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Abstract: The discrepancies in existing land cover data are relatively high, indicating low local
precision and application limitations. Multisource data fusion is an effective way to solve this
problem; however, the fusion procedure often requires resampling to unify the spatial resolution,
causing a lower spatial resolution. To solve this problem, this study proposes a multisource product
fusion mapping method of filtering training samples and product correction at a fine resolution.
Based on the Superpixel algorithm, principal component analysis (PCA), and statistical extraction
techniques, combined with the Google Earth Engine (GEE) platform, reliable land cover data were
acquired. GEE and machine-learning algorithms correct the unreliable information of multiple
products into a new land cover fusion result. Compared to the common method of extracting
consistent pixels from existing products, our proposed method effectively removes nearly 38.75%
of them, with a high probability of classification error. The overall accuracy of fusion in this study
reached 85.80%, and the kappa coefficient reached 0.82, with an overall accuracy improvement of
11.75–24.17% and a kappa coefficient improvement of 0.16 to 0.3 compared to other products. For
existing single-category products, we corrected the phenomenon of overinterpretation in inconsistent
areas; the overall accuracy improvement ranged from 2.99% to 20.71%, while the kappa coefficient
improvement ranged from 0.22 to 0.56. Thus, our proposed method can combine information from
multiple products and serve as an effective method for large areas and even as a global land cover
fusion product.

Keywords: land cover; multisource information fusion; Google Earth Engine; superpixels; large-area
remote sensing products

1. Introduction

Accurate, large-area land cover maps are basic data support for exploring the rela-
tionship between natural and biological activities and spatial patterns [1,2]; the simulation,
monitoring, and evaluation of ecological and environmental changes [3]; human social and
economic development [4,5]; and other scientific studies. Food security and arable land
area assessment, forest change monitoring, urban extent expansion and structure analysis,
and water body area extraction and pollution assessment also require timely updates of
large thematic maps to provide important indicators for human sustainable development
strategies [6,7]. With the development of remote sensing technology and the appearance of
a variety of sources of satellite data, remote sensing has become an important method for
mapping land cover over a large area [8,9].

Based on image data from NOAA/AVHRR, MODIS, ENXISAT/MERIS, and other
satellite sensors, land cover products usually have a coarse spatial resolution (300–1000 m).
For example, we have 500 m spatial resolution MODIS global land cover data from Boston
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University [8]. The European Space Agency (ESA) ESA-CCI dataset has a 300 m spatial
resolution [10]. The Copernicus Global Land Service (CGLS) dataset has a 100 m spatial
resolution [11]. Previous research has shown that a lower spatial resolution usually leads
to lower accuracy [12,13]. With the development of the Landsat series of satellites, the
monitoring of a large area with medium-spatial-resolution land cover products became
possible. For example, FROM-GLC, developed by Tsinghua University in China [14],
and GlobeLand30, developed by the National Basic Geographic Information Center of
China, etc., have 30 m spatial resolution [15]. In addition, there are a number of single-
category land cover products, such as the Global Food Security support analysis data 30 m
(GFSAD30) developed by USGS [16], the Advanced Land Observing Satellite Phased Array
L-band SAR (PALSAR) developed by the Japan Aerospace Exploration Agency (JAXA)) [17],
the Global Surface Water Explorer dataset [18], etc. Different remote sensing images affect
the spatial resolution of land cover data, and the spatial resolution restricts the level of
detail of a land cover classification system [19]. Consequently, due to different classification
systems, classification methods, and types of satellite sensors, there is great inconsistency
between multisource products. When multisource products are used in collaboration, it
will lead to greater uncertainty [16,20].

Data fusion can overcome the limited accuracy and uncertainty associated with single
data sources by integrating multisource data [21,22]. Some fusion decision methods, such as
the Bayesian theory, Dempster–Shafer evidence theory, and fuzzy set theory have been effec-
tively applied in numerous studies [20,23,24]. Several studies have introduced multisource
statistics to calibrate fused products, which can improve the accuracy of fusion results.
The accuracy of the original products significantly affects the fusion results [25,26], such
that, as input products increase, the weights of the products are determined with a priori
knowledge; otherwise, it is difficult to obtain good results [27]. Due to the above limitations
of fusion decision methods, researchers selected samples from previous surface coverage
products to update maps. For example, the U.S. Geological Survey (USGS) proposed
spectral change monitoring methods to identify nonchange areas and used these areas
as samples to train decision tree classifiers that can rapidly update land cover maps [28].
However, information obtained from a single source of surface coverage products is often
less reliable than the fusion of multiple products [21].

Multisource data fusion often requires resampling to unify spatial resolution and
obtain consistent areas [16]. Consistent areas are defined as areas in which a variety of land
cover products remain in the same category at the same geographical location [29]. We
can usually have a high level of confidence in the information retained about each ground
cover product [27]. Therefore, extracting effective information from the consistent areas of
multi-source products and correcting the inconsistent areas is considered a fusion method
to effectively improve mapping accuracy [30]. However, due to resampling, the final result
will still have a coarse spatial resolution.

To solve the above problems, we base this study on an existing method [31] and
further propose a multisource land cover products fusion method based on superpixels
and statistical extraction that achieves fine spatial resolution and high-accuracy fusion
results. In the first step, we analyze the consistency of multiple products to divide the
study area into 300 m spatial resolution (coarse) consistent areas and inconsistent areas
and compose a 30 m feature image layer on the GEE platform. In the second step, the
PCA and SNIC (simple noniterative clustering) algorithm is used to segment the image
in the coarse consistent areas, remove outlying pixels, and obtain 30 m spatial resolution
(fine) consistent areas. In the third step, we obtain reliable training samples by the local
adaptation sampling method and correct inconsistent areas by machine learning to generate
fine spatial resolution and high-precision fusion results. Then, we apply and verify the
proposed method with the example of southeast Asia.
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2. Materials
2.1. Study Area

The study area is located between 30◦N and the Equator and between 90◦E and 120◦E,
spans an area of about 5 million km2 (Figure 1a), and consists of tropical and subtropical
ecosystems that have rich biodiversity. Figure 1a shows that the net primary productivity
(NPP) is very high in this part of the northern hemisphere at low and mid-latitudes. The
NPP and biodiversity significantly affect the population density of an area [32]. Most of the
study area is occupied by cropland and forest; cropland expansion and forest loss are very
common in this region [33]. This creates a complex land cover pattern in this region, such
that accurate land cover products are needed to provide data to support various scientific
studies, as the current land cover products covering this region exhibit poor consistency
and generate uncertain information when used in concert, as detailed in Section 2.2.1.
Thus, a reliable method is needed to fuse various surface covering products to yield a
high-accuracy and uniform product.
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Figure 1. Study area and multisource land cover product consistency analysis results. (a) Map of
study area. Data from the NASA Earth Observatory website (https://neo.gsfc.nasa.gov (accessed
on 30 October 2021)) for 2015 Net Primary Productivity products, and composite monthly products
into annual products; (b) 300 m spatial resolution (coarse) multisource product complete consistent
areas, where consistent areas are defined as those where a variety of land cover products remain in
the same category at the same geographical location. The study area was divided into 5◦ × 5◦ tiles
and numbered in areas. (c) Inconsistent areas of multisource product; the inconsistent area is the
complement set of the consistent area in b. The same geographical location in the inconsistent area
will have two or more categories.

https://neo.gsfc.nasa.gov
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Differences in location can cause huge variations in the spectral reflectance of various
features, which are more pronounced for climate-influenced features (e.g., cropland and
grassland) [34]. Furthermore, there is a significant difference in the feature distribution
within a local area compared to the entire study area, and this difference can have an
impact on accuracy when selecting samples [35]. At the same time, the area per interpre-
tation must be reduced to ensure that the running memory of the GEE is not exceeded.
Therefore, this study divided the study area into 31 tiles of 5◦ × 5◦, as shown in Figure 1b,
where the tile numbered 0 was not involved in the consistency analysis due to the small
land area (Section 2.2.1). Samples were selected from corresponding or adjacent tiles as
much as possible to minimize the effect of latitude and longitude differences, as detailed
in Section 3.3.

2.2. Data Sources and Preprocessing
2.2.1. Uniformity and Consistency Analysis of Multisource Land Cover Products

This study used eight products from the 2015 coverage study area: the Moderate
Resolution Imaging Spectroradiometer Land Cover Type Product (MCD12Q1), CCI-LC,
Copernicus Global Land Service (CGLS), FROM-GLC, GFSAD30, PALSAR, Global Surface
Water Data (GSWD), and Global Human Settlement Layer Built-up area (GHS-BUILT).
Product details are listed in Table 1. We unified the eight products under the same geo-
graphical coordinate system (WGS84, World Geodetic System 1984), along with spatial
resolution unification, to facilitate multisource data fusion. In previous studies, data spatial
resolution unification was often performed by selecting a coarse spatial resolution for all
products as the target of resampling to optimally control the product accuracy. Considering
that only one of the eight products (MCD12Q1) has a spatial resolution of 500 m, followed
by 300 m, resampling to 300 m can preserve the maximum amount of detail. Nearest
neighbor is the resampling technique to be used, determined by referring to previous stud-
ies. The definitions of classification systems of the eight products varied due to different
producers and sensors, and we integrated the classification systems of each product to
finally classify it into one of the nine ground cover categories (Figure 1b). Further details
on the classification systems are provided in the literature and S 1 [31].

Table 1. Details on eight land cover products.

Product Name Source Spatial Resolution (m) Sensor Classification Method

MCD12Q1 Boston University 500 MODIIS Decision tree and
neural network

CCI-LC ESA 300
MERIS FR/RR,

AVHRR, SPOTVGT,
PROBA-V

Unsupervised
Classification and
Machine learning

CGLS ECJRC 100 PROBA-V Random forest

FROM-GLC Tsinghua University,
China 30 TM ETM+ Support vector

machine, random forest

GFSAD30 USGS 30 MODIS Machine learning

PALSAR JAXA 25 PALSAR Supervised
classification

GSWD ECJRC 30 TM ETM + OLI Supervised
classification

GHS-BUILT ECJRC 30 TM ETM + OLI Machine learning

The consistency level is defined as the number of land cover products that are consis-
tent with a category at the location of an image. A higher consistency level represents a
higher confidence level for the corresponding category [27]. The method of consistency
area generation in this study is the same as in Liu and Xu [31]. The pixels of the highest
consistency level for each category were selected as the consistent area of each category
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(Figure 1b). The rest is called inconsistent area (Figure 1c), amounting to about 55.3%.
Notice that the consistent area here is 300 m spatial resolution, and we call it the coarse
consistent area. Because 30 m spatial resolution land cover products have more detail, the
coarse consistent areas ignore this detail, which limits the application. At the same time,
incorrectly marked pixels will provide incorrect samples, limiting the sampling accuracy.

2.2.2. Landsat Data Composition

In this paper, 30 m spatial resolution Landsat images were selected to reinterpret the
inconsistent areas. The screening of images for cloud-free pixels and cloud masking on the
GEE platform revealed that the images from 2015 were not sufficient to cover the entire
study area, such that Landsat images from the years adjacent to 2015 (2014 and 2016) were
selected to fill in the gaps in the data. The orthocorrected surface reflectance data from
the Earth observation satellite 7 ETM+ and 8 OLI sensors covering the study area for the
three years 2014–2016 were screened for a total of 27,223 images, including 11,278 Landsat
7 ETM+ and 15,945 Landsat 8 OLI. Invalid observations due to clouds, cloud shadows,
and snow in each image were masked by the FMASK algorithm available on the GEE
platform [36,37]. The use of Landsat 7 data in the long time series was similarly used to
fill in the gaps in the data and increase the frequency of valid observations. Furthermore,
Roy et al. found potentially subtle but significant differences between the spectral features
of Landsat ETM + and Landsat 8OLI. Hence, we applied the coefficients proposed by
Roy et al. to achieve reconciliation by linearly converting the ETM + spectral space to the
OLI spectral space [38].

Six spectral bands, namely, blue, green, red, near-infrared (NIR), shortwave infrared
(SWIR)1, and SWIR2 are used in Landsat 7 ETM+ and Landsat 8 OLI, and 11 spectral
indices are calculated, with the formulae for each spectral index shown in Table 2 [39].
Referring to previous research to ensure adequate phenological information and image
quality, the year was divided into three periods (period 1: 1–120 days in 2015, period 2:
121–240 days in 2015, and period 3: 241–365 days in 2015) [31,35]. We used the median pixel
of the time series of each period as the spectral feature of this period, because the median in
time series is insensitive to phenological change [40]. To increase the discrimination of the
features, we also calculated the standard deviation of each feature for three years, such that
a total of 68 band feature layers ((6 bands +11 spectral indices) × 3 periods + (17) three-year
standard deviation) were synthesized on the GEE platform by each tile.

Table 2. Formulae of spectral indexes.

Spectral Index Formula

Normalized Difference Vegetation Index (NDVI) [41] NIR−Red
NIR+Red (1)

Green Chlorophyll Vegetation Index (GCVI) [42] NIR
Green − 1 (2)

Enhanced Vegetation Index (EVI) [43] 2.5× NIR−Red
NIR+6×Red−7.5×Blue+1 (3)

Normalized Burn Index (NBR) [44] NIR−SWIR
NIR+SWIR (4)

Normalized Difference Water Index [45] Green−NIR
Green+NIR (5)

Normalized Difference Built-up Index [46] SWIR1−NIR
SWIR1+NIR (6)

Normalized Difference Snow Index (NDSI) [47] Green−SWIR1
Green+SWIR1 (7)

Modified Soil-Adjusted Vegetation Index (MSAVI) [48] 2×NIR+1−
√
(2×NIR)2−8×(NIR−Red)

2
(8)

Soil-Adjusted Total Vegetation Index (SATVI) [49] 1.5× SWIR1−Red
SWIR1+Red+0.5 −

SWIR1
2 (9)

Bare Soil Index (BSI) [50] (SWIR2+Red)−(NIR+Blue)
(WIR2+Red)+(NIR+Blue)

(10)

Blue–Red (BR) [51] Blue− Red (11)
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3. Methods

Figure 2 shows the flowchart of the process used in this study to realize the multi-
source land cover products fusion method. The method is divided into three main parts.
First, Landsat ETM and OLI images in the study area were retrieved on GEE and then pre-
processed to create a composite image layer. Second, PCA technology was used to reduce
the dimension of 68 bands, the SNIC algorithm was used to segment the image layer in the
coarse consistent area, and the outlier pixels were removed by a statistical method. Finally,
a large number of reliable training samples was obtained in the 30 m spatial resolution
consistent area by the local adaptation sampling method, and we reinterpreted inconsistent
areas and evaluated accuracy. Validation of the results was performed by sample points of
high spatial resolution images, visually interpreted by Google Earth.
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3.1. Principal Component Analysis of Coarse Consistent Areas

A lot of research determines whether each pixel has changed from an existing land use
cover product by the anomalous distribution of spectral features [28,53]. This study applies
this method to purify samples in coarse consistent areas (Figure 1b). Spectral features used
for statistical distributions generally consist of multiple metrics, such as Zhang et al., using
the pixel with the smallest distance from the mean of 39 metrics as a sample [35], because
there is no single metric that can distinguish multiple features, and outlier detection for
multiple metrics is a complex matter. In this study, we employed the PCA technique for the
feature reconstruction of 68 bands of feature layers to regenerate PC1-68 bands, where the
first principal component (PC1) can be equivalently defined as the direction that maximizes
the variance of the projected data and decreases sequentially thereafter [50]. Through this
approach, each feature can be distinguished by fewer bands, achieving data dimensionality
reduction. We performed PCA for consistent areas within each tile separately, and this step
was executed on the GEE.

3.2. Superpixel Removal of Coarse Consistent Areas

Multisource data preprocessing and resampling can achieve the coarse consistent area.
In fact, data such as Landsat images can already provide more detailed results. Hence,
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we aimed to purify the coarse consistent area and improve it to fine resolution. Then,
we extracted effective information from the initially obtained fine consistent areas and
applied 30 m spatial resolution Landsat images provided by GEE to correct the uncertainty
information between multiple sources [31].

However, pixel-by-pixel removing will produce a large number of speckles (the “pret-
zel phenomenon”) due to the heterogeneity within the image pixels [54], and the counting
of a large number of pixels often exceeds the GEE memory limit. A superpixel is a small
region composed of a series of adjacent pixels with similar features such as color, bright-
ness, and texture. Most of these small regions retain effective information and generally
do not destroy the boundary information of objects in the image. Grouping pixels with
certain similar features by a superpixel segmentation algorithm and then removing the
pixel groups (superpixel) will greatly reduce the pretzel phenomenon, while avoiding
the computational complexity due to redundant information [55]. This study chose the
simple noniterative clustering (SNIC) superpixel algorithm provided by GEE, which is an
improved version of the simple linear iterative clustering algorithm (SLIC) that does not
require iterations, is more efficient, and is better for boundary preservation.

Moreover, SNIC requires a size parameter to determine the seed interval and, consid-
ering that the consistent area has 300 m spatial resolution and the Landsat image has 30 m
spatial resolution, we experimentally determined the size value to be 3, which is sufficient
for oversegmenting the Landsat image in the consistent area, avoiding the impact of insuffi-
cient segmentation on the removing of outliers later [56]. We set the compactness parameter
in SNIC to 0, which disables spatial distance weighting, as we do not want the generated
pixels to be regular compact squares; the aggregation of pixels with similar properties is
sufficient for our purposes. The mean of the six original bands of the Landsat image at the
median of 2015 was synthesized and used as the band for the input segmentation. The
mean values of PC1 and PC2 within each superpixel were computed after SNIC segmenta-
tion and used as features of the superpixel instead. By aggregating image elements with
the same attributes, the statistical features of each superpixel were made more consistent
with the real geographic object, and outliers could be detected more easily [57].

Then, we counted the PC1 and PC2 attributes of the generated superpixel. In general,
a threshold for outlier detection is determined empirically or by an optimal threshold
search algorithm, and the removed superpixel covered the mislabeled regions in the coarse
consistent area [28]. However, coarse consistent areas are multicategory, and if performed
simultaneously would lead to under- or overremoving. Therefore, we counted and removed
the coarse consistent areas for each category separately. After our tests, PC1 and PC2 of
each feature were found to be normally distributed, so we combined PC1 and PC2 and
applied the Lajda criterion to construct the outlier discriminant condition:

Class(i) =


consistency area i f

(
PC1i − δPC1i ≤ PC1i,j ≤ PC1i + δPC1i

)
∩(

PC2i − δPC2i ≤ PC2i,j ≤ PC2i + δPC2i

)
inconsistency area else

(12)

where i represents the ground cover category, j represents each superpixel, PC1i,j, PC2i,j

represent the PC1, PC2 values of each superpixel in each category, PC1i, PC2i represent the
mean values of PC1, PC2 in each category, and δPC1i , δPC2i represent the standard deviation
of PC1, PC2 in each category, respectively. According to Morisette and Khorram, who
proved that the optimal range of thresholds is the mean value plus or minus 0.5–1.5 times
the standard deviation [58], we determined the threshold value, with the standard deviation
as the range. The image pixels in the superpixel that satisfy the outlier discrimination
condition are then considered to be a fine consistent area; otherwise, they are marked as
removed pixels. The removed pixels are merged with the inconsistent areas in Section 2.2.1
to become the final inconsistent areas.
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3.3. Local Adaptation Sample Set

As per Section 2.1, the study area is divided into 31 tiles for the above process to reduce
the effect of latitude and longitude differences on the reflectance of different features, and
we employed a locally adaptive sampling method [35]. Samples for each feature within
each tile must first be randomly selected from the fine consistent area within this tile for
each category after purification. We only set a lower limit on the number of samples per
category (1000), and no upper limit on the total number except meeting the memory limit
of GEE operations. If there were insufficient samples in the corresponding tiles due to the
lack of fine consistent areas of a certain category or fewer consistent areas, the missing
samples were replenished from the nearest surrounding tiles. The selected samples were
used to train only the current tiles. The total number of samples was over 300,000; this
group is called a locally adapted sample set. Using this locally adapted sampling method
can minimize the inconsistency of the characteristic attributes of the categories due to the
spatial distribution. Random sampling is generated by generating random points within
an exact consistent area.

3.4. Correction of Inconsistent Areas

In this study, the random forest (RF) classifier was trained by the locally adapted
training samples of Section 3.3 with the aim of reinterpretation for inconsistent areas. RF
is a machine-learning classifier that contains multiple decision trees and whose output
class is determined by the plurality of the output classes of the individual trees [59]. In
remote sensing, RF has the advantages of being insensitive to noise, avoiding overfitting,
and achieving higher accuracy compared to other machine-learning classifiers. Based on
previous studies, we chose 300 trees, using 63% of the training data randomly selected to
package each tree as parameters for the RF classifier [52,60,61]. The classification results
were mosaicked with the fine consistent areas to form a new 30 m spatial resolution land
cover fusion result.

3.5. Validation and Accuracy Assessment

To verify the reliability of the extracted samples from the fine consistent area, historical
high spatial resolution images in Google Earth were used to validate them. We randomly
selected 900 sample points (100 of each category) from the fine consistent area for each
category [62], counted the type of each pixel point and the confusion matrix of nine
categories, and calculated the accuracy of each point being correctly masked, before and
after removing.

Validation and evaluation of the inconsistent areas’ correction results were performed
using validation points generated by stratified random sampling, and the validation points
were also interpreted by Google Earth. The number of validation points was 1507 (Table 3).
Four original spatial resolution multicategory land cover products (MCD12Q1, CCI-LC,
CGLS, and FROM-GLC) and four single-category products (GFSAD30, PALSAR, GSWD,
and GHS-BUILT) within the study area were also compared and evaluated. Notably, our
accuracy evaluation was performed only in the inconsistent area, as the differences in accu-
racy of various products are mainly reflected there [31]. In contrast, the class distribution of
all products in the fine consistent area was the same and completely reliable. We counted
the confusion matrix for each product and calculated the commonly used metrics (producer
accuracy, user accuracy, and overall accuracy) to evaluate the calibration results and the
accuracy of the spatial distribution of the four multicategory products [63,64].
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Table 3. Validation points for evaluation of correction results accuracy in the study area.

Class Number of Test Samples

Cropland 355
Forest 565

Grassland 155
Shrubland 76

Water 86
Urban/Built-up 100

Bare land 62
Permanent snow and ice 57

Wetland 51
Total 1507

4. Results
4.1. 30 m Spatial Resolution Coarse Consistent Area Removal Results

Figure 3a shows the results of superpixel removal. After counting the number of
pixels, about 38.75% of them were removed (Figure 3b). Among these, the categories of
shrubland, bare land, permanent snow and ice, and wetland required local adaptation
samples due to their small incidence and uneven spatial distribution of image elements
in the fine consistent area. Figure 4 shows the visual details of the removal results in the
enlarged window. From the visual effect, incorrectly marked pixels of nine categories of
the coarse consistent area can be effectively removed by the superpixel removal method.
Figure 4a shows the coarse consistent area removal results for the cropland, and the
corresponding high-definition images can identify that the removed pixels are architectural
areas. Figure 4b shows the results of consistent area removal for the forest land, where
the pixels removed are roads and bare land in the forests; the pixels removed from the
grassland (Figure 4c) are bare land and roads in the grassland; the pixels removed from
the shrubland (Figure 4d) are the surrounding bare land; the pixels removed from the
consistent area of the water (Figure 4e) are the croplands, grasslands, built-up areas, and
bare land around the water; the coarse consistent areas removed from the urban/built-up
land (Figure 4f) are the grass, water, and bare land; the coarse consistent areas of bare land
(Figure 4g) and permanent snow and ice (Figure 4h) are mixed together at high altitudes.
The consistent areas of wetlands (Figure 4i), although less consistent, still remove some
pixels that are obviously not wetlands. No pretzel phenomenon is generated in the fine
consistent region, because the superpixels are removed instead of individual pixels.

4.2. Validation of Automatic Sample Extraction in Fine Consistent Areas

We verified the confusion matrix of the 900 randomly selected samples (Figure 5)
shown in Table 4 and found that the accuracy of the samples for shrubland and permanent
snow and ice was as low as 90%, the accuracy of the water was as high as 99%, and the
overall accuracy of all samples was 93.44%. The confusion matrix shows how the samples
in each type are incorrect: for example, the cropland sample contains small amounts of
grassland, water, and urban/built-up areas. This indicates that inconsistent feature classes
in cropland still exist within the 30 m spatial resolution of the fine cropland consistent
area. However, the error rate for each of the selected types of samples does not exceed
10%. From the above verification, we know that the samples selected by our method are
reliable and satisfy the threshold requirement that the RF classifier can resist at most 20%
of the noise [61].
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Figure 5. Validation results for random pixel points in the fine consistent area.
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Table 4. Confusion matrix of validation results for random pixel points in the fine consistent area.

Class Cropland Forest Grassland Shrubland Water Urban/Built-
Up Bare Land

Permanent
Snow and

Ice
Wetland Total

Cropland 97 1 1 3 0 1 1 0 5 109
Forest 0 98 1 2 0 0 0 0 0 101

Grassland 1 0 92 4 0 1 4 6 1 109
Shrubland 0 1 3 90 0 0 0 0 0 94

Water 1 0 0 0 99 1 0 0 3 104
Urban/Built-up 1 0 1 0 1 95 2 0 0 100

Bare land 0 0 1 1 0 2 91 4 0 99
Permanent snow

and ice 0 0 1 0 0 0 2 90 0 93
Wetland 0 0 0 0 0 0 0 0 91 91

Total 100 100 100 100 100 100 100 100 100 900

4.3. Inconsistent Area Correction Results and Accuracy Evaluation

The correction results for the inconsistent areas are shown in Figure 6. The PA, UA,
OA, and confusion matrix based on the validation points are shown in Table 5. The overall
accuracy of the final correction results is 85.8%, and the kappa coefficient is 0.82. In the
validation of PA, the highest PA of forest can reach 91.5%. The PA of shrubland is the
lowest, 73.65%. In the validation of UA, urban/built-up area has the highest UA at 94.25%,
while wetland has the lowest at 68.97%. The difference between PA and UA represents the
reliability of land cover products for the accuracy of land cover types (Li and Xu, 2020). In
the correction results, the difference between PA and OA for all types except building land
and wetland is within 5%, indicating that the reliability of these types is relatively strong
in the results. The difference between PA and UA for building land is 12.25%, which is
due to the complex landscape pattern in the urban area, which can easily misclassify urban
vegetation into cultivated and grassland types and thus reduce the mapping accuracy of
urban/built-up areas. The difference between PA and UA for wetlands is 9.47%, because
agricultural land, grassland, and water bodies are easily misinterpreted as wetlands to a
certain extent, resulting in low UA for wetland types.
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Table 5. Confusion matrix for inconsistent areas validation points.

Class Cropland Forest Grassland Shrubland Water Urban/Built-
Up

BARE
LAND

Permanent
Snow and

Ice
Wetland Total PA OA Kappa

Cropland 307 24 11 0 4 3 0 0 6 355 86.48% 85.80% 0.82
Forest 28 517 7 9 2 1 0 0 1 565 91.50%

Grassland 8 7 121 10 0 4 0 0 5 155 78.06%
Shrubland 7 7 6 56 0 0 0 0 0 76 73.68%

Water 3 0 1 0 75 1 1 0 5 86 87.21%
Urban/Built-up 12 0 3 0 1 82 1 0 1 100 82.00%

Bare land 2 1 7 1 2 0 49 0 0 62 79.03%
Permanent snow

and ice 0 0 2 0 0 0 9 46 0 57 80.70%
Wetland 5 3 0 2 1 0 0 0 40 51 78.43%

Total 372 559 158 78 85 91 60 46 58 1507
UA 82.53% 92.49% 92.49% 76.58% 71.79% 88.24% 90.11% 81.67% 100.00% 68.97%

4.4. Comparison with Other Products
4.4.1. Multicategory Product Comparison

The corrected inconsistent areas were mosaicked with fine consistent areas to obtain
the fine spatial resolution land cover fusion results. There were no differences in tiles
boundaries, as shown in Figure 7a. The land cover results obtained by the proposed
method were somewhat similar in terms of feature class distribution compared to other
multicategory products (Figure 7b–e), owing to the consistency of the multiple products
included in the method.
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Figure 7. Comparison of corrected and existing multicategory products: (a) fusion result; (b) CCI-LC;
(c) CGLS; (d) FROM-GLC; (e) MCD12Q1.

However, the differences in spatial resolution and the mapping methods lead to significant
differences in details for each product, as shown in Figure 8. Because the spatial resolution of
the three products, CCI-LC, CGLS, and MCD12Q1, is below 30 m, numerous details are missed.
For example, some fine rivers (Figure 8(a1)) are completely ignored in these three products
(Figure 8(a3,a4,a6)), and even in the coarse spatial resolution MCD12Q1, there is only the forest
category. The urban/built-up type is more complex internally (Figure 8(b1)), and the internal
information is even more incompletely covered by the urban/built-up type in the coarse spatial
resolution products (Figure 8(b3,b4,b6)). Permanent snow and ice, grass, and bare land are
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not accurately portrayed in coarse spatial resolution products (Figure 8(c3,c4,c6)). FROM-GLC
has the same spatial resolution as our fusion result and, although the details are not ignored
visually, our land cover product is more accurate at portraying real landforms. For example,
many areas of bare land and grassland in Figure 8(a1,a2) are incorrectly marked as cropland in
FROM-GLC (Figure 8(a5)), continuous bodies of water (in Figure 8(b1)) are incorrectly marked
as buildings in Figure 8(b5), and in Figure 8(c1), the FROM-GLC product incorrectly marks
part of the bare land and grassland located in the shadows as water (Figure 8(c5)).
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Figure 8. Fusion result compared with other four multicategory products’ details: (a–c) for three
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The accuracy assessment results of the verification points of the inconsistent areas
for the four multicategory products are shown in Tables S2–S5, and the comparative
assessment results of the calibration results and the four products (including PA, UA,
OA, and Kappa coefficient) are shown in Figure 9. Figure 9 shows that the PA of each
type in our inconsistent region correction result is higher than the other four products. In
the comparison of UA, except for grassland, shrubland, and bare land, which are more
ill-defined, and wetland, which is difficult to identify, the UA is not the highest. The UA
of the other types are all higher than the other four products. Our correction results have
the highest OA (85.80%) and kappa coefficient (0.82), the lowest OA for MCD12Q1 (OA is
61.63%, kappa coefficient is 0.52), and the correction results are 11.75–24.17% better than
the other products in OA; the kappa coefficient increased by 0.16–0.3. This indicates that
the mapping results of our proposed method effectively improve the accuracy of land cover
in inconsistent areas.
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4.4.2. Single-Category Product Comparison

A comparison of the cropland, forest, water, and urban/built-up types in the cali-
bration results with the four single-category products (GFSAD30, PLASAR, GWSD, and
GHS-BUILT) is given in Figure 10. The distribution of the corresponding categories in the
correction results remains with the four products. The confusion matrices of the correc-
tion and validation results of the four single-category inconsistent regions are shown in
Tables S6–S13, and the comparative evaluation results are shown in Table 6. Based on the
comparison of the accuracy of the corresponding types of categories in the inconsistent
areas, the PA of our correction results is closer to the existing single-category products,
whereas the UA, OA, and kappa coefficient are higher than those of the corresponding
single-category products. The improvement in OA for each type in the inconsistent areas
varied, with the largest improvement of 20.71% for forest and the smallest improvement of
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only 2.99% for water bodies. As to the kappa coefficient, the largest improvement was 0.56
for urban/built-up, and the smallest improvement was 0.22 for water. The results show that
our method, nevertheless, slightly improved the accuracy compared to a single category.
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Figure 10. Comparison of correction results with four single-category products: (a1,a2) for cropland
distribution, where (a1) is GFSAD30 and (a2) is the cropland distribution of the correction results;
(b1,b2) for forest distribution, where (b1) is PLASAR and (a2) is the forest distribution of the correction
results; (c1,c2) for water distribution, where (c1) is GWSD and (c2) is the water distribution of the
correction results; (d1,d2) are urban/built-up distribution comparisons, where (d1) is GHS-BUILT
and (d2) is the urban/built-up distribution of the correction results.

Table 6. Correction results compared with the accuracy assessment of four single categories of products.

Land Cover
Product Land Cover Type Producer’s

Accuracy (%) User’s Accuracy (%) Overall Accuracy (%) Kappa

Correct result Cropland 86 83 93 0.8
GFSAD30 75 52 78 0.47

Correct result
Forest

92 92 94 0.87
PLASAR 66 64 73 0.43

Correct result
Water

87 88 99 0.87
GWSD 79 59 96 0.65

Correct result Urban/Built-up 82 90 98 0.85
GHS-BUILT 74 24 83 0.29

5. Discussion

To solve the problem that the fusion result cannot achieve fine spatial resolution due to
resampling in previous fusion methods [27,29,30], this study developed a multisource land
cover products fusion method based on the SNIC segmentation algorithm and the PCA
technique. The results show that this fusion method can obtain fusion results with fine
spatial resolution and improve the accuracy of inconsistent areas to various degrees. This
method creatively uses the SNIC segmentation algorithm to segment Landsat image layers
in the coarse consistent areas into pixel groups, and outlier pixel groups were removed by
PCA and statistical methods. Therefore, coarse consistent areas can be purified into fine
consistent areas, and the spatial resolution has also been increased by 30 m from 300 m.
This has never been done in previous studies. The results showed that 38.75% of pixels
were removed in the coarse consistent areas. In addition, most of the pixels that were
removed were wrongly marked because they were ignored during resampling (Figure 4).
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At the same time, the sample accuracy rate can reach 93.44% through sampling detection of
fine consistent areas. The sample accuracy of RF in this study can be satisfied. Therefore,
the method of SNIC and PCA proposed in this paper to improve the spatial resolution of
fusion result is worthy of reference.

With the support of GEE’s massive dataset and a large number of sample points
(more than 300,000) from the fine consistent areas, the inconsistent areas were recorrected.
New fine spatial resolution fusion results were obtained. The results showed that, of
the four available multicategory products, CCILC, CGLS, and MCD12Q1 have spatial
resolutions below 30 m and provide significantly less information than the fusion results
in this study. For the FROM-GLC with the same spatial resolution, our fusion results
provide significantly higher accuracy in the inconsistent areas. The overall accuracy in
the inconsistent areas can reach 85.80%, and the kappa coefficient can reach 0.82—an OA
improvement of at least 11.75%, and at least 0.16 for the kappa coefficient. The overall
accuracy can be improved by at least 2.99%, and the kappa coefficient can be improved
by at least 0.22 compared to single-category products. Similar to other studies, this study
also found an overinterpretation of a single category of products. Based on the confusion
matrix of the validation points of a single category, other types in the inconsistent areas of a
single category of products are easily overtranslated into this single type, which leads to
excessive differences in the PA of the products compared to UA. The method used in this
study corrects the problem of overinterpretation of a single product in the inconsistent area.
Therefore, the fusion method provided in this study can effectively integrate multiple land
cover products and correct uncertain information.

We found that cropland and grassland are prone to being confused for each other in
multicategory land cover mapping, and shrubland is a transitional land cover type between
grassland and bare land [30]. Wetland is, inherently, a difficult land cover type to map, and
wetland, cropland, and grassland are also prone to misclassification in wet locations [52].
The spectral characteristics are very similar between these types, such that the accuracy
of the grassland, shrubland, and wetland is relatively low in each product [14]. Although
our method can improve the mapping accuracy of these types in inconsistent areas, it is
still difficult to achieve high accuracy, which must be noted in future studies to distinguish
these types more accurately. Grassland, bare ground, and permanent snow and ice are
distributed at high latitudes and high altitudes and are often mistaken for each other due to
the melting snow and ice caused by seasonal changes [65,66], which also requires attention
in future studies.

Although our method can integrate valid information from multiple land cover prod-
ucts and significantly improve accuracy, there are still some aspects that can be improved
and should continue to be investigated in the future, considering the problems in the
current method. The method proposed in this paper needs to be carried out under the
condition that there are many land cover data of the same year, and remote sensing images
are fully covered. The land cover products selected in this study are from 2015 and can
cover the study area with only Landsat images with 30 m spatial resolution. With the
updating of land cover data and open access to high-resolution remote sensing images,
such as the Sentinel 2 and GF series, the method proposed in this paper is still applicable
and obtains spatial higher resolution land cover fusion products. However, there are some
problems and possibilities for improvement. First, large-area, high-spatial-resolution image
segmentation is a challenge, and ensuring accurate segmentation and operation efficiency
is a problem to be solved. Second, research shows that a data cube can solve the problem of
insufficient global remote sensing data coverage, so the method proposed in this paper can
also use a data cube to obtain land cover products with high time frequency [66]. Finally,
deep learning has shown excellent potential in remote sensing in recent years [67], and
fusion and prediction of more accurate information through deep learning compared to
traditional models will also be our future direction.
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6. Conclusions

In this study, we proposed a multisource land cover products fusion method based on
the SNIC segmentation algorithm and PCA technique. The method can solve the problem
of fusion results not achieving fine spatial resolution due to resampling in previous fusion
methods. It creatively used the SNIC segmentation algorithm to segment Landsat image
layers in coarse consistent areas into pixel groups, and outlier pixel groups were removed
by PCA and statistical methods. Then, fine consistent areas were obtained. The proposed
method was applied and validated with the sample points of Google Earth, and the results
showed an accuracy of 93.44% for extracting training samples from the fine consistent
areas. This indicates that the proposed method is fully capable of providing numerous
accurate samples. In this study, the overall accuracy of the fusion result in the inconsistent
area was 85.80%, which is an improvement of 11.75– 24.17% compared with the existing
multicategory land cover products of CCI-LC, CGLS, FROM-GLC, and MCD12Q1. The
kappa coefficient was 0.82, which is an improvement of 0.16–0.3. Compared with four
single-category products, GFSAD30, PLASAR, GWSD, and GHS-BUILT, our fusion results
can improve the overall accuracy by 2.99–20.71% and the kappa coefficient by 0.22–0.56
and can correct the overinterpretation in inconsistent areas for single-category products.
Therefore, our method is proven to be effective and, in the future, under the condition of
complete coverage of high-spatial-resolution remote sensing images, can rapidly obtain
high-accuracy and fine-spatial-resolution land cover fusion results over a large area.
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