

For the large-bandwidth OFDM integrated waveforms, TRR needs to be high, which
can further reduce PMEPR to maintain a good communication performance while improv-
ing the radar detection range. However, the high TRR makes the denominator in problem
(7) irreducible, i.e., the energy of C cannot be ignored.

The complementary cumulative distribution function (CCDF) is usually used to mea-
sure performance of PMEPR reduction, which gives the probability that the PMEPR exceeds
a given threshold ζ and is defined as

CCDF = Pr(PMEPR > ζ) (8)

The PMEPR performance of existing algorithms may be poor under the high TRR.
For example, as shown in Figure 1. When R = 50%, PMEPR reaches 8 dB at 10−4 probability,
which is only 4.4 dB lower than the initial OFDM. Such a high PMEPR will seriously reduce
the efficiency of the PA and affect the performance of the radar detection.

Figure 1. CCDFs of PMEPRs for random informative symbols, where Algorithm 1 is from [19].

Due to the denominator of the objective function, (7) is difficult to solve directly.
The following uses the Lp-norm to transform (7) into an easy-to-solve form.

In mathematics, for a given vector s, the Lp-norm is defined as

‖s‖p =

(
JN−1

∑
n=0
|s(n)|p

)1/p

, ∀p ≥ 1, p ∈ R (9)
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Since Lp-norm is monotonically decreasing versus p, and ‖s‖∞ = max
0≤n≤JN−1

|s(n)| =

lim
p→∞
‖s‖p, we use the Lp-norm with a large p to approximate L∞-norm. Then, (7) can be

transformed into

min
C

O(C) =

(
JN−1

∑
n=0
|s(n, C)|2p

)1/p

Pc + ∑
k∈R
|Ck|2

(10)

According to
∥∥|s|2∥∥∞ <

∥∥|s|2∥∥p, p < ∞, we know that PMEPRC < O(C). Therefore,
the sub-optimal solution of PMEPR can be obtained by solving problem (10). It can be seen
from (10) that the objective function is an analytical expression about C, which can be used
for gradient analysis.

3. PRP-CGPOA

In this section, to guarantee that the objective function decreases monotonically and
efficiently in each iteration, we adopt the classic PRP-CGA [36,37] to minimize the un-
constrained problem (10), and propose the PRP-CGPOA. The flow chart of it is shown in
Figure 2a. The conjugate gradient of C and the step size are the keys of PRP-CGPOA. In the
following, we first derive them, and then summarize the whole algorithm.

Figure 2. Flow chart of the overall algorithm and the step size optimization, (a) overall algorithm.
(b) step size optimization.
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3.1. Gradient Analytical Model

The analytic expression of the conjugate gradient in (10) with respect to C is given

below. To facilitate the derivation, let f (C) =

(
JN−1

∑
n=0
|s(n, C)|2p

)1/p

, g(C) = Pc + ∑
k∈R
|Ck|2.

Then, the objective function O(C) is written as O(C) = f (C)/g(C). Before deducing the
conjugate gradient ∇C∗O(C), we calculate the derivative of O(C) with respect to C∗m,
m ∈ R, which is the conjugation of Cm. According to the derivation rule,

∂O(C)

∂C∗m
=

∂ f (C)
∂C∗m

g(C)− f (C)
∂g(C)
∂C∗m

g2(C)
(11)

From (11), it is easy to see that ∂ f (C)/∂C∗m and ∂g(C)/∂C∗m should be further simpli-
fied. Based on the expression of f (C), ∂ f (C)/∂C∗m can be derived as follows

∂ f (C)

∂C∗m
=

1
p

(
JN−1

∑
n=0
|s(n, C)|2p

) 1−p
p JN−1

∑
n=0

p|s(n, C)|2(p−1) ∂|s(n, C)|2
∂C∗m

= ( f (C))1−p
JN−1

∑
n=0
|s(n, C)|2(p−1)s(n, C)

(
Fm

R,n
)∗

= ( f (C))1−p(Fm
R )

H s̃

(12)

where s̃ = |s|2(p−1) ◦ s, “◦” is the Hadamard product,
(
Fm

R
)H represents the conjugate

transpose of the m-th column of FR.
Based on the expression of g(C), ∂g(C)/∂C∗m can be derived as follows

∂g(C)

∂C∗m
=

∂

(
Pc + ∑

k∈R
|Ck|2

)
∂C∗m

=
∂(CmC∗m)

∂C∗m
= Cm (13)

By substituting (12) and (13) into (11), the derivative ∂O(C)/∂C∗m is given by

∂O(C)

∂C∗m
= O(C)

(
( f (C))−p

(
(Fm

R )
H s̃
)
− Cm

g(C)

)
(14)

By stacking (14) into a vector, the conjugate gradient ∇C∗O(C) is obtained as follows

∇C∗O(C) =

[
∂O(C)

∂C∗−N/2
, . . . ,

∂O(C)

∂C∗N/2−1

]T

= O(C)

(
( f (C))−pFH

R s̃− C
g(C)

)
(15)

3.2. Update Rules

The analytical expression (15) provides a strong support for our algorithm. The itera-
tive update rule for C is as follows.

Assume that the l-th iteration point is Cl , then the new iteration point Cl+1 is

Cl+1 = Cl + µldl (16)

where µl is the step size.
The descent direction is another important part of the algorithm in addition to the

conjugate gradient and the step size. In order to ensure that the algorithm is carried out
efficiently, we adopt a modified descent direction, i.e., PRP descent direction, which is
denoted as

dl =

−Gl l = 0

−Gl +
(Gl−Gl−1)

T
Gl

‖Gl−1‖2 dl−1 l ≥ 1
(17)
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where Gl = ∇C∗O
(

Cl
)

.

3.3. Step Size

The calculation of the step size in each iteration is crucial to the convergence speed
of the algorithm. The line search method is a classic method to obtain the step size.
However, it needs to calculate the objective function many times, which makes it very
time-consuming [37]. In this paper, we formulate the line search problem as a minimization
problem of solving the step size, namely

min
µl

h
(

µl
)
= O

(
Cl+1

)
=

f
(

Cl+1
)

g
(
Cl+1

) (18)

It can be seen from (18) that h
(

µl
)

is a complex high-order function of µl , which is

difficult to calculate directly. However, similar to (11), the derivative of h
(

µl
)

with respect

to µl can be derived, and so is the second derivative. Thus, we can solve the problem (18)
using the classic Newton downhill method [38], the flow chart is shown in Figure 2b.

In the following, we derive the first and second derivatives of h
(

µl
)

with respect to µl .

The first derivative of h
(

µl
)

is

h′
(

µl
)
=

f ′
(

Cl+1
)

g
(

Cl+1
)
− f

(
Cl+1

)
g′
(

Cl+1
)

g2
(
Cl+1

) (19)

In order to get the expression of h′
(

µl
)

, we first derive f ′
(

Cl+1
)

and g′
(

Cl+1
)

.
From (16), we know that

s
(

n, Cl+1
)
= s
(

n, Cl
)
+ µlFR,ndl (20)

Then, f ′
(

Cl+1
)

and g′
(

Cl+1
)

can be expressed as

f ′
(

Cl+1
)
=
(

f
(

Cl+1
))1−p JN−1

∑
n=0
|s
(

n, Cl+1
)
|2(p−1)

(
|s
(

n, Cl+1
)
|2
)′

= 2
(

f
(

Cl+1
))1−p JN−1

∑
n=0
|s(n, Cl+1)|2(p−1)Re

(
s(n, Cl+1)

(
FR,ndl

)∗) (21)

g′
(

Cl+1
)
=

(
Pc + ∑

k∈R
|Cl+1

k |2
)′

= 2 ∑
k∈R

Re
(

Cl+1
k

(
dl

k

)∗)
(22)

For ease of presentation, let š(n) = |s
(

n, Cl+1
)
|2(p−1), ŝ(n) = Re

(
s(n, Cl+1)

(
FR,ndl

)∗)
,

f̃ =
(

f
(

Cl+1
))−p

and Ad = ∑
k∈R

Re
(

Cl+1
k

(
dl

k

)∗)
. Then, according to (19)–(22), h′

(
µl
)

can be rewritten as

h′
(

µl
)
= 2O

(
Cl+1

)(
f̃

JN−1

∑
n=0

(š(n)ŝ(n))− Ad

g
(
Cl+1

)) (23)

According to (23), the second derivative of h
(

µl
)

is



Remote Sens. 2022, 14, 1715 8 of 16

h(2)
(

µl
)
=

(
h′
(

µl
))2

O
(
Cl+1

) + 2O
(

Cl+1
)−2p f̃ 2

(
JN−1

∑
n=0

(š(n)ŝ(n))

)2

− dcons

g
(
Cl+1

) + 2A2
d

g2
(
Cl+1

)
+ f̃

JN−1

∑
n=0

(
š(n)|FR,ndl |2

)
+ f̃

JN−1

∑
n=0

(
2(p− 1)|s

(
n, Cl+1

)
|(2(p−2)) ŝ2(n)

)] (24)

where dcons = ∑
k∈R
|dl

k|
2.

After obtaining the expression of h′
(

µl
)

and h(2)
(

µl
)

, we can easily determine the

search direction of µl , which is −h′
(

µl
)

/h(2)
(

µl
)

. Then the update rule for µl is

µl
i+1 = µl

i − λ
h′
(

µl
i

)
h(2)

(
µl

i
) (25)

where i is the number of iterations, λ ∈ (0, 1] is the downhill factor, which needs to be
dynamically adjusted during the iteration process to ensure that the objective function
decreses stably.

The necessary condition for the objective function h
(

µl
)

to have an extremum is that

the first derivative h′
(

µl
)

= 0 at the extreme point. Therefore, in order to obtain the

minimum point, the stopping criterion is set to be |h′
(

µl
i

)
| ≤ |h′

(
µl

0

)
|/103. According to

Figure 2b, the optimal step size can be obtained.

3.4. Algorithm Summary and Complexity Comparison

Based on the above derivation, the new reserved symbol Cl+1 is obtained in each
iteration from Figure 2a. Then, according to (20), we have the new waveform sl+1, which
is the optimum we want. In PRP-CGPOA, the stopping criterion can be set according to
actual system requirements. For example, the PMEPR is not higher than a certain value,
or the peak power of the integrated waveform is simply constrained.

We now quantify the computational complexity of our algorithm by the number of
real multiplications and additions. Since the computational complexities of multiplica-
tion and addition operations are almost equivalent to those of division and subtraction,
respectively, we refer here to divisions as multiplications and to subtractions as additions.
A complex multiplication is counted as four real multiplications and two real additions and
a complex addition requires two real additions. IFFT or FFT block requires 2JNlog2(JN)
real multiplications and 3JNlog2(JN) real additions.

1. Complexity Analysis of PRP-CGPOA: each iteration is divided into three steps:
(a) calculate the conjugate gradient ∇C∗O(C), (b) calculate the descent direction dl , (c)
calculate the step size µl . In steps (a) and (c), FH

R /FR related operations can be quickly
implemented by FFT/IFFT. Here, the computational complexity of (.)(1/p) is regarded as a
real multiplication and the computational complexity of the initialization stage in Figure 2a
is omitted since it occurs only once.

In step (a), the computational complexity is 2JNlog2(JN) + 4Nr + 2 real multiplica-
tions and 3JNlog2(JN) + 2Nr real additions.

In step (b), the computational complexity is 12Nr real multiplications and 8Nr real additions.
In step (c), it is assumed that the optimal step size is obtained by I iterations and the first

derivative h′(µl) in Figure 2b is computed K times. Thus, the computational complexity of step
(c) is 2JNlog2(JN) + ((log2(p− 2) + 11)K + 4I + 13)JN + (6K + 4)Nr + 10K + 8I + 14 real
multiplications and 3JNlog2(JN)+ (8K+ 2I+ 7)JN +(5K+ 3)Nr + 2K+ 4I+ 5 real additions.

Therefore, the computational complexity of PRP-CGPOA is 4JNlog2(JN)+ ((log2(p− 2)
+11)K+ 4I+ 13)JN + (6K+ 20)Nr + 10K+ 8I+ 16 real multiplications and 6JNlog2(JN) +
(8K + 2I + 7)JN + (5K + 13)Nr + 2K + 4I + 5 real additions.
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2. Complexity Analysis of [19]: Assuming that the amplitude calculation for each
sample in the integrated waveform is treated as a real multiplication, the complexity in
each iteration is 2JNlog2(JN) + 4Nr JN + 5JN + 1 real multiplications and 3JNlog2(JN) +
4Nr JN + 4JN + 2Nr real additions.

3. Complexity Analysis of the Classic Iterative Clipping and Filtering (ICF) Al-
gorithm [28]: The complexity in each iteration is mainly determined by the JN-point
FFT/IFFT pair, which is 4JNlog2(JN) + 2JN real multiplications and 6JNlog2(JN) + 2JN
real additions.

For each iteration, the complexity difference between PRP-CGPOA and [28] is O(JN),
whereas they both differ from [19] mainly by O(Nr JN), so the complexity of PRP-CGPOA
is higher than that of [28], but lower than that of [19]. To evaluate computational complexity,
the iteration numbers and runtime that achieve the same PMEPR reduction performance
need to be discussed. In Section 4, we will compare the PMEPR performance of these algorithms.

4. Results
4.1. Simulation Analysis

In this section, we mainly simulate and verify the PMEPR optimization performance of
the proposed algorithm. Here, the OFDM integrated radar and communication waveform
we are discussing have multiple subcarriers, and continuous subcarriers are reserved near
the center frequency, i.e., R = {−(Nr/2),−(Nr/2) + 1, . . . , (Nr/2)− 1}. The parameter
settings are shown in Table 1. In this paper, R = 50% is mainly discussed, i.e., the en-
tire bandwidth of the integrated waveform is used for radar detection, and half of the
bandwidth is used to transmit communication information.

Table 1. Simulation parameters.

Parameter Value

Pulse Width 10 µs
Bandwidth 100 MHz

Sampling Frequency 400 MHz
Number of Subcarriers 1000

Modulation 16 QAM
TRR 50%

To generate the CCDF of the PMEPR, 105 16-quadratic-amplitude-modulated (16QAM)
initial OFDM symbols are randomly generated, where the reserved subcarriers are set to 0,
i.e., C0 = 0. In the Lp-norm, p = 26.

Randomly select an OFDM symbol, and after PRP-CGPOA optimization, the final
integrated waveform is obtained. Figure 3 shows the envelopes of the integrated waveform
after 143 iterations and the initial waveform. It can be observed that the average power of
the integrated waveform is significantly increased, which reduces the PMEPR from 8.7 dB
to 2.3 dB. According to the radar equation [39], the integrated waveform with high average
transmit power enables long-range detection.

The PMEPR and the objective function of (10) versus the number of iterations are
calculated and shown in Figure 4, and the PMEPR obtained by [19,28] are also shown for
comparative analysis. As shown in Figure 4, the objective function of (10) on the right
axis is monotonically reduced, and the overall trend of PMEPR obtained by PRP-CGPOA
on the left axis is decreasing, but not monotonically decreasing, unless p approaches
infinity. Compared with [19,28], PRP-CGPOA can achieve high PMEPR reduction gain
with less iterations.
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Figure 3. Envelopes of the initial and integrated waveform.

Figure 4. PMEPRs and objective function in (10) versus the iteration numbers, where Algorithm 1 is
from [19] and Algorithm 2 is from [28].

Figure 5 shows some comparisons of these three PMEPR reduction algorithms with a
PMEPR threshold of 3 dB. For CCDF = 10−4, PRP-CGPOA obtains 9.4 dB PMEPR reduction,
which is 5 dB better than [19] and 6.7 dB better than [28].

To analyze the computational complexity, Figure 6 plots the iteration numbers that
achieve the same PMEPR as a function of the achieved PMEPR of the three algorithms. It
can be observed that the number of iterations increases as the PMEPR decreases. For a
desired PMEPR of less than 6 dB, PRP-CGPOA requires fewer iteration numbers than
others, which shows that PRP-CGPOA has the lowest complexity. However, for a PMEPR
greater than 6 dB, PRP-CGPOA requires more iteration numbers than [19], which does not
mean higher complexity, because the complexity of a single iteration in PRP-CGPOA is
lower than that of [19]. Therefore, it is necessary to compare the runtime of the achieved
PMEPR. Specially, to achieve a 6 dB/7 dB PMEPR, the runtime of PRP-CGPOA and [19]
are 19.2 ms/8.3 ms and 62.6 ms/17.9 ms, respectively. Since the 6 dB PMEPR obtained
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by [28] may require a large number of iterations, only the 7 dB PMEPR is considered,
and the runtime is 33.6 ms. Thus, compared with the other two algorithms, PRP-CGPOA
has lower complexity to obtain the same PMEPR. Comparisons of these algorithms are
further listed in Table 2. The PRP-CGPOA achieves a 5 dB improvement in PMEPR at
1/7 of the runtime of [19], and 6.7 dB improvement in PMEPR at 1/2.6 of the runtime
of [28]. Therefore, the integrated waveform with high PMEPR reduction performance can
be efficiently generated by PRP-CGPOA.

Figure 5. PMEPR reduction comparison for three algorithms, where Algorithm 1 is from [19] and
Algorithm 2 is from [28].

Figure 6. Iteration numbers in complexity analysis versus achieved PMEPR, where Algorithm 1 is
from [19] and Algorithm 2 is from [28].
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Table 2. PMEPR reduction and runtime comparison of PRP-CGPOA, Refs. [19,28] to achieve
3 dB PMEPR.

Algorithm PRP-CGPOA [19] [28]

PMEPR reduction 9.4 dB 4.4 dB 2.7 dB

Runtime 41.9 ms 299.8 ms 110.4 ms

4.2. Experimental Demonstration

In this section, some initial experiments are conducted to demonstrate the practicality
of the proposed algorithm. A total of 136 OFDM symbols before and after PMEPR optimiza-
tion of the proposed algorithm are used as transmit waveforms for target detection and
communication decoding, respectively, to analyze the influence of PMEPR optimization on
radar SNR and communication BER performance. Figure 7 shows the PMEPR performance
of the transmit waveforms optimized by the proposed algorithm, where the integrated
waveform has a PMEPR gain of about 6.5 dB.

Figure 7. PMEPRs of different OFDM symbols before and after PMEPR optimization.

The integrated radar and communication system we adopted consists of two nodes,
A and B, both of which contain two antennas. Node A is a transceiver for detection,
and the two antennas of node B are both detected by node A as strong scatters, and
receive direct waves from node A for communication decoding. The system parameters
are: Pulse width of 100 µs, signal bandwidth of 100 MHz, sampling frequency of 125 MHz
and carrier frequency of 1.5 GHz. The schematic diagram of the experiment is shown in
Figure 8, where node A is about 60 m away from node B, and the two antennas of the
same node are about 1.5 m apart. Figure 9 is the echo waveforms received by node A.
Pulse compression is performed on the echoes. It can be seen from Figure 10 that there
are two targets at 55.04 m and 57.24 m, respectively, corresponding to the two antennas
of node B. Then, the echo SNR is analyzed, as shown in Figure 11. It can be observed
that the average relative SNR after and before PMEPR optimization is about 6.2 dB, which
means that the integrated waveform obtained by the proposed algorithm has better radar
SNR performance. The communication data are decoded on the direct waves received by
node B. Figure 12 is the echo constellation diagrams after channel equalization. From the
comparison before and after PMEPR optimization, it can be seen that there is no significant
change, and the BERs are 5.198 × 10−4 and 5.1976 × 10−4, which are approximately
the same.
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Figure 8. Schematic diagram of the experiment.

Figure 9. Echo waveform s for different OFDM symbols.

Figure 10. Range profiles.
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It can be suggested from the initial experimental results that the proposed PMEPR
optimization algorithm can significantly improve the radar SNR performance while main-
taining the communication BER performance.

Figure 11. Relative SNR after and before PMEPR optimization.

Figure 12. Echo constellation diagrams before and after PMEPR optimization. (a) Before. (b) After.

5. Conclusions

This paper dealt with the PMEPR optimization problem of the OFDM integrated
waveform with high TRR. To cope with the difficult problem of directly optimizing PMEPR,
the ratio of the Lp-norm of instantaneous power to the average power was firstly introduced
to approximate PMEPR with very high accuracy in the paper. By establishing the gradient
analytical model of the objective function, i.e., Lp-norm of PMEPR, the PRP-CGPOA that
uses the PRP-CGA was introduced to solve the PMEPR optimization problem. The simula-
tion results show that the proposed algorithm reduces PMEPR efficiently and quickly. The
initial experiments are conducted and show that the proposed algorithm can significantly
improve the radar SNR performance while maintaining the communication BER perfor-
mance, which is practical. For a general radar system, PA usually works at saturation level,
which is not the case for the classic communication system. Therefore, a trade-off between
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radar performance and communication performance when the integrated waveform is used
in the integrated system must be evaluated, which will be further studied in future work.
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