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Abstract: Mapping of fire extent and severity across broad landscapes and timeframes using remote
sensing approaches is valuable to inform ecological research, biodiversity conservation and fire
management. Compiling imagery from various satellite sensors can assist in long-term fire history
mapping; however, inherent sensor differences need to be considered. The New South Wales Fire
Extent and Severity Mapping (FESM) program uses imagery from Sentinel and Landsat satellites,
along with supervised classification algorithms, to produce state-wide fire maps over recent decades.
In this study, we compared FESM outputs from Sentinel 2 and Landsat 8 sensors, which have
different spatial and spectral resolutions. We undertook independent accuracy assessments of both
Sentinel 2 and Landsat 8 sensor algorithms using high-resolution aerial imagery from eight training
fires. We also compared the FESM outputs from both sensors across 27 case study fires. We compared
the mapped areas of fire severity classes between outputs and assessed the classification agreement at
random sampling points. Our independent accuracy assessment demonstrated very similar levels of
accuracy for both sensor algorithms. We also found that there was substantial agreement between the
outputs from the two sensors. Agreement on the extent of burnt versus unburnt areas was very high,
and the severity classification of burnt areas was typically either in agreement between the sensors
or in disagreement by only one severity class (e.g., low and moderate severity or high and extreme
severity). Differences between outputs are likely partly due to differences in sensor resolution (10 m
and 30 m pixel sizes for Sentinel 2 and Landsat 8, respectively) and may be influenced by landscape
complexity, such as terrain roughness and foliage cover. Overall, this study supports the combined
use of both sensors in remote sensing applications for fire extent and severity mapping.

Keywords: fire extent and severity mapping; Sentinel 2; Landsat 8; sensor comparison

1. Introduction

Remote sensing enables efficient monitoring of fire extent and severity across broad
landscapes over time, providing unprecedented opportunities for ecological research,
biodiversity conservation and fire management [1–3]. These products can be used to
explore drivers of fire behaviour [4,5], and to inform prescribed burning regimes, which
are widely used in the management of fire susceptible ecosystems [3,6]. They can also
be used to plan and monitor restoration and recovery efforts [7,8], and to predict post-
fire risks of biodiversity loss [9,10], ecosystem change [11], erosion [12,13] or subsequent
wildfire [14]. Monitoring changes in landscape fire patterns over longer timeframes is
especially pertinent in contemporary climate change research [15,16]. Flannigan et al. [17]
noted the expanding role of satellite sourced data in building accurate fire history datasets
on a global scale to underpin an enhanced understanding of fire and climate change.

Using recent developments in remote sensing, fire extent and severity can be mapped
retrospectively through the application of modern machine learning approaches to histori-
cal satellite imagery. Algorithms using pre-fire and post-fire image differencing across a
range of spectral indices, and trained on manually verified fire observation data, can be
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used to classify levels of canopy scorch and consumption (and thus, map fire extent and
severity), at high levels of accuracy [18–20]. By compiling imagery from various satellite
missions, it is possible to create a comprehensive history of fire extent and severity over
recent decades. However, due to the differences in available satellite imagery over time,
which are captured at varying resolutions and by different sensor types, it is important to
ensure that modelling outputs are comparable between sensors.

The New South Wales (NSW) Fire Extent and Severity Mapping (FESM) program uses
a Random Forest algorithm to produce maps of burned area and severity at a state-wide
scale. Random Forest, a supervised classification machine learning model, is commonly
used for remote sensing of fire within Australia [18–20] and internationally [21,22]. The
NSW FESM program has been developed for application on both Sentinel 2 and Landsat
imagery. For the 2017–2018 fire year to current and ongoing fire years, Sentinel 2 imagery
is used, while Landsat imagery is used for historical mapping (1989–1990 to 2016–2017).
The NSW FESM program recently completed state-wide mapping of the 2016–2017 fire
year, using Landsat 8. Other fire years that have been reported (2017–2018 to current)
were mapped using Sentinel 2 [23]. Due to differences between sensors (Table 1), FESM
algorithms have been trained separately for each sensor type.

Table 1. Details of Sentinel 2 and Landsat 8 satellite sensors (adapted from Flood [24]).

Sentinel 2 Landsat 8

Imagery availability Late 2015–present 2013–present

Imagery resolution
(pixel size) 10 m (20 m for SWIR bands) 30 m

Sensor revisit time Every 5 days Every 16 days

Timeframe used for FESM 2017–2018 fire year to present 2016–2017 fire year and prior

Spectral wavelengths
(nanometers)

Blue: 458–522 (band 2) Blue: 450–510 (band 2)

Green: 543–578 (band 3) Green: 530–590 (band 3)

Red: 650–680 (band 4) Red: 640–670 (band 4)

NIR: 785–900 (band 8) NIR: 850–880 (band 5)

SWIR1: 1565–1655 (band 11) SWIR1: 1570–1650 (band 6)

SWIR2: 2100–2280 (band 12) SWIR2: 2110–2290 (band 7)
NIR = Near Infra-Red, SWIR = Short Wave Infra-Red.

While both models use an equivalent supervised classification method and produce
analogous severity outputs, the comparison of outputs between sensors has not been
comprehensively assessed. Although Sentinel 2 and Landsat 8 sensors cover similar spectral
wavelengths, there are inherent differences that may impact remote sensing applications
to various degrees [24–26]. For example, Sentinel 2 has a higher resolution (10 m pixel
size) compared to Landsat 8 (30 m pixel size), while Landsat 8 has several bands with
more narrow spectral coverage compared to Sentinel 2 (e.g., Red, NIR and SWIR1). Several
studies have compared reflectance values for equivalent spectral bands between these two
sensors [24–26], and small-scale studies have compared the effects of sensor type on fire
extent and severity mapping [27,28]. These studies suggest that both sensors can reliably
be used interchangeably in some applications.

In this study, we aimed to test the robustness of an operationalised fire extent and
severity mapping application to different sensor types at a broad scale. We compared the
Sentinel 2 and Landsat 8 FESM algorithms through independent accuracy assessments
across 8 training fires. Differences in the proportion of fire area mapped in each severity
class, and the statistical agreement between FESM outputs were also compared between
algorithms across 27 study fires.



Remote Sens. 2022, 14, 1661 3 of 16

2. Materials and Methods
2.1. Study Area and Fire Selection

The study focused on 27 case study wildfires in the state of New South Wales (NSW),
in south-eastern Australia (Figure 1). Study fires were selected from previously mapped
fires occurring between 2018 and 2021, where Sentinel 2 and Landsat 8 availability overlaps.
Study fires were selected to cover a wide range of geographic locations, landscape settings
and fire severity patterns.

Figure 1. Location and relative size of the 27 study fires used to compare fire extent and severity map
outputs in New South Wales, Australia.

2.2. Imagery Pre-Processing

Landsat OLI tiles were downloaded from USGS (https://www.usgs.gov/core-science-
systems/nli/landsat/landsat-data-access, accessed on 30 January 2022) and Sentinel 2 tiles
were downloaded from the Copernicus Hub (https://www.copernicus.gov.au/, accessed
on 30 January 2022), as level 1 C products, which represent orthorectified, top-of-atmosphere
reflectance. The images were then processed to represent standardised surface reflectance
with a nadir view angle and incidence angle of 45◦ (i.e., Nadir BRDF-Adjusted Reflectance
(NBAR) at 45◦ [29]). This corrected for variations due to atmospheric conditions and the
bi-directional reflectance distribution function (BRDF), which also accounted for topo-
graphic variations using a 30 m digital surface model (DSM) derived from the Shuttle
Radar Topography Mission digital elevation models [30,31]. These corrections minimise
the differences between scenes caused by different sun and view angles. Fractional cover
products were generated for each image using a fractional cover model, which calculates

https://www.usgs.gov/core-science-systems/nli/landsat/landsat-data-access
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-data-access
https://www.copernicus.gov.au/
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for each pixel, the proportion of photosynthetic (green) vegetation, non-photosynthetic
(‘non-green’, dead or senescent vegetation) and bare ground cover [32].

For each fire, cloud-free pre-fire and post-fire images were selected from both sensors,
within six weeks from the fire start and end date, with less than two weeks between
matched sensor images (mean = 4.0 days, SD = 3.2). Fire start and end dates and selected
imagery are provided in Table S1 (Supplementary Material).

2.3. Fire Severity Mapping

Fire severity was mapped for all 27 case study fires (Figure 1) using the NSW Fire
Extent and Severity Mapping process, documented in Gibson et al. [18]. Fire severity classes
(Table 2) discriminate varying levels of vegetation scorch and consumption in canopy and
understory layers with strong correlations to field-based measures of fire severity [3,33,34].

Table 2. Fire severity class labels and definitions [18].

Pixel Colour Severity Class Definition % Foliage Fire Affected

Unburnt Unburnt 0% canopy and understory burnt

Low Burnt surface with unburnt canopy >10% burnt understory
>90% green canopy

Moderate Partial canopy scorch 20–90% canopy scorch

High Full canopy scorch (+/− partial
canopy consumption)

>90% canopy scorched
<50% canopy biomass consumed

Extreme Full canopy consumption >50% canopy biomass consumed

FESM algorithms have been trained separately for each sensor type. Both use a
supervised classification Random Forest algorithm with 12 input indices that are sourced
from satellite imagery reflectance bands. These include dNBR (differenced Normalised
Burn Ratio), RdNBR (Relativised differenced Normalised Burn Ratio) and fractional cover
(photosynthetic and bare cover fractions), along with various texture indices derived from
dNBR and bare cover fractions (see Table S2, Supplementary Material, for a full description
of indices and formulas used for index calculation). For each sensor type, the Random Forest
model was trained to classify fire severity from the supplied indices by learning on training
data that consisted of fire severity maps that were developed by manually classifying high
resolution aerial imagery (as described below in Section 2.4). The index-based modelled
predictions can then be projected onto novel fires, wherever pre-fire and post-fire satellite
imagery is available, to create fire extent and severity maps. The Landsat 8 algorithm was
trained on 8 fires, while the Sentinel 2 algorithm was trained on 18 fires (the same 8 fires as
Landsat 8, plus an additional 10 fires following the recent 2019–2020 fires where post-fire
aerial photography was captured). This represents the algorithms in operational use in
NSW government fire extent and severity mapping. While differences in training data
volume are not ideal for attempting to isolate differences between sensors, we used these
algorithms to examine differences in mapping being produced in the NSW operational fire
extent and severity mapping program.

The trained Random Forest algorithms were used to predictively map fire severity for
each of the 27 case study fires using the selected pre-fire and post-fire imagery from both
sensors (Table S1, Supplementary Material), with identical prediction areas for each fire.
Model training and predictions were undertaken using the caret package in R [35]. The
number of trees was 500 and number of predictor variables at each node was the square
root of the number of variables used in the model (i.e., default values [36]).
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2.4. Independent Accuracy Assessment

To compare the difference in accuracy due to the Sentinel 2 and Landsat 8 sensors,
Random Forest models were trained and tested using sampling data derived from high
resolution aerial photograph interpretation (API) of fire severity classes from eight training
fires (Figure 2). Available digital aerial photography had a resolution of 50 cm or less,
across 4 bands (blue, green, red and NIR), and was captured within 38 days of the end date
for each fire (Table S3, Supplementary Material). Using established interpretation protocols
for false colour infra-red aerial photos [3,18,19], fire severity was hand digitised in ArcMap
v10.4 across each of the fire footprints. Ground truthing in the field has shown this method
to be at least 94% accurate in mapping fire extent and severity [3]. Severity classification
was based on degrees of post-fire change to foliage cover (Table 2), which have been found
to correlate to field-based fire severity observations [3,33].

Figure 2. Location and relative size of the eight training fires used in accuracy assessments in New
South Wales, Australia.

A minimum of 3000 random points were sampled from each training fire (Table S4,
Supplementary Material). Random Forest input indices (Table S2, Supplementary Material)
were extracted from pre-fire and post-fire imagery for each sensor type at each sampling
location for each fire. An independent cross-validation assessment was conducted for each
sensor type, whereby each fire was iteratively excluded from training the model, and then
used to independently test the model performance against the API severity classes.
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2.5. Area Comparisons

Pixel counts were used to calculate the area of each severity class within fire extent and
severity output images from both Sentinel 2 and Landsat 8. The proportional mapped area
of each severity class was compared between sensors for each of the 27 case study fires.

2.6. Statistical Agreement

Random sampling points were generated within the extent of the FESM output for
each of the 27 case study fires, at a rate of one point per 5 hectares. At each point, the
severity classes were extracted from both the Sentinel 2 and Landsat 8 FESM outputs and a
confusion matrix was computed for the full dataset, which contained 111,994 data points.
Within each Sentinel 2 severity class, the percentage of points in each Landsat 8 severity
class was calculated.

Extracted data points for each sensor were also given numeric scores (where unburnt = 0,
low = 1, moderate = 2, high = 3 and extreme = 4) which were used to compute a Kappa
statistic. Due to the ordinal nature of the data, a weighted Kappa statistic was calculated,
which penalises major disagreement (severity classes that are separated by more than
one class, e.g., unburnt vs. extreme severity) to a larger degree than minor disagreement
(adjacent severity classes, e.g., high vs. extreme severity). As suggested by Vanbelle [37], a
linear weighted Kappa score is reported, which applies an equal additional penalty for each
sequential class of disagreement. Statistically, this compares the mean distance between
the scores from each sensor to the mean distance expected by chance [37]. Linear Kappa
statistics were also generated separately for each fire. All sampling and statistical analyses
were undertaken in R v4.1.1 [38].

2.7. Factors Influencing Similarity between Sensors

Several candidate factors (Table 3) were investigated to determine their potential
influence on the similarity of outputs between different sensors. The Terrain Ruggedness
Index (TRI) is a standard index defined as the mean difference between a central pixel
and its surrounding cells [39], which is a measure of topographic complexity indicating
relatively flat areas (TRI values near 1) or steep areas (higher TRI values) [40]. The TRI was
derived from the 1 s Shuttle Radar Topography Mission (SRTM) Digital Elevation Model
(DEM, 30 m pixel size). Foliage projective cover (FPC) is an indicator of long-term canopy
density (robust to seasonal variation) and was developed from a model, calibrated to
ground-based measurements using fractional cover transects and validated against LiDAR
data [41]. A high-resolution version of FPC developed by Fisher et al. [42] was used, which
is calculated from SPOT5 satellite imagery across four consecutive summers (2008–2011).

Table 3. Source data and calculation methods for candidate factors impacting sensor output similarity.

Candidate Factor Data Source Calculation Method

Terrain Ruggedness Index (TRI) DEM-derived terrain ruggedness
index [39]

Mean value calculated for each study fire FESM
output area in ArcGIS (zonal statistics)

Woody Foliage Projective
Cover (FPC)

NSW Woody Vegetation Extent &
Foliage Projective Cover 2011 [42]

Mean value calculated for each study fire FESM
output area in ArcGIS (zonal statistics)

Time between matched image dates Selected images from each
sensor type

Mean and maximum difference in days between
matched pre- and post-fire images for each

study fire

Time between pre- and post-fire
image dates

Selected images from each
sensor type

No of days between pre- and post-fire imagery,
averaged between sensor types

Distance from training locations Training data shapefiles
Distances from both sets of training fires

(Landsat 8 and Sentinel 2) were calculated for
each study fire in ArcGIS (near function)

Fire size (Ha) FESM outputs Total fire extent (Ha) for each fire, calculated
from pixel number and size
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Linear regression models were used to examine the relationship between each candi-
date factor and the weighted Kappa scores across the suite of 27 case study fires. Statistical
analyses were undertaken in R v4.1.1 [38].

3. Results
3.1. Independent Accuracy Assessment

The independent accuracy assessment results indicate Sentinel 2 and Landsat 8 algo-
rithms have very similar levels of accuracy across severity classes. The unburnt class had
the highest accuracy for both Sentinel 2 (0.98) and Landsat 8 (0.96), followed by extreme
severity (0.91 and 0.89, respectively). The largest difference between sensors was for the
high and low severity classes (−0.03 and 0.05, respectively). Sentinel 2 had slightly higher
accuracy for high severity class compared to Landsat 8 (0.84 vs. 0.79), while Landsat 8 had
slightly higher accuracy for low severity compared to Sentinel 2 (0.86 vs. 0.83). The mean
difference in accuracy between sensor algorithms ranged between 0.01 and 0.05 across
severity classes (Table 4). Balanced accuracy for the eight individual training fires ranged
from 0.67 to 0.90 for Sentinel 2 (mean = 0.80, SD = 0.06) and from 0.63 to 0.94 for Landsat 8
(mean = 0.81, SD = 0.10) (Table S4, Supplementary Material). The mean difference in accu-
racy between Sentinel 2 and Landsat 8 for individual fires was less than 0.10 (mean = 0.09,
SD = 0.10).

Table 4. Comparison of the balanced accuracy statistics for each severity class, as well as the Kappa
and overall balanced accuracy statistics for Sentinel 2 and Landsat 8 FESM algorithms independently
tested across the eight training fires.

Sentinel 2 Landsat 8 Difference

Unburnt 0.98 0.96 0.02

Low severity 0.83 0.86 −0.03

Moderate severity 0.66 0.67 −0.01

High severity 0.84 0.79 0.05

Extreme severity 0.91 0.89 0.01

Kappa Score 0.72 0.71 0.01

Overall Accuracy 0.80 0.82 −0.02

3.2. Area Comparisons

The FESM outputs between sensor types for the 27 case study fires were generally
similar (e.g., Figure 3). Overall, there was less than 5% difference in the average percent
of total fire area mapped as unburnt, moderate and extreme severity between sensors
(Figure 4). For low severity, the average percent of total fire area was approximately 11%
lower with the Sentinel 2 algorithm than the Landsat 8 algorithm, while for high severity, the
average percent of total fire area was approximately 6% higher with the Sentinel 2 algorithm
than the Landsat 8 algorithm. When the proportions of each severity class were compared
directly, the Sentinel 2 algorithm on average mapped 0.96, 0.64, 1.10, 1.44 and 2.24 times
the area of unburnt, low, moderate, high and extreme classes respectively, compared to the
Landsat 8 algorithm (Figure 5).

3.3. Statistical Agreement

The overall linear weighted Kappa score for the full dataset was 0.68, indicating a
substantial level of agreement in Sentinel 2- and Landsat 8-derived outputs across the
27 case study fires [43] (Table 5). Scores for individual fires ranged from 0.42 (moderate
agreement) up to 0.76 (substantial agreement). Out of the 27 study fires, 16 showed
substantial agreement, while 11 showed moderate agreement.
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Figure 3. FESM outputs for three study fires mapped with both Sentinel 2 and Landsat 8 imagery.
Difference maps show the number of classes higher or lower predicted by Sentinel 2 compared with
Landsat 8. See Figure 1 to cross-reference locations of these fires in NSW.
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Figure 4. The mean difference in the percent of total fire area in each severity class across all 27 case
study fires when mapped with Sentinel 2 compared to Landsat 8.

Figure 5. The mean percent of fire area in each severity class across all 27 case study fires when
mapped with Sentinel 2 and Landsat 8 sensors.

Table 5. Kappa score definitions [43].

Kappa Score Level of Agreement

>0.81 almost perfect

0.61–0.8 substantial

0.4–0.6 moderate

0.21–0.4 fair

0–0.2 slight

<0 poor

The confusion matrix for the full dataset indicated that 57% of sample points were
classified in agreement between the two sensors, while 92% of sample points were classified
either in agreement or within an adjacent severity class (Table 6). There were high levels
of agreement between the sensors for the unburnt class (Table 6, Figure 6). Within burnt
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classes, there was a tendency for Landsat 8 to score a proportion of pixels as a lower severity
than Sentinel 2; however, this was typically only by one severity class (Table 6, Figure 6).

Table 6. Confusion matrix for 111,994 random sampling points across all 27 case study fires comparing
severity classes between Sentinel 2 and Landsat 8 outputs.

Sentinel 2

Landsat 8

Unburnt Low Moderate High Extreme

Unburnt 24,196 3082 1425 76 23

Low 3166 8776 9674 2574 284

Moderate 481 2131 9870 9385 2658

High 871 454 1491 10,346 9571

Extreme 3 44 90 766 10,557

Figure 6. The percentage of Landsat 8 severity class scores within each Sentinel 2 severity class, across
all random sampling points.
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3.4. Factors Influencing Similarity between Sensors

There was a significant negative relationship between mean TRI and the similarity
between sensors for study fires, where higher TRI (i.e., steeper and more complex terrain)
corresponded with lower Kappa scores (p = 0.026, R2 = 0.18, Figure 7a). Fires with sub-
stantial agreement according to Kappa scores had a mean TRI of 6.4 (SE = 1.1), while those
with moderate agreement had a mean TRI of 10.3 (SE = 1.0). There was also a marginally
significant negative relationship between mean FPC and similarity between sensors, where
higher FPC tended towards lower Kappa scores (p = 0.049, R2 = 0.15, Figure 7b). Fires with
substantial agreement according to Kappa scores had a mean FPC of 47.3 (SE = 2.9), while
those with moderate agreement had a mean FPC of 55.4 (SE = 2.2). Excerpts from two
example fires are shown in Figure 8.

Figure 7. Relationships between Sentinel 2 and Landsat 8 output similarity (linear weighted Kappa
score) for study fires and the mean Terrain Ruggedness Index (a) and mean foliage projective cover
(b) of the fire area. Note that TRI values close to 1 denote flat areas, while higher values denote
increasingly rugged terrain.

There was no significant relationship between the similarity of sensor outputs and the
length of time between pre- and post-fire images, or the length of time between matched
sensor images, nor was there a significant relationship with fire size, or the distance from
either set of training locations.
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4. Discussion
4.1. Fire Extent Mapping Similarity between Sensors

Our results demonstrate a very high level of similarity in the detection of fire extent
between Sentinel 2 and Landsat 8 sensor algorithms. Assessments of the mean proportion
of unburnt area and the confusion matrix of random sampling points from FESM outputs
both indicated very high fidelity in the distinction of burnt and unburnt areas between
outputs from the two sensors. This aligns with the very high accuracy of both models in
the unburnt class. These findings indicate the strong reliability of fire extent products using
both sensors interchangeably.

4.2. Fire Severity Mapping Similarity between Sensors

The confusion matrix showed a tendency for the Sentinel 2 algorithm to map some
burnt areas as one higher severity class than the Landsat 8 algorithm across the 27 study
fires. This was also reflected in the area assessment, where Sentinel 2 produced smaller
proportions of low severity and larger proportions of high and extreme severity. In the
moderate to extreme severity Sentinel 2 classes, the majority of disagreement resulted from
the Landsat 8 model classifying pixels as one level of lower severity. Misclassification
between adjacent classes may be expected due to the spectral similarity between adjacent
classes, and due to sub-pixel mixing at different resolutions by the two sensors. Sub-
pixel mixing at different scales may influence the way an algorithm clumps or separates
adjacent fire severity classes which are represented by variable levels of canopy scorch or
consumption. Similarly, Munyati [44] found that inherent differences in detail captured
at 10 m resolution by Sentinel 2, compared to 30 m resolution by Landsat 8, influenced
the interpretation of canopy cover at various densities. Additionally, differences in the
outputs across the study fires may have been influenced by the additional training fires in
the Sentinel 2 algorithm. However, there was no significant impact on similarity attributed
to the distance to training fires that would indicate this as being a major factor. In any
case, an understanding of these trends can help to inform the interpretation of severity
data compiled using the different sensor algorithms. Overall, our findings indicate that
the two models agree on severity classes most of the time, and the incidence of the two
models producing severity scores more than one class apart is low. This supports broad
compatibility of the two sensors for fire severity modelling.

4.3. Landscape Factors Influencing Similarity between Sensors

Outputs for all individual fires showed at least moderate agreement according to
weighted Kappa scores, and most showed substantial agreement, indicating the robustness
of the two models across various scales and landscape settings. Our findings indicate that
there may be some effect of topographic roughness and canopy density on the similarity
of outputs between the sensors, and this could be explained by the different resolutions
of the sensors. The higher resolution of Sentinel 2 may capture greater detail in areas
of high topographic complexity or high canopy density. By contrast, the same location
may be captured within a single pixel due to the coarser resolution of Landsat 8. A study
by Mandanici and Bitelli [25] aligns with these results, whereby the correlation between
reflectance indices from Sentinel 2 imagery and resampled Landsat 8 imagery decreased
over heterogeneous surfaces. Additionally, there may be inherent limitations of remote
sensing applications in some landscapes, as Gibson et al. [18] reported that high topographic
roughness and foliage cover may reduce the reliability of Sentinel 2-based fire severity
mapping, even with the high resolution of Sentinel 2.

4.4. Comparisons with Previous Studies

Our results align with previous studies which suggest that Sentinel 2 and Landsat 8 can
be successfully used in combination for long-term monitoring applications, despite some
inherent variation between the sensors [24–26,44–47]. Our study expands on the recent
findings of smaller scale studies [27,28] which reported comparable outcomes using spectral
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indices derived from Sentinel 2 and Landsat 8 imagery to map fire extent and severity.
Archour et al. [27] reported very similar levels of accuracy between sensors for burnt area
detection across two fires, although Sentinel 2 performed slightly better than Landsat 8 and
tended to map a marginally larger fire footprint. Mallinis et al. [28] also found that Sentinel
2 derived indices correlated best with field-based measures of severity across a recently
burnt fire ground, but concluded that both sensors performed well in discriminating fire
severity thresholds. As with our study, they found that the best accuracy from both sensors
was in the unburnt and highest severity classes.

5. Conclusions

This study demonstrates that FESM outputs using Sentinel 2 and Landsat 8 are largely
comparable. Both sensors showed a similar level of accuracy within each fire severity class
when independently assessed across 8 training fires, and weighted Kappa scores suggested
substantial overall agreement between fire extent and severity outputs across 27 case study
fires. Both sensors showed very high accuracy and fidelity in mapping the spatial extent of
burnt areas. The incidence of the two sensor algorithms classifying fire severity as more
than one class apart was less than 10%. The data presented here show that the similarity
between sensors is likely to be acceptable in the context of the overall accuracy of fire extent
and severity modelling [18], and utilising imagery from both sources can meet the pressing
need for continuous fire history datasets.

Overall, this study supports the combined use of both sensors in fire extent and severity
modelling using machine learning algorithms, enabling a comprehensive history of fire
extent and severity to be compiled. This approach has been operationalised at a state-wide
scale in NSW, providing enhanced opportunities for fire research and management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14071661/s1, Table S1: Details of Sentinel 2 and Landsat 8
imagery used to map the 27 case study fires; Table S2: Spectral and texture indices used in the
Random Forest model to map fire extent and severity within the study; Table S3: Details of aerial
imagery used to manually classify each of the 8 training fires; Table S4: Balanced accuracy statistics
for Sentinel 2 and Landsat 8 FESM algorithms for each of the 8 training fires.

Author Contributions: L.A.W. and R.K.G. equally conceptualised and directed the study. L.A.W.
prepared data, undertook analyses, produced the tables and figures and led the writing. R.K.G.
contributed to writing and analysis. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by NSW Department of Planning and Environment and the New
South Wales Rural Fire Service.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This study was supported by the NSW Department of Planning and Environ-
ment. We acknowledge the traditional custodians and knowledge holders of the Country where
we conduct our research, walk and live. We pay our respects to Elders past, present and emerging.
Anthea L. Mitchell provided helpful comments on an early draft of this manuscript. We thank three
anonymous reviewers for their input and suggestions in the revision of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Teske, C.; Vanderhoof, M.K.; Hawbaker, T.J.; Noble, J.; Hiers, J.K. Using the Landsat Burned Area Products to Derive Fire History

Relevant for Fire Management and Conservation in the State of Florida, Southeastern USA. Fire 2021, 4, 26. [CrossRef]
2. Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Fire Ecol.

2007, 3, 3–21. [CrossRef]
3. McCarthy, G.; Moon, K.; Smith, L. Mapping fire severity and fire extent in forest in Victoria for ecological and fuel outcomes. Ecol.

Manag. Restor. 2017, 18, 54–64. [CrossRef]

https://www.mdpi.com/article/10.3390/rs14071661/s1
https://www.mdpi.com/article/10.3390/rs14071661/s1
http://doi.org/10.3390/fire4020026
http://doi.org/10.4996/fireecology.0301003
http://doi.org/10.1111/emr.12242


Remote Sens. 2022, 14, 1661 15 of 16

4. Parks, S.A.; Holsinger, L.M.; Panunto, M.H.; Jolly, W.M.; Dobrowski, S.Z.; Dillon, G.K. High-severity fire: Evaluating its key
drivers and mapping its probability across western US forests. Environ. Res. Lett. 2017, 13, 44037. [CrossRef]

5. Fernandes, P.M.; Guiomar, N.; Rossa, C.G. Analysing eucalypt expansion in Portugal as a fire-regime modifier. Sci. Total Environ.
2019, 666, 79–88. [CrossRef] [PubMed]

6. Loschiavo, J.; Cirulis, B.; Zuo, Y.; Hradsky, B.A.; Di Stefano, J. Mapping prescribed fire severity in south-east Australian eucalypt
forests using modelling and satellite imagery: A case study. Int. J. Wildland Fire 2017, 26, 491–497. [CrossRef]

7. Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and Mapping Wildfire Severity. Photogramm.
Eng. Remote Sens. 2005, 71, 1311–1320. [CrossRef]

8. Geary, W.L.; Buchan, A.; Allen, T.; Attard, D.; Bruce, M.J.; Collins, L.; Ecker, T.E.; Fairman, T.A.; Hollings, T.; Loeffler, E.; et al.
Responding to the biodiversity impacts of a megafire: A case study from south-eastern Australia’s Black Summer. Divers. Distrib.
2022, 28, 463–478. [CrossRef]

9. Gordon, C.E.; Price, O.F.; Tasker, E.M. Mapping and exploring variation in post-fire vegetation recovery following mixed severity
wildfire using airborne LiDAR. Ecol. Appl. 2017, 27, 1618–1632. [CrossRef] [PubMed]

10. Walker, R.B.; Coop, J.D.; Downing, W.M.; Krawchuk, M.A.; Malone, S.L.; Meigs, G.W. How Much Forest Persists Through Fire?
High-Resolution Mapping of Tree Cover to Characterize the Abundance and Spatial Pattern of Fire Refugia Across Mosaics of
Burn Severity. Forests 2019, 10, 782. [CrossRef]

11. French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat data to assess fire and
burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildland Fire 2008, 17,
443–462. [CrossRef]

12. Efthimiou, N.; Psomiadis, E.; Panagos, P. Fire severity and soil erosion susceptibility mapping using multi-temporal Earth
Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. Catena 2020, 187, 104320. [CrossRef]

13. Fox, D.M.; Maselli, F.; Carrega, P. Using SPOT images and field sampling to map burn severity and vegetation factors affecting
post forest fire erosion risk. Catena 2008, 75, 326–335. [CrossRef]

14. Coppoletta, M.; Merriam, K.E.; Collins, B.M. Post-fire vegetation and fuel development influences fire severity patterns in reburns.
Ecol. Appl. 2016, 26, 686–699. [CrossRef] [PubMed]

15. Hessl, A.E. Pathways for climate change effects on fire: Models, data, and uncertainties. Prog. Phys. Geogr. Earth Environ. 2011, 35,
393–407. [CrossRef]

16. Sommers, W. Fire history, fire regimes, and climate change–integrating information for management and planning. Nat. Preced.
2010. [CrossRef]

17. Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global
wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [CrossRef]

18. Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia
using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [CrossRef]

19. Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ.
2018, 216, 374–384. [CrossRef]

20. Dixon, D.J.; Callow, J.N.; Duncan, J.M.A.; Setterfield, S.A.; Pauli, N. Regional-scale fire severity mapping of Eucalyptus forests
with the Landsat archive. Remote Sens. Environ. 2022, 270, 112863. [CrossRef]

21. Belenguer-Plomer, M.A.; Tanase, M.A.; Fernandez-Carrillo, A.; Chuvieco, E. Burned area detection and mapping using Sentinel-1
backscatter coefficient and thermal anomalies. Remote Sens. Environ. 2019, 233, 111345. [CrossRef]

22. Montorio, R.; Pérez-Cabello, F.; Borini Alves, D.; García-Martín, A. Unitemporal approach to fire severity mapping using
multispectral synthetic databases and Random Forests. Remote Sens. Environ. 2020, 249, 112025. [CrossRef]

23. Department of Planning, Industry and Environment (DPIE). Fire Extent and Severity Mapping-Annual Report for the 2019–2020,
2018–2019 and 2017–2018 Fire Years; Department of Planning Industry and Environment: Parramatta, NSW, Australia, 2020.
Available online: https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-plants/
Native-vegetation/fire-extent-and-severity-mapping-annual-report-2017-18-2019-20-210180.pdf (accessed on 30 January 2022).

24. Flood, N. Comparing Sentinel-2A and Landsat 7 and 8 Using Surface Reflectance over Australia. Remote Sens. 2017, 9, 659.
[CrossRef]

25. Mandanici, E.; Bitelli, G. Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use. Remote Sens. 2016,
8, 1014. [CrossRef]

26. Vuolo, F.; Zoltak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data Service Platform for
Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens. 2016, 8, 938. [CrossRef]

27. Archour, H.; Toujani, A.; Trabelsi, H.; Jaouadi, W. Evaluation and comparison of Sentinel-2 MSI, Landsat 8 OLI, and EFFIS data
for forest fires mapping. Illustrations from the summer 2017 fires in Tunisia. Geocarto Int. 2021, 1–20. [CrossRef]

28. Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI)
spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience Remote Sens. 2018, 55, 1–18.
[CrossRef]

29. Flood, N.; Danaher, T.; Gill, T.; Gillingham, S. An operational scheme for deriving standardised surface reflectance from Landsat
TM/ETM+ and SPOT HRG imagery for eastern Australia. Remote Sens. 2013, 5, 83–109. [CrossRef]

http://doi.org/10.1088/1748-9326/aab791
http://doi.org/10.1016/j.scitotenv.2019.02.237
http://www.ncbi.nlm.nih.gov/pubmed/30797129
http://doi.org/10.1071/WF16167
http://doi.org/10.14358/PERS.71.11.1311
http://doi.org/10.1111/ddi.13292
http://doi.org/10.1002/eap.1555
http://www.ncbi.nlm.nih.gov/pubmed/28390084
http://doi.org/10.3390/f10090782
http://doi.org/10.1071/WF08007
http://doi.org/10.1016/j.catena.2019.104320
http://doi.org/10.1016/j.catena.2008.08.001
http://doi.org/10.1890/15-0225
http://www.ncbi.nlm.nih.gov/pubmed/27411243
http://doi.org/10.1177/0309133311407654
http://doi.org/10.1038/npre.2010.5238.1
http://doi.org/10.1071/WF08187
http://doi.org/10.1016/j.rse.2020.111702
http://doi.org/10.1016/j.rse.2018.07.005
http://doi.org/10.1016/j.rse.2021.112863
http://doi.org/10.1016/j.rse.2019.111345
http://doi.org/10.1016/j.rse.2020.112025
https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-plants/Native-vegetation/fire-extent-and-severity-mapping-annual-report-2017-18-2019-20-210180.pdf
https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-plants/Native-vegetation/fire-extent-and-severity-mapping-annual-report-2017-18-2019-20-210180.pdf
http://doi.org/10.3390/rs9070659
http://doi.org/10.3390/rs8121014
http://doi.org/10.3390/rs8110938
http://doi.org/10.1080/10106049.2021.1980118
http://doi.org/10.1080/15481603.2017.1354803
http://doi.org/10.3390/rs5010083


Remote Sens. 2022, 14, 1661 16 of 16

30. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The
Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [CrossRef]

31. Gallant, J.; Read, A. Enhancing the SRTM Data for Australia. In Proceedings of the Geomorphometry, Zurich, Switzerland,
31 August–2 September 2009; Available online: https://geomorphometry.org/gallantread2009 (accessed on 30 January 2022).

32. Guerschman, J.P.; Scarth, P.F.; McVicar, T.R.; Renzullo, L.J.; Malthus, T.J.; Stewart, J.B.; Rickards, J.E.; Trevithick, R. Assessing the
effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and
bare soil fractions from Landsat and MODIS data. Remote Sens. Environ. 2015, 161, 12–26. [CrossRef]

33. Hammill, K.A.; Bradstock, R.A. Remote sensing of fire severity in the Blue Mountains: Influence of vegetation type and inferring
fire intesity. Int. J. Wildland Fire 2006, 15, 213–226. [CrossRef]

34. Hudak, A.T.; Robichaud, P.R.; Evans, J.S.; Clark, J.; Lannom, K.; Morgan, P.; Stone, C. Field validation of burned area reflectance
classification (BARC) products for post fire assessment. In Proceedings of the Remote Sensing for Field Users: Proceedings of
the Tenth Forest Service Remote Sensing Applications Conference, Salt Lake City, UT, USA, 5–9 April 2004; Available online:
https://www.fs.usda.gov/treesearch/pubs/23530 (accessed on 30 January 2022).

35. Kuhn, M. Classification and Regression Training (Package ‘Caret’). 2019. Available online: https://CRAN.R-project.org/
package=caret (accessed on 30 January 2022).

36. Breiman, L.; Cutler, A. Breiman and Cutler’s Random Forest for Classification and Regression (Package ‘RandomForest’). 2018.
Available online: https://CRAN.R-project.org/package=randomForest (accessed on 30 January 2022).

37. Vanbelle, S. A New Interpretation of the Weighted Kappa Coefficients. Psychometrika 2016, 81, 399–410. [CrossRef] [PubMed]
38. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria,

2021; Available online: https://www.R-project.org/ (accessed on 30 January 2022).
39. Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale Terrain Analysis of Multibeam Bathymetry Data for

Habitat Mapping on the Continental Slope. Mar. Geod. 2007, 30, 3–35. [CrossRef]
40. Amatulli, G.; Domisch, S.; Tuanmu, M.-N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale

topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [CrossRef] [PubMed]
41. Armston, J.D.; Denham, R.; Danaher, T.; Scarth, P.; Moffiet, T.N. Prediction and validation of foliage projective cover from

Landsat-5 TM and Landsat-7 ETM+ imagery. J. Appl. Remote Sens. 2009, 3, 033540. [CrossRef]
42. Fisher, A.; Day, M.; Gill, T.; Roff, A.; Danaher, T.; Flood, N. Large-area, highresolution tree cover mapping with multi-temporal

SPOT5 imagery, New South Wales, Australia. Remote Sens. 2016, 8, 515. [CrossRef]
43. Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [CrossRef]
44. Munyati, C. The potential for integrating Sentinel 2 MSI with SPOT 5 HRG and Landsat 8 OLI imagery for monitoring semi-arid

savannah woody cover. Int. J. Remote Sens. 2017, 38, 4888–4913. [CrossRef]
45. Naegeli, K.; Damm, A.; Huss, M.; Wulf, H.; Schaepman, M.; Hoelzle, M. Cross-Comparison of Albedo Products for Glacier

Surfaces Derived from Airborne and Satellite (Sentinel-2 and Landsat 8) Optical Data. Remote Sens. 2017, 9, 110. [CrossRef]
46. Van der Werff, H.; Van der Meer, F. Sentinel-2A MSI and Landsat 8 OLI Provide Data Continuity for Geological Remote Sensing.

Remote Sens. 2016, 8, 883. [CrossRef]
47. Korhonen, L.; Hadi Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy

cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [CrossRef]

http://doi.org/10.1029/2005RG000183
https://geomorphometry.org/gallantread2009
http://doi.org/10.1016/j.rse.2015.01.021
http://doi.org/10.1071/WF05051
https://www.fs.usda.gov/treesearch/pubs/23530
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=randomForest
http://doi.org/10.1007/s11336-014-9439-4
http://www.ncbi.nlm.nih.gov/pubmed/25516203
https://www.R-project.org/
http://doi.org/10.1080/01490410701295962
http://doi.org/10.1038/sdata.2018.40
http://www.ncbi.nlm.nih.gov/pubmed/29557978
http://doi.org/10.1117/1.3216031
http://doi.org/10.3390/rs8060515
http://doi.org/10.2307/2529310
http://doi.org/10.1080/01431161.2017.1331057
http://doi.org/10.3390/rs9020110
http://doi.org/10.3390/rs8110883
http://doi.org/10.1016/j.rse.2017.03.021

	Introduction 
	Materials and Methods 
	Study Area and Fire Selection 
	Imagery Pre-Processing 
	Fire Severity Mapping 
	Independent Accuracy Assessment 
	Area Comparisons 
	Statistical Agreement 
	Factors Influencing Similarity between Sensors 

	Results 
	Independent Accuracy Assessment 
	Area Comparisons 
	Statistical Agreement 
	Factors Influencing Similarity between Sensors 

	Discussion 
	Fire Extent Mapping Similarity between Sensors 
	Fire Severity Mapping Similarity between Sensors 
	Landscape Factors Influencing Similarity between Sensors 
	Comparisons with Previous Studies 

	Conclusions 
	References

