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Abstract: Global warming and its associated changes in temperature and precipitation have sig-
nificantly affected the ecosystem in Southwest China, yet studies that integrate temperature and
precipitation changes are inadequate for quantitatively assessing the impacts of extreme events
on ecosystems. In this study, the return period of concurrent climate extremes characterized by
precipitation deficit and extreme temperature and the spatial and temporal dynamic patterns of
their impacts on ecosystems were assessed by using high-precision temperature and precipitation
data, as well as NDVI and NPP data collected for the 1985–2015 period. The results show that the
2009 concurrent event had a return period of about 200 years. The return periods of individual
climate factors are significantly overestimated or underestimated. Concurrent events significantly
reduced the spring and annual Normalized Difference Vegetation Index (NDVI) and net primary
productivity (NPP) in Southwest China. The magnitude of the reduction in vegetation greenness
and productivity increased with the intensity of concurrent events. Concurrent events beginning in
autumn 2009 reduced spring NDVI and NPP by 8.8% and 23%, and annual NDVI and NPP by 2.23%
and 7.22%, respectively. Under future climate scenarios, the return period of concurrent events could
be significantly shortened, which would have a more severe impact on regional ecosystems.

Keywords: concurrent events; return period; precipitation deficit; NDVI; NPP; Southwest China

1. Introduction

Climate change and extreme weather and climate events are among the most serious
natural disasters affecting the social economy, agriculture, and ecosystems [1]. In the
context of climate change and socio-economic development, the frequency and intensity of
extreme weather and climate events will increase in the future. Climate change will directly
increase the probability of extreme warming events, and is also expected to increase the
probability of drought events [2]. At the same time, climate change has greatly increased the
probability of the simultaneous occurrence of heatwaves and droughts [3], such as Cohen
et al. [4] found that extreme weather, including heatwaves, droughts, and high rainfall,
is becoming more common and affecting a diversity of species and taxa. Weilnhammer
et al. [5] pointed out that due to climate change, the frequency, intensity and severity of
extreme weather events, such as heat waves, cold waves, and droughts, are increasing,
which could adversely affect human health. There have been many separate studies on
drought and heatwaves in the context of climate change, but studies focusing on the
hazards and impacts of droughts and heatwaves are still scarce.
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Some studies have qualitatively and quantitatively calculated the impact of drought
events on ecosystems; for example, Nanzad et al. [6] quantitatively analyzed the impacts
of drought on the NPP of Mongolian terrestrial ecosystems. Li et al. [7] identified the
spatial relationship between droughts and the terrestrial ecosystem productivity as being
crucial for enhancing ecosystem services in China. These studies explored the trend of
NPP changes under the influence of drought, and clarified the fact that ecosystems are
often affected by drought events. Heatwaves also have a greater impact on ecosystem
changes [8]. For example, Ainsworth et al. [9] assessed the merits of proposed ecological
interventions due to heatwaves. With the application of long-term meteorological obser-
vation, scenario simulation, and remote sensing data, global and regional studies have
shown that ecosystems are affected by extreme events such as droughts and heatwaves [10].
However, quantitative analysis of ecosystem changes caused by extreme events is still
insufficient, and the effects of concurrent events of droughts and heatwaves on ecosystems
are less well studied.

A terrestrial ecosystem is a land-based community of organisms and the interactions of
biotic and abiotic components in a given area. Climate change has had and will continue to
have profound impacts on the structure and function of terrestrial ecosystems, particularly
in ecologically vulnerable regions [11,12]. Southwest China is the largest continuous area
and the most ecologically vulnerable region in China due to the wide distribution of
karst [13]. Southwest China mostly comprises rocky desertification areas, soil erosion areas,
and poverty-stricken population areas [14]. In Southwest China, karst areas are widespread,
with shallow soils, poor continuity, and low land productivity [15]. Studies have shown
that Southwest China is very sensitive to climate change, with frequent occurrences of
droughts and heatwaves, and the increasing demand for water resources for regional
development has exacerbated the impact of extreme events [16]. The Enhanced Vegetation
Index (EVI) for vegetation in Southwest China shows a fluctuating trend of increase and
correlates well with temperature and precipitation over the same period, both of which are
mainly positive [17]. The frequency of extreme events in Southwest China has increased
significantly over the past few decades [18]. In 2009, Southwest China suffered from
extremely severe consecutive droughts in autumn, winter and spring. The reason for this
drought was low precipitation and high temperature, both of which worked together and
had a greater impact on the local ecosystem [19,20].

The return period is an important means for measuring the risk level of extreme
events [21]. The commonly used extreme value distribution models mainly assess the
hazard level of individual indicator variables but struggle to accurately measure the hazard
and the consequent risk of concurrent events [22,23]. As the field develops, multivariate
coordination methods are increasingly being used in climate change research to study the
return period of concurrent events [24]. On this basis, research on the impact of concurrent
events on natural and social economic systems can be carried out. To the best of our
knowledge, few studies have attempted to conduct research on the impact of concurrent
droughts and heatwaves on the ecosystem in Southwest China, and even less work has
been conducted to reflect the full chain of climate change-concurrent events–ecological risk
quantitative assessment. Therefore, starting with the extreme events in Southwest China
in 2009, we studied the risk assessment of concurrent events of precipitation deficit and
extreme temperature, and used NDVI and NPP as indicators to quantitatively evaluate the
impact of concurrent events on the ecosystem. This is of great significance for understand-
ing and identifying the comprehensive effects of concurrent events on natural and social
economic systems and quantitatively assessing ecosystem risks.

2. Materials and Methods
2.1. Study Region

In recent decades, with climate warming, drought disasters have occurred frequently
in Southwest China. The areas with the most severe drought intensity and losses are
mainly distributed in southern Sichuan Province, Yunnan Province, and western Guizhou
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Province [25,26], and this pattern will continue in the future [27]. In order to objec-
tively select the scope of the study region, this paper conducts a spatial analysis on the
anomaly percentage of the most typical concurrent event in 2009. From the autumn of
2009 to the spring of 2010, a severe drought that lasted for more than half a year oc-
curred in Southwest China. According to official statistics, the drought affected more than
64.2 million people, with more than 1.1 million hectares of crop failure and direct economic
losses of more than CNY 24.6 billion. Among them, the Yunnan, Guizhou, and Guangxi
provinces (autonomous regions) had the most serious drought conditions. In this study, the
area with the most severe precipitation deficit conditions (precipitation anomaly percentage
<−50%) during this event was selected as the study region (Figure 1), and the study period
was selected from October to March of the event development stage [28]. This area is
generally consistent with the spatial distribution of major past and future extreme drought
events in Southwest China, and is spatially representative and typical of extreme climate
events in Southwest China [29,30]. The study region covers an area of approximately
450,000 km2, with vegetation dominated by woodland, grassland, and cropland, with
average temperatures of 9–12 ◦C and precipitation of 200–300 mm in winter and spring.
This study region was selected with the consideration of highlighting the typicality of the
occurrence and ecological impacts of concurrent events, and the time period was selected
with the main consideration of promoting awareness of the importance of disasters and
their consequences in the winter and spring seasons in Southwest China.
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Figure 1. Location of the study region and precipitation anomaly percentage from October 2009 to
March 2010 relative to the 1971–2000 period based on CRU data.

2.2. Data

Monthly variables of temperature and precipitation were used in this study to assess
the return period of concurrent events of precipitation deficit and extreme temperature.
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The observed temperature and precipitation variables were obtained from the China Mete-
orological Data Service Centre’s Dataset of gridded monthly temperature/precipitation
in China (Version 2.0) (1961–2018). This is a 0.5◦ × 0.5◦ grid dataset established by The
National Meteorological Information Center, based on the basic meteorological data of
more than 2400 national ground stations, using thin-plate splines and introducing digital el-
evation data to eliminate the influence of elevation on spatial interpolation accuracy under
the unique terrain conditions of the region as much as possible. In view of the insufficient
length of the observed data time series, this study also introduced the high-resolution
gridded datasets (CRU TS Version 4.03) from The Climatic Research Unit (CRU) at the
University of East Anglia (UEA) as a data supplement [31]. CRU TS provides monthly
data on a 0.5◦ × 0.5◦ grid covering land surfaces (except Antarctica) from 1901 to 2018, and
the variables used in this study are temperature and precipitation. The climate scenario
data were derived from a daily dataset at a spatial resolution of 0.5◦ × 0.5◦ from down-
scaled simulations of global climate models (GCMs, i.e., GFDL-ESM2M, HadGEM2-ES,
IPSL-CM5A-LR and NorESM1-M) in the framework of the Inter-Sectoral Impact Model
Inter-comparison Project (ISI-MIP) for the period from 1950 to 2099 [32]. RCP4.5 and RCP8.5
scenarios were selected to characterize moderate development pathways and high emission
pathways, and then monthly temperature and precipitation variables were calculated to
match the temporal resolution of the observed data for subsequent analyses and calcu-
lations. Observational data and CRU data were also used and analyzed for comparison
to ensure accuracy, consistency, and reliability. Together with climate scenario data, this
ensured that the data is complete and up to date.

The net primary productivity (NPP) and Normalized Difference Vegetation Index
(NDVI) datasets were used to assess the impact of concurrent events on ecosystem pro-
ductivity in Southwest China. NPP data were derived from the monthly net primary
productivity 1 km raster dataset of terrestrial ecosystems in China (1985–2015) provided by
Chen et al. [33]. This dataset used the Carnegie-Ames-Stanford Approach (CASA) model
with input data including soil data, meteorological data (monthly radiation, precipitation,
and temperature values), land cover data, and vegetation index data. In addition, since
the distributions of the vegetation types are mainly influenced by the weather, soil, and
topographical conditions, the aspect data were also collected, as well as soil and mete-
orological data Overall, the NPP data has a high accuracy for regional-scale ecosystem
assessment [34]. The NDVI data were obtained from monthly values processed by Jiao
et al. [35] using the maximum value composite (MVC) method with a spatial resolution of
8 km. The raw data were obtained from the Global Inventory Monitoring and Modeling
Studies (GIMMS) for the period from 1982 to 2015. The simultaneous use of NDVI and
NPP data also ensures the reliability and consistency of the ecosystem impact assessment.

2.3. Methods

This study focused on Southwest China, where drought disasters are becoming more
serious under the conditions of global warming (Section 2.1), and used datasets including
climatic variables, NDVI, and NPP variables (Section 2.2). This study used return period
analysis to determine the severity of concurrent events (Section 2.3.2) on the basis of
determining the availability of data (Section 2.3.1). The impact of concurrent events on
the ecosystem was quantitatively assessed by comparing the change in NDVI and NPP
across return periods (Section 2.3.3). The method in Section 2.3.2 was also used to study
the possible trends of concurrent events under RCP4.5 and RCP8.5 scenarios, and to infer
the possible evolution of the ecosystem in Southwest China in the future.

2.3.1. Accuracy Measurement Indicator and Method

Given the short duration of the time series of observed climate variables, CRU TS
datasets were introduced in this study to more accurately describe the severity of concurrent
events. It was first necessary to verify the accuracy of CRU data for the study region
and to understand the long-term variability characteristics of regional-scale temperature
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and precipitation, which was essential for the subsequent regional-scale assessment of
concurrent events and their consequences.

First, considering the time series of climate observations and scenario data, the average
of 1971–2000 was chosen as the climate mean state in this study.

Subsequently, anomalies in temperature and precipitation for October–March of each
year from observational data and CRU data were calculated relative to the mean values
for the period.

Finally, to test the accuracy of CRU data, with reference to Zhao et al. [36], the mean
absolute error (MAE), mean absolute percentage error (MAPE), root mean square error
(RMSE), and correlation coefficient (Pearson’s R) between CRU data and observed data
were selected as indicators to assess the precision in this study. These assessment metrics
have different classifications and can be corresponded to hydrological model accuracy
assessment metrics such as Percent bias (PBIAS), Nash-Sutcliffe efficiency (NSE) and Kling-
Gupta efficiency (KGE), respectively [37,38].

MAE =
1
N
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∑
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In Equations (1)–(3), Ci is the CRU value in year i, Oi is the observed value in year i,
and N is the total number of years.

2.3.2. Return Period Analysis of Concurrent Climate Extremes

A copula function is a multivariate function obeying uniform distribution over [0, 1],
which can be applied to multidimensional joint distribution construction. The advantage
of this function is that it is not necessary to assume the same edge function, and it is
possible to derive the joint distribution function for various edge distributions, which has
a wide range of applications. Common univariate risk estimation methods significantly
underestimate or overestimate the return period, which also demonstrates the importance of
concurrent climate extremes [39].

Base on Sklar’s theorem [40], let F be a two-dimensional distribution function, with
univariate margins F1 and F2 for random variables X (precipitation) and Y (temperature),
and then the copula function (C) is cloud formulated as:

F(X, Y) = C(F1(X), F2(Y)) X, Y ∈ R (5)

where F(x) is a univariate marginal distribution function.
Based on the marginal distributions F1(X) and F2(Y) of the variables X and Y, respectively,

the joint distribution of the copula functions of the two variables can be expressed as:

F(x, y) = P(X ≤ x, Y ≤ y) (6)

The univariate recurrence period is:

T(x) =
1

1− F1(X)
T(y) =

1
1− F2(Y)

(7)
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For this study, we were interested in the joint return period of the two variables in the
concurrent climate extremes of precipitation deficit and extreme temperature, and assessed
the return periods of concurrent climate extremes under the past century, future RCP4.5
and RCP8.5 scenarios.

The survival Kendall regression period (SKRP) developed by Salvadori et al. [41] is
devoted to overcoming the unboundedness. The critical layer divides the region into safe and
dangerous events in such a way that one of the margins may tend to infinity (although the
probability is very small). The survival Kendall return period (TSKRP) can be formulated as:

TSKRP =
µ

1− K(t)
(8)

where K(t) is the survival Kendall distribution function given by:

K(t) = P
(

F(x1, x2) ≥ t
)
= P(Ĉ

(
F1(x), F2(y)

)
(9)

where Ĉ is the survival copula, and F1 and F2 are the marginal survival distribution functions.
It has been widely addressed that the precipitation and temperature obey a Weibull

distribution. The t-copula and Archimedean copula (Frank, Clayton, Gumbel) are assigned
to construct a two-dimensional joint distribution, and the parameters of which are estimated
by the maximum likelihood method. According to the calculation results of squared
Euclidean distance (SED) [42], we selected the t-copula [43] to calculate the bivariate SKRP.

2.3.3. Impact of Concurrent Events on the Ecosystem

Droughts have a lagged effect on ecosystems in Southwest China, and droughts in
winter and spring can significantly reduce primary productivity in spring and summer [44].
Here, we used NPP and NDVI data to study the effects of concurrent events in October–
March on terrestrial ecosystems in spring (March–May) and year-round from 1985 to 2015.

First, based on the monthly NDVI and NPP values, the values within the study region
were extracted and the mean or cumulative values were calculated for spring (March–May)
and year. Then, we calculated the NDVI and NPP anomalies for each spring and year
relative to the mean values for the period from 2000 to 2009. This time period was chosen
mainly since the land cover data and vegetation index data used by NPP changed around
2000, and also given that most of the years analyzed were after 2000. Finally, the spatial
averages of NDVI and NPP anomalies for each spring and year were calculated by taking
the anomalous values within the study region into account.

3. Results
3.1. Accuracy Measurement of CRU TS Datasets

First, an anomaly analysis of the observed data and CRU data relative to 1971–2000
was performed to determine the variability of temperature and precipitation in the study
region over the past century (Figure 2). The results show that the average temperature
for October–March in the study region has increased significantly over the past 50 years
at a rate of 0.22 ◦C/10a. The overall warming trend over the past 100 years is slower, at
0.04 ◦C/10a. In addition, there is no significant trend change in the cumulative precipitation
for October-March in the study region in the past century. However, the decrease trend
of precipitation in the last 30 years is about 21 mm/10a. Therefore, a warm-dry trend is
evident in the study region in recent decades.
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Figure 2. Temperature and precipitation anomalies for October–March relative to the 1971–2000
average in the study region.

RMSE is one of the most commonly used indicators to assess accuracy, and is the
expected error of all samples after removing the actual values, which is equivalent to
the true error. RMSE values for temperature and precipitation are about 0.18 and 10.47,
respectively. The correlation coefficient (Pearson’s R) between the CRU data and the
observed data is close to 1 (passing the significance test of 0.01). MAE/MAPE is also the
difference between the CRU data and the observed data, which can reflect the magnitude of
deviation relative to the original observed data. From the data in Table 1, it can be seen that
the CRU data have a small deviation relative to the observed data. These results indicate
that the CRU data have relatively good accuracy and desirable regional representativeness.
The subsequent analyses were conducted based on CRU data.

Table 1. The scores of each indicator in accuracy measurement.

Indicator RMSE R MAE MAPE

Temperature 0.18 0.96 * 0.14 0.45%
Precipitation 10.47 0.98 * 8.03 1.26%

* Statistically significant at 0.01 level.

3.2. Return Period of Concurrent Events of Precipitation Deficit and Extreme Temperature

The warm-dry trend of recent decades can be seen in the changes in temperature and
precipitation in the study region. With the increase in temperature, the same magnitude of
precipitation deficit will have a more serious impact on the natural and social economic system.

During the past hundred years or so, the highest temperature for October–March
in the study region occurred in 1998, which was 1.41 ◦C higher than the average for
1971–2000, and precipitation decreased by about 51.11 mm relative to the average for
1971–2000, ranking 14th among all years with precipitation deficit; the year with the least
precipitation for October-March in the study region was 2009, with a decrease of about
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124.27 mm relative to the average for 1971–2000, and the temperature was higher than the
average for 1971–2000 by 1.10 ◦C, second only to 1998.

In terms of univariate return periods, for events characterized by precipitation deficit,
the return period of the 2009 event is more than 360 years, the return period of the 2012
is around 45 years, and the return period of the 1998 event is less than 10 years; for
events characterized by extreme temperature, the return period of the 1998 event is about
180 years, the return period of the 2009 event is around 35 years, and the return period
of the 2012 event is about 40 years. These return periods struggle to accurately describe
the probability of two extreme events occurring simultaneously, or the probability of one
extreme event and another relatively non-extreme event (i.e., temperature extremes and
precipitation deficit relatively non-extreme in 1998, or TEPN event; and precipitation
deficit extremes and temperature relatively non-extreme in 2009, or PETN event) occurring
simultaneously, and the probability of two relatively non-extreme events (i.e., tempera-
ture extremes and precipitation deficit relatively non-extreme in 2012, or TNPN event)
occurring simultaneously.

The occurrence of such concurrent events will become more common in the context
of climate change, so it is necessary to adopt a bivariate approach to determine the return
period of concurrent events, accurately predict the probability of occurrence, and lay the
foundations for subsequent hazard and risk assessment. The return period results of
concurrent events indicate that the PETN event in 2009 has the largest return period of
more than 200 years, the TEPN event in 1998 has the second largest return period of about
80 years, and the TNPN event in 2012 also has a return period of about 50 years. There
were also five other events with return periods of between 10 and 20 years (Figure 3).
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Figure 3. Return period of concurrent events based on CRU data for October-March of 1901–2018
in the study region (10-, 20-, 50-, 100-, and 200-year return periods from the blue to the red isolines,
respectively, the same below).

3.3. Impact of Concurrent Events on the Ecosystem

Land use types in Southwest China are dominated by woodland, grassland, and
cropland. Climate change and its associated extreme climate events could have important
impacts on the greenness and productivity of ecosystems. This study attempts to integrate
extreme temperature and precipitation conditions for the purpose of quantifying their
impact on ecosystem.
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Figure 4 illustrates the impacts of the concurrent events on the greenness of the spring
vegetation in the study region. The concurrent event significantly reduced the spring NDVI
relative to the average for the period 2000–2009. The NDVI in the spring of 2010, influenced
by the PETN event that began in 2009, decreased by a maximum of 50%, with an average
decrease of 8.83% within the study region. The NDVI in the spring of 1999, influenced
by the TEPN event starting in 1998, decreased by up to 30%, with an average decrease of
5.15% in the study region. The TNPN event starting in 2012 caused a maximum decrease
of more than 20% in the NDVI in spring of 2013, with an average decrease of 0.86% in the
study region. Spatially, our results suggest that the concurrent events caused widespread
vegetation stress in the study region. In spring (March–May), the NDVI exhibited strong
negative anomalies across the study area as a result of the concurrent events (Figure 4).
The largest negative anomaly in the spring of 2010 occurred in the south-central part of the
study region, whereas the largest negative anomalies in the spring of 1999 and the spring
of 2013 occurred in the eastern and western parts of the study region, respectively, with
lower intensity than that of 2010.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. The spatial distributions of NDVI anomaly percentage in the spring (March–May) of 2010 
(a), 1999 (b), and 2013 (c) relative to the average for the period 2000–2009. 

Similar to the results of NDVI, the concurrent events also significantly reduced spring 
vegetation productivity within the study region. Relative to the average NPP in spring for 
the period 2000–2009 in the study region, the NPP in the spring of 2010 decreased by an 
average of approximately 23% and the total NPP decreased by 10.51 Tg C a−1. The NPP in 
the spring of 1999 decreased by an average of 10.49%, and the total NPP decreased by 3.48 
Tg C a−1. The NPP in the spring of 2013 was an overall positive anomaly with an increase 
of approximately 3%. The spatial distribution of anomaly percentage of NPP is basically 
similar to that of NDVI, except for differences in intensity (Figure 5). 

 
Figure 5. The spatial distributions of NPP anomaly percentage in spring (March–May) of 2010 (a), 
1999 (b), and 2013 (c) relative to the average for the period 2000–2009. 

When it comes to the distribution of annual NDVI anomaly percentages, the majority 
of the study region shows weak negative anomalies in annual NDVI due to the lagging 
effect of concurrent events (Figure 6). Over 63% of the areas showed a decrease in annual 
NDVI in 2010 compared to the average for the 2000–2009 period, with an average decrease 
of 2.23% on a regional scale, while nearly 75% of the areas showed a decrease in annual 
NDVI in 1999, with an average decrease of 1.95% on a regional scale. Half of the areas 
showed a decrease in the annual NDVI in 2013, with the overall regional scale being in 
line with the average. In contrast to the clear trend in spring NDVI with the intensity of 
concurrent events, the trend in annual NDVI is not as pronounced, partly since annual 
vegetation greenness is also influenced by summer and autumn weather, and the decline 
in NDVI in the study region was somewhat mitigated by more precipitation than the same 
period after August 2010, when temperatures were essentially flat. Spatially, the distribu-
tion of annual NDVI anomaly percentages is generally consistent with that of spring, al-
beit with slightly lower intensity. 

  

Figure 4. The spatial distributions of NDVI anomaly percentage in the spring (March–May) of
2010 (a), 1999 (b), and 2013 (c) relative to the average for the period 2000–2009.

Similar to the results of NDVI, the concurrent events also significantly reduced spring
vegetation productivity within the study region. Relative to the average NPP in spring for
the period 2000–2009 in the study region, the NPP in the spring of 2010 decreased by an
average of approximately 23% and the total NPP decreased by 10.51 Tg C a−1. The NPP
in the spring of 1999 decreased by an average of 10.49%, and the total NPP decreased by
3.48 Tg C a−1. The NPP in the spring of 2013 was an overall positive anomaly with an
increase of approximately 3%. The spatial distribution of anomaly percentage of NPP is
basically similar to that of NDVI, except for differences in intensity (Figure 5).
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When it comes to the distribution of annual NDVI anomaly percentages, the majority
of the study region shows weak negative anomalies in annual NDVI due to the lagging
effect of concurrent events (Figure 6). Over 63% of the areas showed a decrease in annual
NDVI in 2010 compared to the average for the 2000–2009 period, with an average decrease
of 2.23% on a regional scale, while nearly 75% of the areas showed a decrease in annual
NDVI in 1999, with an average decrease of 1.95% on a regional scale. Half of the areas
showed a decrease in the annual NDVI in 2013, with the overall regional scale being in
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line with the average. In contrast to the clear trend in spring NDVI with the intensity of
concurrent events, the trend in annual NDVI is not as pronounced, partly since annual
vegetation greenness is also influenced by summer and autumn weather, and the decline
in NDVI in the study region was somewhat mitigated by more precipitation than the
same period after August 2010, when temperatures were essentially flat. Spatially, the
distribution of annual NDVI anomaly percentages is generally consistent with that of
spring, albeit with slightly lower intensity.
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As for the annual NPP anomaly percentages, the decreased amplitude and spatial
distribution of NPP in the study region were more consistent with the changes in spring
NPP, although the changes in amplitude were slightly smaller (Figure 7). The vast majority
of the study region showed a significant decrease in annual NPP in 2010 compared to the
average for the 2000–2009 period, with an average decrease of 7.22% on a regional scale,
which was the lowest level in the study period. In 1999, the area with a declining trend
in annual NPP decreased significantly compared with spring, with an average decrease
of 3.30% on a regional scale. The decline trend and amplitude of the annual NPP in 2013
were basically the same as those in spring, with an overall average decrease of 1.05%
on a regional scale.
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3.4. Return Period of Concurrent Events under RCP Scenarios

The assessment of the occurrence and impacts of concurrent events can provide a basis
for future research. Here, our analysis leads to the following important question: what
will the probability of the occurrence of these three events be in the future, which is an
important guide for future ecosystem and socioeconomic risk prediction and adaptation
actions. Using the return period calculation method of the concurrent events given in
Section 2.3.2, the return periods of concurrent events simulated by the GCMs for the future
RCP4.5 and RCP8.5 scenarios were evaluated. The asterisks, pentagrams, and circles in
Figures 8 and 9 refer to TEPN events, PETN events, and TNPN events, respectively.
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Under RCP4.5 scenario, it can be seen from the temperature and precipitation distribu-
tion for October-March in the study region simulated by GFDL-ESM2M that the average
temperature would increase by about 3 ◦C relative to the average for the period 1971–
2000, and the precipitation deficit would not exceed 124 mm for the PETN event. In this
case, both the HEND and TNPN events would have a return period of less than 10 years
and become normal events; the return period of the PETN event would be reduced from
200 years to 50 years, and the possibility of occurrence would be greatly increased
(Figure 8a). In the temperature simulated by HADGEM2-ES, an extreme value of 6 ◦C
would exceed the average for the period 1971–2000, and the magnitude of precipitation
deficit would be similar to that of the PETN event. In this case, HEND and TNPN events
would also become normal events; the recurrence period of PETN events would be sig-
nificantly reduced to about 20 years, and the possibility of occurrence would be further
increased. It is worth mentioning that the precipitation deficit of the PETN event with
a return period close to 50 years would be about 140 mm, and the temperature increase
would be less than 1 ◦C (Figure 8b). Temperature and precipitation changes simulated
by IPSL-CM5A-LR and NorESM1-M would be similar, with a 4 ◦C (Figure 8c) or 3 ◦C
(Figure 8d) temperature increase and a precipitation deficit close to 200 mm compared
to the average of the period 1971–2000. In both cases, TEPN, PETN, and TNPN events
would become normal events. The study region would experience more severe temperature
increase and precipitation deficit events.

Under RCP8.5 scenario, compared with the average for the period 1971–2000, the
maximum precipitation deficit simulated by GFDL-ESM2M and HADGEM2-ES would
be about 150 mm; the difference lies in that the temperature increase simulated by GFDL-
ESM2M would be about 5 ◦C, while the temperature increase simulated by HADGEM2-ES
would be over 7 ◦C. In both cases, TEPN and PETN events would become normal events;
the return period for PETN events would be reduced to 20 years (Figure 9a) and less than
20 years (Figure 9b). Compared with the average for the period 1971–2000, the maximum
precipitation deficit simulated by IPSL-CM5A-LR and NorESM1-M would be similar, both
around 200 mm, and the temperature increase simulated by IPSL-CM5A-LR would be
around 6 ◦C higher than that of NorESM1-M by about 5 ◦C. In both cases, TEPN, PETN and
PETN events would become normal events. A significant increase in temperature would
result in a return period of only about 20 years for extreme events with a precipitation
deficit of about 150 mm (Figure 9c,d).

4. Discussion

Studies have shown that global warming and the other changes in the climate system
triggered by it are unprecedented over decades and even millennia. The changes in the
climate system have led to the accentuation of the adverse effects of gradual events and the
frequency of extreme weather and climate events (emergencies) [45], which have posed
significant risks to natural and human systems on all continents and oceans, severely
affecting the dynamics of ecosystems. Southwest China is a key ecologically vulnerable
region, and the frequent occurrence of extreme climatic events in recent years [46] has
seriously affected the regional ecological security pattern [47]. Previous studies have shown
that the correlation between vegetation cover changes and temperature factors is more
significant in most parts of Southwest China, that extreme temperature events have a
greater impact on ecosystems than extreme precipitation events, and that research on the
impact of extreme events on ecosystems should focus more on the increasing frequency and
impact of extreme precipitation and extreme temperature in the region [48,49]. Therefore, it
is necessary to study the frequency of concurrent events and their effects on the spatial and
temporal dynamic patterns of ecosystems in Southwest China through a comprehensive
analysis of multi-climatic elements to provide theoretical references for the sustainable
development and conservation of ecosystems in the region.

Return periods are a useful tool for assessing the risk of extreme events, but single-
factor return periods can significantly overestimate or underestimate the frequency of
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extreme events, and analysis of concurrent events return periods is essential for quantifying
ecosystem responses to climate factors and can better explain the dynamics of temperature
and precipitation in relation to ecosystem change. The correlation coefficient between
the temperature values of the CRU data used in this study and the observed values is
0.96, with a coefficient of determination above 0.92; the correlation coefficient between the
precipitation values and the observed values is 0.98, with a coefficient of determination
above 0.95. This indicates that the CRU data have high accuracy in characterizing both
temperature and precipitation changes in Southwest China. The discrepancy mainly lies
in the poor consistency of the extremes, which is mainly reflected in the underestimation
of the temperature in 2009, 2012, and 2016 and the overestimation of the precipitation
deficit in 1998, 2009, and 2012, which may underestimate the return period of concurrent
events. The results of the spatial correlation analysis based on ArcGIS version 10.2 show
an overall positive correlation between NPP and NDVI in Southwest China on seasonal
and interannual scales, which can also be seen in the more consistent adverse effects of
concurrent events on both. In addition, the impact model established in this study mainly
focuses on regional averages, and future dynamical mechanism analysis can be conducted
for spatial differences caused by three extreme events (TEPN, PETN, and TNPN) to explore
the possible processes of different extreme events affecting ecosystems.

The risk of climate-related impacts results from the interaction of climate-related
hazards (including hazardous events and trends) with the vulnerability and exposure
of human and natural systems [50]. Therefore, climate-related hazards include climate
change trends and extreme events, both of which have the potential to affect ecosystems
to different degrees. Impact assessment of climate change trends could introduce the
concept of thresholds to estimate the extent of ecosystem risk by comparing indicators
over different periods [51,52]. For extreme events, impact or risk assessment generally
considers three elements: hazard, vulnerability, and exposure; hazard is the probability
of occurrence of extreme events, and exposure is the ecosystem itself; vulnerability refers
to the degree of destruction to exposure by the occurrence of extreme events, and is the
probability of damage to nature and socio-economics within the influence of the hazard.
The return period of concurrent events can be used as a measure of hazard, the impact
model can provide criteria for vulnerability, and the spatial and temporal distribution of
ecosystem indicators simulated by the ecological model can be used as exposure (that is,
the ecosystem risk of concurrent events can be quantitatively assessed). This can provide
useful ideas for further revealing and separating the effects of climate trends and extreme
events on ecosystems.

In this study, the univariate return periods calculated using the Pearson Type III
Distribution are shown in Figure S1. From the results, it is clear that the precipitation-
based univariate hazard estimation approaches significantly overestimate the return period
(hazard of occurrence) of concurrent events in 2009 and underestimates the return period
(hazard of occurrence) of concurrent events in 1998 and 2012. The temperature-based
univariate hazard estimation approaches underestimate the return period (hazard of oc-
currence) of all three concurrent events. Based on the results of the variation trends
of vegetation greenness and productivity decline and the return period of concurrent
events in this study, a relationship curve of concurrent events affecting ecosystems can
be established as an indicator of vulnerability in the risk assessment of extreme events.
Here, it is reasonable to assume that the larger the return period of concurrent events,
the greater the NDVI and NPP reduction rate. The return periods of different concurrent
events and the corresponding NDVI and NPP anomaly percentages were counted, and the
quantitative relationship between concurrent events and their corresponding NDVI and
NPP anomaly percentages was established by linear regression methods to quantitatively
assess the impact of concurrent events with different return periods on the ecosystem
(Figure S2). The results show that for every 10-year increase in the return period of concur-
rent climate extremes, NDVI and NPP decrease by 0.4% and 1.6%, respectively. It should be
noted that the purpose of constructing the vulnerability curves in this study is to propose a
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feasible method for vulnerability assessment. However, due to the limitation of the amount
of data, only four events were used for the construction of the curves. With the increase in
the amount of data, more accurate results may be obtained in subsequent studies.

5. Conclusions

In this study, the return periods of past and future concurrent events of precipitation
deficit and extreme temperature for October-March in Southwest China were evaluated.
Based on this, the spatial and temporal dynamic patterns of the impacts of concurrent
events on the ecosystem were explored. The conclusions are as follows:

(1) There has been a significant warm-dry trend in Southwest China over the past
hundred years or so, especially in recent decades. In this context, the possibility of si-
multaneous high temperature and precipitation deficit events has increased significantly.
The return periods of the concurrent extreme precipitation non-extreme heat event in
2009, the concurrent extreme heat non-extreme precipitation event in 1998, and the con-
current non-extreme heat non-extreme precipitation event 2012 are about 200, 80, and
50 years, respectively.

(2) Concurrent events severely impacted terrestrial ecosystems in Southwest China,
significantly reducing vegetation greenness and primary productivity. The results show
that concurrent events caused the decrease in NDVI and NPP for the spring and year.
Reductions in NDVI and NPP relative to the average for the 2000–2009 period increased
with the intensity of the concurrent events. Concurrent events with the 200-year return
period reduced spring NDVI and NPP by 8.8% and 23%, and annual NDVI and NPP by
2.23% and 7.22%, respectively.

(3) Concurrent events are expected to become more frequent and severe in the context
of climate change. The analysis results of climate scenarios indicate that the faster the
temperature increases in Southwest China, the more pronounced the shortening of the
return period of concurrent events is. Under RCP4.5 and RCP8.5 scenarios, the return
period of the PETN events defined in this study would shorten from 200 years to less than
50 and 20 years, respectively, and the return period of both TEPN and TNPN events would
be less than 10 years, becoming non-extreme events.
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