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Abstract: The Tree-based Pipeline Optimization Tool (TPOT) is a state-of-the-art automated machine
learning (AutoML) approach that automatically generates and optimizes tree-based pipelines using a
genetic algorithm. Although it has been proven to outperform commonly used machine techniques,
its capability to handle high-dimensional datasets has not been investigated. In vegetation mapping
and analysis, multi-date images are generally high-dimensional datasets that contain embedded
information, such as phenological and canopy structural properties, known to enhance mapping
accuracy. However, without the implementation of a robust classification algorithm or a feature
selection tool, the large sets and the presence of redundant variables in multi-date images can impede
accurate and efficient landscape classification. Hence, this study sought to test the efficacy of the
TPOT on a multi-date Sentinel-2 image to optimize the classification accuracies of a landscape infested
by a noxious invasive plant species, the parthenium weed (Parthenium hysterophorus). Specifically, the
models created from the multi-date image, using the TPOT and an algorithm system that combines
feature selection and the TPOT, dubbed “ReliefF-Svmb-EXT-TPOT”, were compared. The results
showed that the TPOT could perform well on data with large feature sets, but at a computational cost.
The overall accuracies were 91.9% and 92.6% using the TPOT and ReliefF-Svmb-EXT-TPOT models,
respectively. The study findings are crucial for automated and accurate mapping of parthenium weed
using high-dimensional geospatial datasets with limited human intervention.

Keywords: parthenium weed; multi-date image; single-date; hybrid feature selection method; TPOT

1. Introduction

Invasive plant species (IPSs) are pervasive globally, causing significant adverse impacts
on social and ecological systems. Parthenium weed (Parthenium hysterophorus) is one
of the most prolific IPSs that adversely affects animal and human health, agricultural
productivity, rural livelihoods, local and national economies, and the environment [1]. In
South Africa, it constitutes a threat to the globally recognized biodiversity hotspots, such as
the Maputaland-Pondoland-Albany hotspot and the Isimangaliso Wetland Park in Eastern
Cape and KwaZulu-Natal, respectively. Hence, it is necessary to cost effectively determine
its spatial distribution as a first step towards mitigating its spread [2].

The Sentinel-2 sensor provides open-source image data with a wide swath (290 km),
and a relatively high spatial resolution (up to 10 m) and spectral resolution (13 bands).
Moreover, Sentinel-2 data have a six-day global revisit, valuable for improved vegetation
mapping. Vuolo et al. [3], for instance, showed that additional multi-temporal Sentinel-
2 image data increased the classification accuracies of nine crop types during the 2016
and 2017 cropping season in Austria; this was an improvement attributed to embedded
information, such as the phenological and canopy structure [4]. Nevertheless, without a
robust classifier and/or feature selection method, the correlated or redundant variables
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created from multi-date imagery can impede accurate and efficient classification of a
landscape. In this regard, we hypothesize that an automated machine learning (AutoML)
approach, such as the Tree-based Pipeline Optimization Tool (TPOT), together with feature
selection, can considerably enhance multi-date Sentinel-2 image maps to depict the weed’s
accurate spatial representation.

The Tree-based Pipeline Optimization Tool (TPOT) is a state-of-the-art automated
machine learning (AutoML) approach that was developed by Olson and Moore to maxi-
mize classification accuracies on supervised classification tasks [5]. The adoption of the
TPOT limits human intervention by automating the algorithm search and optimization.
Previous studies have proven that the TPOT could create more accurate models than con-
ventional machine learning techniques [5,6]. For example, Sohn et al. [7] found that an
improved version of the TPOT, the Tree-based Pipeline Optimization Tool—Multifactor
Dimensionality Reduction (TPOT-MDR), outperformed a tuned logistic regression and
XGBoost classifiers. However, AutoML, such as the TPOT, is relatively new to the remote
sensing community. Furthermore, although TPOT seems promising for geospatial image
processing, it requires a lot of time to determine an optimized pipeline [8]. For instance,
with its default parameters (i.e., 100 generations with a population size of 100), the TPOT
evaluates 10,000 pipeline configurations to find the recommended pipeline. This makes the
TPOT impractical for high-dimensional datasets. Hence, feature selection, as a preprocess-
ing step to TPOT implementation, would be crucial to overcome this limitation. Feature
selection algorithms are typically classified into three groups, namely, filters, wrappers
and embedded. Hybrid feature selection methods generally use the strength of the filter
and wrapper feature selection methods. Typically, the first feature dimension of data
is reduced by using a filter method, followed by a wrapper method for the selection of
the optimal feature subset [9]. These approaches are usually faster than wrapper-based
methods, yield better accuracies than filter methods and select fewer features [10,11]. For
example, Kiala et al. [12] and Robnik-Šikonja and Kononenko [13] found that ReliefF, a filter
method, and svm-b, a wrapper method, could select a small subset of optimal features and
yield high classification accuracies, respectively. Embedded ExtraTrees (EXT), a modified
version of the Random Forest (RF) classifier, was found to be faster and more accurate than
RF [14]. In this study, a hybrid feature selection method, dubbed “ReliefF-Smvb-EXT”, was
developed to serve as a preprocessing step to the TPOT. Hence, this study sought to assess
the efficacy of the TPOT on the multi-date Sentinel-2 image, to optimize the classification
accuracies. Specifically, we compared the models created from the multi-date image, using
the TPOT, and optimal bands selected from the multi-date image, using an algorithm
system that combines ReliefF-Smvb-EXT and the TPOT. Ultimately, this study provides a
novel approach that is useful for reducing the redundancy on high-dimensional datasets,
without compromising the mapping accuracy of parthenium-infested landscapes.

2. Materials and Methods
2.1. The Study Area

The study site is in the Mtubatuba municipality within the KwaZulu-Natal province
of South Africa (Figure 1). The entire study area is 129 km2, with a significant parthenium
weed infestation. The basalt, sand, and mudstone geological formations underly the study
site [15]. The area lies within a subtropical climate with a 21.5 ◦C and 600 to 1250 mm annual
average temperature and rainfall, respectively. Predominant land uses include commercial
agriculture, subsistence farming, mining, and high- and low-density settlements.

2.2. Reference Data

Conspicuous patches of parthenium weed infestations distributed across different
land use/cover types were identified using a high spatial resolution (50 cm) color orthopho-
tograph, captured in 2008. A survey of the identified patches was then undertaken in the
study area using a differentially corrected Trimble GeoXT hand-held GPS receiver with
50 cm accuracy. The ground truth campaign was conducted during summer between
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12 January and 2 February 2017. In total, 90 patches of parthenium weed greater than
10 × 10 m were randomly selected across different land use/cover types to account for
variability in different ecological conditions within the study area. In addition, GPS points
of surrounding land use/cover types, such as forest, grassland, built-up and water bodies,
were collected. Supplementary GPS coordinates of these land use/cover types were also
extracted from the color orthophotograph to increase the number of samples. In total,
447 reference points for mapping parthenium weed and major land use/cover classes were
created (Table 1). As recommended by Adelabu et al. [16], these points were randomly split
into training (70%) and test datasets (30%), with equal class proportions in each dataset for
model development.
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Figure 1. A map of South Africa (a) showing the KwaZulu-Natal province (b) and the study area
(c) depicted in a Sentinel-2 true color composite.

Table 1. Land use/cover classes and respective samples.

Class Number of GPS Points

Forest 100
Water body 70

Parthenium weed 90
Grassland 92
Settlement 95

2.3. Acquistion of Multi-Date Sentinel-2 Images and Pre-Processing

Parthenium weed typically germinates between September and December, and senesces
between March and May [15]. Therefore, four level 1C Sentinel-2A satellite images, which
span the dominant phenological events (i.e., rosette growth, flowering, and senescence),
acquired on 19 January, 8 February, 28 February and 27 March 2017, were downloaded from
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the European Space Agency (ESA) website. The multi-date image was created by layer
stacking the four single-date images. Table 2 shows the characteristics of Sentinel-2 imagery.

Table 2. Sentinel-2 band characteristics.

Band Spectral Band/Region Pixel Size (m) Wavelength Range (nm)

1 Coastal aerosol 60 430–457
2 Blue 10 448–546
3 Green 10 538–583
4 Red 10 646–684
5 Vegetation red edge 20 694–713
6 Vegetation red edge 20 731–749
7 Vegetation red edge 20 769–797
8 NIR 10 763–908
8a Vegetation red edge 20 848–881
9 Water vapour 60 932–958
10 SWIR-Cirrus 60 1336–1411
11 SWIR 20 1542–1685
12 SWIR 20 2081–2323

The Semi-Automatic Classification Plugin [17] within the QGIS software version
2.14.11 [18] was used to atmospherically correct the four Sentinel-2 images using the
dark object subtraction approach. Atmospheric bands (i.e., band 1—coastal aerosol, band
9—water vapor and band 10—SWIR-Cirrus) were removed and bands with 20 m were
resampled to 10 m spatial resolution using the cubic spline resampling approach to allow
for layer stacking.

2.4. Feature Selection and Classification Methods
2.4.1. ReliefF

ReliefF is a multi-class version of the Relief algorithm family [19]. The principle of
ReliefF is to estimate the importance of features based on how well their values distinguish
among instances that are close to each other [20]. Assuming that S is a sample set, R is a
selected sample instance from S, K is found near the nearest neighbors of samples R, NH
(‘near-hit’) is the closest instance of sample R within the same class, NM (‘near-miss’) is the
closest instance of sample R among the different classes, and wt is the weight of feature t,
which is updated after m times of feature evaluation.

2.4.2. Support Vector Machine—Backward

Support vector machine—backward (svm-b) ranks features according to their pre-
dictive power using the classical support vector machines (SVM) in backward selection
strategy [21]. The backward elimination starts with the full set of features and then pro-
gressively eliminates the least relevant [22]. According to Kiala et al. [12], svm-b is faster
and more efficient in predictive accuracy than svm-f. The svm-b code can be found in the
skfeature Python package [23].

2.4.3. ExtraTrees Classifier

The ExtraTrees classifier (EXT) or extremely randomized tree is a modified version
of the Random Forest (RF) that was first introduced by Geurts et al. [14]. It is similar to
RF in that it constructs independent decision trees to perform classification and regression
analyses. However, EXT includes stronger randomization techniques to further reduce the
variance of the prediction model. Similar to RF, EXT provides a self-contained importance
measure for each feature when calculating the mean decrease in the classification accuracy
for the out-of-bag (OOB) data from the bootstrap sampling.
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2.4.4. The Tree-Based Pipeline Optimization Tool (TPOT)

The Tree-based Pipeline Optimization Tool (TPOT) [8] is a state-of-the-art AutoML
that applies genetic programming (GP), as implemented in the Python package Distributed
Evolutionary Algorithms in Python (DEAP) [24], to optimize machine learning pipelines.
The TPOT finds the optimized pipeline from a combination of three types of machine learn-
ing pipeline operators, namely, feature preprocessing (StandardScaler, MinMaxScaler, etc.),
feature selection (Variance Threshold, SelectKBest, etc.) and classification (DecisionTree,
Random Forest, etc.). Most of these machine learning pipeline operators are from the scikit-
learn package [25]. More details on the TPOT can be found in Olson and Moore [5]. In this
study, the TPOT was run on the datasets using its default parameters, i.e., 100 generations
with 100 population size.

2.4.5. The ReliefF-Svmb-EXT-TPOT System

The proposed classification feature selection system (Figure 2) is a combination of the
TPOT and a hybrid feature method that combines the three feature methods (ReliefF, svmb,
and EXT). It consists of two parts; the first part uses a hybrid feature selection method
for reducing the dimension of the datasets, and the second section consists of applying
the TPOT to the features selected using the hybrid method. The following steps were
followed to construct the hybrid method: First, a range of numbers that starts from 1 to
N, which is the number of bands of the multi-date image, was created. Each number in
the range corresponded to the size of feature subsets selected through ReliefF. The EXT
model was then trained and evaluated on the test dataset using the selected feature subset
through an iteration. The subset of selected features with the highest overall accuracy was
considered as the output of the first stage. In the second stage, the steps of the previous
stage were repeated using the optimal features selected by ReliefF as input and svm-
b as feature selection. In the third stage, the resulting optimal features through svm-b
were ranked by the EXT algorithm using the mean decrease in impurity (MDI). Another
interaction was implemented on different subsets of the ranked features generated, using
the “SelectFromModel” function of the sklearn package (25). The subset with the highest
predictive accuracy was the final output of the hybrid method and served as the final input
for the TPOT.
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2.4.6. Model Assessment Metrics

Estimated classes were cross-tabulated against the ground-sampled classes for corre-
sponding pixels in a confusion matrix during the model assessment. From the confusion
matrix, conventional performance metrics, such as the overall accuracy (OA), the user’s
accuracy (UA), and the producer’s accuracy (PA), were computed [26]. The OA refers to
the proportion of all the classes that was mapped correctly. The UA refers to the probability
that a pixel labeled as a certain class on the map represents that class on the ground. The
PA refers to the probability of real features on the ground being classified as such. In this
study, the focus was on the UA and PA of the parthenium weed class, as we endeavored
to map its spatial distribution. The analyses and map generation were performed using
scripts written in Python (version 3). The Wilcoxon test was used to measure the statistical
difference between the classification accuracies yielded by the TPOT and ReliefF-Svmb-
EXT-TPOT models.

3. Results

Table 3 displays the classification accuracies of the investigated models. The results
showed that the highest accuracies were achieved for the proposed algorithm system
model. Overall accuracies of 91.9% and 92.6% were obtained using the TPOT and ReliefF-
svmb-EXT-TPOT models, respectively. Moreover, the difference in classification accuracies
between the two models was not statistically significant (p < 0.05). In terms of computational
cost, the two models took 32,920 and 42,215 s, respectively. The difference in time between
the two TPOT models was 9295 s (2 h, 34 min and 54 s). This represents a reduction of 22%
in computational costs when hybrid feature selection is applied to the TPOT. Furthermore,
the hybrid feature selection method selected 15 out of 52 spectral bands that comprise the
Sentinel-2 multi-date image. A small number of variables are crucial for reducing the time
of image classification.

Table 3. Classification accuracies of the TPOT and the hybrid ReliefF-svmb-EXT-TPOT models.

Parthenium Weed Forest Water Body Grassland Settlements

Methods PA UA PA UA PA UA PA UA PA UA OA

TPOT—Hybrid 88% 78% 100% 97% 100% 100% 84% 93% 93% 97% 92.6%
TPOT—alone 85% 81% 97% 93% 100% 95% 89% 89% 91% 100% 91.9%

Based on the classification accuracies of individual land cover types, the two models
also yielded similar PA and UA accuracies for the parthenium weed. The average PA and
UA were 83% for both models. The classification accuracies of other land cover types were
also similar. Of all the classes, the water bodies followed by forest were the most accurately
mapped land cover types by both models.

Table 4 displays the error matrix of the investigated models. Overall, 125 out of
135 reference points were correctly classified using the ReliefF-svmb-EXT-TPOT hybrid
model, while 124 out of 135 reference points were correctly classified using the TPOT
alone. With regards to parthenium weed, the results showed that 21 out of 24 reference
points and 22 out of 26 parthenium weed reference points were correctly classified by the
ReliefF-svmb-EXT-TPOT model (Table 4a) and the TPOT alone (Table 4b), respectively. For
both models, parthenium weed and grassland were the most misclassified.

Figure 3 shows the maps of parthenium weed infestations using the TPOT and ReliefF-
svmb-EXT-TPOT hybrid models. It can be noticed that parthenium weed infestations were
almost non-existent in forested areas. Large parthenium stands were found in areas with
less vegetation cover and in low-density residential areas (in the north).
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Table 4. (a) Error matrix of ReliefF-svmb-EXT-TPOT hybrid model. (b) Error matrix of TPOT alone.

(a) Reference Data

Forest Water Body Parthenium Weed Grassland Settlements Total

C
la

ss
ifi

ed
da

ta Forest 29 0 0 1 0 30
Water body 0 21 0 0 0 21

Parthenium weed 0 0 21 4 2 27
Grassland 0 0 2 26 0 28

Settlements 0 0 1 0 28 29
Total 29 21 24 31 30 135

(b) Reference Data

Forest Water Body Parthenium Weed Grassland Settlements Total

C
la

ss
ifi

ed
da

ta Forest 28 0 1 1 0 30
Water body 0 20 0 0 1 21

Parthenium weed 1 0 22 2 2 27
Grassland 0 0 3 25 0 28

Settlements 0 0 0 0 29 29
Total 29 20 26 28 32 135
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4. Discussion

This study explored the capability of the Tree-based Pipeline Optimization Tool (TPOT)
to handle multi-date Sentinel-2 imagery with a high number of spectral bands, for mapping
parthenium weed infestations and its coexisting land use/covers. To achieve this, the TPOT
model was compared with a hybrid feature selection approach, i.e., ReliefF-Smvb-EXT
and the TPOT, to determine the impact of feature selection on classification accuracies.
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Classification metrics, such as producer’s accuracy (PA), user’s accuracy (UA) and overall
accuracy (OA), were used to assess the different models created in this study.

The results showed that the ReliefF-Svmb-EXT-TPOT hybrid model yielded slightly
higher classification accuracies than the TPOT model generated from the multi-date image.
Their overall classification accuracies were 92.6% and 91.9%, respectively. Although the
performance of a single-date image was not tested in this study, our TPOT model results
were superior to similar studies that used a single-date image. For instance, using SPOT
6 and Random Forest (RF), Royimani et al. [27] mapped parthenium weed infestations,
achieving an overall classification accuracy of 73%, with PA and UA of 60% and 61%,
respectively, while Kganyago et al. [28] found that SPOT 6 yielded an overall accuracy of
86%, with PA and UA of 72.22% and 93.24%, respectively, using the support vector machine
(SVM) classifier.

The above results show that the TPOT can perform well on image data with a high
number of variables, such as multi-date Sentinel-2 imagery, without prior application
of a feature selection method. The finding underscores the fact that multi-date images
are a good alternative to single-date images for mapping vegetation, particularly when
using an appropriate classifier. For example, Casady et al. [29] found similar results
when comparing IKONOS multi-date and single-date images in mapping leafy spurge
(Euphorbia esula L.), a deep-rooted perennial weed, using the maximum likelihood classifier.
Thejas et al. [30] argued that high-dimensional data may misguide the commonly used
machine learning techniques. The TPOT’s performance on the multi-date image may be
explained by the fact that it intelligently selects algorithms in the recommended pipeline
that can handle noisy or redundant features. For example, in this study, the optimized
pipeline (Appendix A, Table A1) for classifying the multi-date image contained principal
component analysis (PCA) as the pre-processor, and the ExtraTrees classifier (EXT) as the
classification method. These operators are known to efficiently deal with high-dimensional
data [31,32]. Samat et al. [32], for instance, found that EXT and their proposed method, Ex-
tremely Randomized Rotation Forest (ERRF), could achieve a better classification accuracy
than the Random Forest classifier in handling high-dimensional data.

On the other hand, in terms of computational cost, our approach (i.e., ReliefF-Svmb-
EXTTPOT) performed better than the TPOT model. The computational cost of the model
created from the optimal bands selected by our system was reduced by 22%. This reduction
can be attributed to the sequential and complementary use of the three feature selection
methods, i.e., svm-b, ReliefF and EXT, that constituted our hybrid approach. As aforemen-
tioned, the Svm-b is one of the wrapper methods known to yield a high predictive accuracy,
as it uses a robust classification algorithm [33], while the ReliefF algorithm belongs to the
filter-based methods, with a fast runtime [34]. EXT is one of the embedded methods that
are generally a trade-off between the filter and wrapper methods. Svm-b and EXT are
also faster and yield higher predictive accuracies than their counterparts, such as support
vector machine—forward (svm-f) and RF [12,14]. The literature also suggests that hybrid
feature selection methods select fewer features that generate higher predictive accuracies
than a full suite of features [10,35]. In this regard, it was expected that our hybrid feature
selection approach would significantly increase the TPOT classification accuracies on the
multi-date image. In this study, this superiority was marginal; hence, further investigation
is necessary.

5. Conclusions

Based on the findings, the following can be concluded:

(a) The TPOT can work well on a high-dimensional dataset, such as multi-date Sentinel-2
imagery, but at a higher computational cost;

(b) Combining a hybrid feature selection method with the TPOT decreases the computa-
tional costs of the TPOT on a high-dimensional dataset, with a slight increase in the
classification accuracies.
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Obtaining accurate models from the TPOT can take several hours, and even days. It
is, therefore, crucial to reduce their computation costs, while maintaining the accuracies.
Moreover, the computation costs of TPOP models drastically increase for high-dimensional
data, because of the high number of features. This study was the first to investigate the
capability of the TPOT to handle image data with a high number of variables, such as
multi-date Sentinel-2 imagery, by combining it with a hybrid feature selection method. In
the event of big data, this study is valuable, as it provides a basis for improved landscape
delineation by selecting useful features from highly dimensional datasets. The study
findings demonstrate the possibility for automatic and accurate parthenium weed mapping,
and, indeed, other plant species-invaded landscapes, with limited human intervention.
This will contribute to the management of invasive plants and their impacts, especially
in globally recognized biodiversity hotspots. For future studies, the developed algorithm
should be tested on larger feature sets, which may include a combination of vegetation
indices, textures and spectral bands.
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Appendix A

Table A1. Recommended pipelines of TPOT models from the proposed system, full multi-date image
and single-date image.

Models Recommended Pipelines

TPOT

ExtraTreesClassifier(SelectPercentile(PCA(RobustScaler(input_matrix),
iterated_power = 8, svd_solver = randomized), percentile = 51), bootstrap = False,
criterion = entropy, max_features = 0.15000000000000002, min_samples_leaf = 1,
min_samples_split = 4, n_estimators = 100)

ReliefF-Svmb-EXT-TPOT

XGBClassifier(MLPClassifier(PCA(ZeroCount(StandardScaler(input_matrix)),
iterated_power = 8, svd_solver = randomized), alpha = 0.01, learning_rate_init = 0.1),
learning_rate = 0.1, max_depth = 4, min_child_weight = 2, n_estimators = 100,
n_jobs = 1, subsample = 0.7500000000000001, verbosity = 0)
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