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Abstract: Machine learning (ML) algorithms have emerged as competent tools for identifying areas
that are susceptible to flooding. The primary variables considered in most of these works include
terrain models, lithology, river networks and land use. While several recent studies include average
annual rainfall and/or temperature, other meteorological information such as snow accumulation and
short-term intense rain events that may influence the hydrology of the area under investigation have
not been considered. Notably, in Canada, most inland flooding occurs during the freshet, due to the
melting of an accumulated snowpack coupled with heavy rainfall. Therefore, in this study the impact
of several climate variables along with various hydro-geomorphological (HG) variables were tested
to determine the impact of their inclusion. Three tests were run: only HG variables, the addition of
annual average temperature and precipitation (HG-PT), and the inclusion of six other meteorological
datasets (HG-8M) on five study areas across Canada. In HG-PT, both precipitation and temperature
were selected as important in every study area, while in HG-8M a minimum of three meteorological
datasets were considered important in each study area. Notably, as the meteorological variables were
added, many of the initial HG variables were dropped from the selection set. The accuracy, F1, true
skill and Area Under the Curve (AUC) were marginally improved when the meteorological data was
added to the a parallel random forest algorithm (parRF). When the model is applied to new data, the
estimated accuracy of the prediction is higher in HG-8M, indicating that inclusion of relevant, local
meteorological datasets improves the result.

Keywords: flood susceptibility; machine learning; meteorological data; important factors;
random forest

1. Introduction

As the frequency and intensity of flooding is increasing around the globe, it has become
increasingly important to have an understanding of the areas most prone or susceptible
to flooding. Identification of flood prone areas and priority setting for flood mapping is
one of the key steps outlined by the Canadian Federal Flood Mapping Guidelines being
developed by Natural Resources Canada (NRCan) and Public Safety Canada (PSC) [1].

While hydraulic and hydrologic (H&H) models provide detailed assessments of spe-
cific areas at risk of flooding under certain circumstances, the spatial coverage provided
by these models is generally limited to a watershed or sub-watershed and the outputs
are based on user-defined scenarios. Data inputs required for these models to accurately
describe the hydrology of the local environment may include measurements of precip-
itation, temperature, snow water equivalent, water levels, discharge and groundwater
measurements [2].

Alternative methods have been proposed to cover various scales, e.g., macro (national)
or meso (province, watershed) scale, and can generate a continuous surface, such that users
can identify areas that are most prone to flooding in order to prioritize data collection and
flood mapping [3].
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Several macro and meso studies have used GIS weighting criteria [4–6] or multi-
criteria decision making [7] to produce flood susceptibility maps. A potential disadvantage
of using these traditional weighting methods is that expert opinion is required to assign
weights and/or create classifications of the input datasets. Challenges to this method
may arise with finding experts and/or with those of differing background and experience
assigning differing weights/categories [8], resulting in differing maps.

The advance of computing technologies coupled with a growing archive of data have
led to an environment suited to the iterative aspect of machine learning (ML) in order to
exploit its capabilities to identify patterns in data and generate predictions. In addition,
ML approaches remove the reliance on expert opinion for classification and weighting of
the input data layers. Recently, many researchers have explored the use of ML to improve
awareness of flooding, from flash flooding [9,10], stream flow simulations [11], flood risk
assessments [12] and flood susceptibility [13–16].

While there is a growing body of literature of ML being applied to flood susceptibility
mapping, there is great variability in many components of the process, including the
data sets considered, the most suitable ML algorithm to use and selection of appropriate
evaluation criteria. Most published studies concur on certain basic data layers necessary to
describe flood susceptibility and that multiple models should be applied to a study area to
determine the most appropriate model for a region. In most studies, these datasets include
a digital terrain model (DTM), some measurement of the hydrographic network (distance to
river, river density or stream power index), and some descriptor of the geology or lithology,
Figure 1. In addition, several DTM derivatives may be considered: slope, aspect, curvature
and terrain wetness index (TWI). Several recent publications have included mean annual
rainfall and precipitation [14,15,17–21]. Only one paper, [13], was found to consider other
meteorolgoical data such as daily precipitation and frequency of heavy rain.
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Given that the development of flood hazard maps includes H&H modelling to account
for water input and timing as water flows through the system to generate a flood map,
one might ask why these data have not been explored in flood susceptibility mapping.
Especially, considering in Canada, most flooding occurs in the spring as temperatures rise,
snowpack melts and heavy precipitation falls.

Thus, the objective of this paper is to evaluate the impact of meteorological datasets on
flood susceptibility prediction, as it is hypothesized that exclusion of these factors limits the
quality of the prediction. The remainder of the paper is structured as follows: in Section 2,
the datasets, machine learning model and evaluation metrics are described. In Section 3,
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the five study areas are introduced. In Section 4, the results are presented, and in Section 5,
the results are discussed.

2. Materials and Methods
2.1. Exploratory Variables

A list of exploratory variables was compiled from the existing literature of commonly
used variables, Figure 1. A complete list of 28 exploratory variables were grouped in three
categories for testing: (i) hydro-geomorphological only (HG), (ii) hydro-geomorphological
plus precipitation and temperature (HG-PT), (iii) additional climate variables (HG-8M)
added to HG-PT, Table 1. The HG category contains exploratory datasets most commonly
considered in the literature and comprises data which describe the terrain (DTM, slope,
aspect, etc.), the physical structure of the terrain (lithology, land use) and the hydrography
of the area. The HG-PT category adds average annual precipitation and temperature, which
are referenced in a few flood susceptibility studies [13]. The final category, HG-8M contains
all the inputs of HG-PT plus an extended list of climate variables which capture short term
intense rainfall, snow accumulations and seasonal temperature patterns which are common
factors known to influence flooding in Canada.

Each of the variables explored may be considered to affect the flow, accumulation, ab-
sorption or transportation of water on the landscape. Notably the most important variable,
digital terrain model (DTM) was generated from a combination of high-resolution Digital
Elevations Model (HRDEM) data and the Canadian Digital Elevation Model (CDEM). The
CDEM provides national coverage of Canada and was collected and maintained from
1945–2011. The resolution of this dataset varies according to latitude, from 0.75” × 0.75”
arc seconds to 12.0” × 48.0” arc seconds [22]. A modernization effort has been underway,
since 2011, with active collection of LiDAR derived digital elevation models south of the
productive forest line [23]. In the northern portion of the country, due to the low density of
vegetation and infrastructure, only digital surface model is generated from optical digital
images [23]. The HRDEM, where available, has a spatial resolution of 1 to 2 m. In this work,
the HRDEM was used where available and is supplemented as necessary with CDEM and
resampled to 30 m.

Several derivatives from the DTM were generated that provide additional details
about the terrain and provide measures of flow direction, accumulation, divergence, and
impacts to the rate of flow. Curvature measures of Profile (cpr) and Plan (cpl) describe the
rate of change of gradient and aspect, respectively. The profile curvature can identify areas
of flow acceleration, erosion or deposition zones, whereas the plan curvature highlights
converging and diverging areas of flow. Both curvature files were created in ArcGIS Pro v
2.7. Aspect (asp) presents the compass direction of the steepest downhill gradient while
slope (slp) describes the direction and steepness of the line by calculating the ratio of
vertical change to horizontal change. The terrain surface roughness (rgh) is defined as the
variability of irregularity in elevation; this can affect the velocity of water flow over the
ground and is computed as the difference between the maximum and minimum value of
a cell and its eight surrounding cells. Terrain Ruggedness Index (tri) is the mean of the
absolute differences between the value of a cell and the value of its eight surrounding cells.
The Topographic Position Index (tpi) represents the difference between the value of the cell
and the mean value of its eight neighbors. Flow direction (flowdir) represents the direction
of the largest drop in elevation. Slp, asp, rgh, tpi and tri were computed using the ‘terrain’
function within the raster package (v 3.4-13) of R [24].
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Table 1. Variables explored in this study. Maps of all study areas and variables can be found in
the supplementary data. Datasets are available from open.canada.ca and the universal identifier is
indicated. The climate datasets are found on climate-change.canada.ca, CA = specific catchment area,
a = local upslope area. Classes: G = geology and ecology, H = hydrography, T = terrain, C = climate,
U = urban.

Class Test Variable Code
Source (UUID from

OpenMaps.ca, (Accessed on
17 August 2021))

Method

G HG Forest Cover (Percent) fcp Extracted from LC
G HG Impermeable Areas ia Extracted from LC

G HG Land Cover lc 4e615eae-b90c-420b-adee-
2ca35896caf6

G HG NDVI ndvi 44ced2fa-afcc-47bd-b46e-
8596a25e446e

G HG Soil sol 0b88062f-ebbe-46c6-ab19-
54fd226e9aa7

G HG Surficial Geology geo cebc283f-bae1-4eae-a91f-
a26480cd4e4a

H HG Flow Direction fldir Derivative DTM R raster

H HG Minimum Snow
and Ice msi 808b84a1-6356-4103-a8e9-

db46d5c20fcf

H HG Hydrographic
network nhn a4b190fe-e090-4e6d-881e-

b87956c07977
H HG Stream Power Index spi Derivative DTM, NHN ln(CA*tan(slp))
H HG Terrain Wetness Index twi Derivative DTM ln(a/tan(slp))

H HG Wetland wl 02c992bb-9692-4bff-9517-
7a92b09676c7

T HG Aspect asp Derivative DTM R gdalUtils
T HG Curvature-Plan cpl Derivative DTM R spatialEco
T HG Curvature-Profile cpr Derivative DTM R spatialEco

T HG Digital Terrain Model dtm

957782bf-847c-4644-a757-
e383c0057995,

7f245e4d-76c2-4caa-951a-
45d1d2051333

T HG Roughness rgh Derivative DTM R gdalUtils
T HG Slope slp Derivative DTM R gdalUtils

T HG Terrain Roughness
Index tri Derivative DTM R gdalUtils

T HG Topographic Position
Index tpi Derivative DTM R dalUtils

C HG-PT Average Precipitation precip

https://climate-change.
canada.ca/climate-data/#/

climate-normals, (accessed on
26 August 2020)

R gstat::idw
C HG-PT Average Temperature tavg R gstat::idw

C Days with >10 mm
Rainfall r10 R gstat::idw

C HG-8M Days with >25 mm
Rainfall r25 R gstat::idw

C HG-8M Days with min
temp < −10 ◦C tm10 R gstat::idw

C HG-8M Days with Snow
Depth. 50 cm sd50 R gstat::idw

C HG-8M Number of Spring
days, min temp > 0 ◦C spr R gstat::idw

C HG-8M Total Snow ts R gstat::idw

U HG Euclidean distance to
roads nrn 3d282116-e556-400c-9306-

ca1a3cada77f

The 2015 Land Cover of Canada (lc) is a 30 m spatial resolution dataset produced
using images acquired from Operational Land Imager (OLI) Landsat sensor [25]. The

https://climate-change.canada.ca/climate-data/#/climate-normals
https://climate-change.canada.ca/climate-data/#/climate-normals
https://climate-change.canada.ca/climate-data/#/climate-normals
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reported accuracy is 79.90%. From lc, forested areas were extracted to create the forest
cover percentage (fcp) variable and urban areas were extracted to create the impermeable
areas (ia) dataset. Both fcp and ia present divergent impacts on water flow through the
environment. The fcp supports the water cycle through transpiration, absorption into the
soil, influences water retention and evapotranspiration. The ia represents areas where
water runoff is more likely as infrastructure such as buildings and roads have impacted
the natural flow of water. Soil texture (sol) has also been included in the variables as it
provides an indication of the relative proportions of various soil separates (clay, sand,
silt) which have an impact on the rate of infiltration. Surficial geology (geo) provides
information about the age and type of alluvial deposits. These different geo classes result
from differences in rock types in drainage basins, distance from uplands, and can be altered
by processes of weathering; thus, they are useful for defining the physical framework of the
active fluvial systems [26]. The Normalized Difference Vegetation Index (ndvi) provides a
measure of vegetation from Advanced Very High-Resolution Radiometer (AVHRR) satellite
records from 1987 to 2020. The 2015 dataset was used.

The Canadian national hydrographic network of flow lines and permanent water
bodies was used as a baseline of where permanent water exists. The distance to river
(nhn) layer was created by computing the Euclidean distance from these features in ArcPro
2.7. Wetland (wl) areas were extracted from the high-resolution wetland year count for
Canada (2015) dataset. This product was generated using both annual gap free composite
reflectance images and annual forest change maps following the Virtual Land Cover Engine
(VLCE) process of [27].

Canadian Climate Normals, collected from stations that have at least 15 years’ worth
of data, have been used as baseline meteorological conditions. This dataset contains
observations from 1981 to 2010 [28]. These data are collected at stations across Canada
and maintained by Environment and Climate Change Canada (ECCC). To capture patterns
across the country and across the four seasons, which can influence flooding several
variables, described below, were selected from this dataset. For each of these variables,
the point data was queried to find appropriate records and inverse distance weighting
(IDW) was applied to generate a continuous surface from the station data. Total average
precipitation (precip), as used in several other studies, was included. In addition, the
number of days with precipitation greater than 10 mm (R10) and greater than 25 mm (R25)
were also queried to capture datasets that represent short-term intense precipitation events
that can contribute to flash flood events and the freshet. Total snow (ts) and areas with
snow depths greater that 50 cm (sd50) were also used to create additional data layers.
These were included as the depth and density of the snowpack can contribute significantly
to the potential of flooding as they may represent a large storage of water, which can be
computed by the snow to water equivalent. With respect to temperature, the average
annual temperature (tavg), number of spring days (March, April, May) with minimum
temperatures greater than 0 ◦C (spr) and the number of days with minimum temperatures
colder than 0 ◦C (tm10) were evaluated.

2.2. Training Data

Training data was created from historic flood events in Canada. The historic flood
polygons were primarily extracted from data captured by Natural Resources Canada
using satellite imagery and present a historic record of major Canadian flood events since
2011 (UUID: 74144824-206e-4cea-9fb9-72925a128189). These were enriched by provincial
holdings of historic flood mapping since the 1970s as found in the National Flood Hazard
Data Layer’s, historic feature class [29]. ‘Wet’ training points were identified as being within
any flood extent polygon but not overlapping permanent lakes or rivers as found in the
National Hydrographic Network (NHN) dataset, while ‘dry’ points were considered those
that are disjoint. A roughly equal distribution of the binary classification was generated
totaling 10,000-labelled points across all study areas. Many other published studies use
much less training data; however, nonlinear algorithms such as random forest and artificial
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neural networks, as used in this study, have been documented to perform better with
greater data.

All datasets were projected to EPSG:3979, Canada Atlas Lambert, NAD83 CSRS with
a cell size of 30 m by 30 m. The HRDEM was accessed via Web Coverage Service (WCS)
which provided the resampling to 30 m using the default and only resampling algorithm,
nearest neighbor. The vector data, nhn, nrn, geo and sol were converted to 30 m raster
using maximum area to assign the cell value in ArcGIS. The point data from ECCC were
interpolated to a 30 m grid using IDW. The remaining datasets were available in raster
format with 30 m cell size.

2.3. Machine Learning
2.3.1. Evaluation of Important Factors

Evaluating the variables that are important for describing the phenomena is a crucial
issue. The selection set is limited to those that are supplied. Variable Selection using
Random Forest (VSURF) is a three-step variable section using regularized random forest
and is best suited for larger datasets [30]. In VSURF hundreds of thousands of decision
trees are generated, and the average output of all trees is used to predict an outcome.
Each of the tress are derived by performing recursive partitioning of random subsets of
the input variables. Variables are selected and the actual cut-points for partitioning is
determined based on the goal of splitting data into subsets that have the most differing
proportions of the outcome, or information gain. VSURF leverages the variable selection
process embedded in random forest and selects the smallest model with an out-of-bag
(OOB) error less than the minimal error, augmented by the standard deviation [31]. There
are three output variable lists generated: thres, interp and pred; where thres is the full list
minus irrelevant variables, interp identifies all variables considered important relative to
the response variable based on smallest OOB error, while pred produces a narrower list by
eliminating any redundancy in the remaining sub-set of variables for prediction. In this
study, those selected by interp were considered those selected by VSURF.

2.3.2. Selected Model

There are a variety of popular ML models available, with many different models
showing good performance in flood susceptibility mapping [29]. In various study areas
across a wide selection of countries and watersheds, different models have been tested
and performed well, with Random Forest being one of those which have performed well.
In a study of 179 classifiers from 17 families, [32] found Random Forest to be one of the
best classifiers, with the parallel random forest (parRF) providing the best results. They
noted that parRF may be considered as a reference (“gold-standard”) to compare with
new classifier proposals in order to assess their performance for general classification in
general [32]. Other models found to perform very well in their tests were: support vector
machine (SVM) avNNet, extreme learning machines with Gaussian kernel and C5.0. The
parRF model used in this study was accessed through the R Classification and Regression
Training (caret) package [33]. Caret was selected as it provides a set of functions that
attempt to streamline the process for creating predictive models, thus, future work testing
multiple models can easily be replicated though minimal changes in the code.

Random Forest

Random Forest (RF) classifiers contain a series of individual decision trees that operate
as an ensemble. Each individual tree in the RF generates a prediction and the class with the
most votes becomes the model prediction, similar to the concept of “wisdom of crowds” [34].
With this approach, a large number of relatively uncorrelated trees operating as a committee
will outperform any of the elemental models. To ensure the individual trees are not too
correlated, sample with replacement or bagging is used to build the individual trees and
node slitting is optimized to produce the greatest separation.
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Parallel RF (parRF) as described by [32] optimizes the RF algorithm for use on big
data, through hybrid approach that combines data and task parallel optimization. This
results in a reduction in processing time and cost, while improving the ability to handle
large, noisy and highly dimensional datasets through dimension reduction and a weighted
voting approach [35].

2.3.3. Analysis Metrics

From the literature reviewed, there are a wide variety of metrics used to validate
the accuracy of the prediction [10,11,14,15,29]. In this research, Accuracy, ROC, True Skill
statistic and F1 were selected to evaluate model performance. Cohen’s kappa coefficient
(K), while popular has not been utilized in this research. A shortcoming with K is that while
it tries to take away the bias in the actual distribution, evaluation train data gives optimistic
results, which may not reflect the model’s performance on unseen data. Cohen’s Kappa,
while used in many studies for analysis has not been used in this study, following the
recommendation of [36]. Ref. [36] compared Cohens’s Kappa and Matthews Correlation
Coefficient (MCC) and found that “when there is a decrease to zero of the entropy of
the elements out of the diagonal of the confusion matrix associated with a classifier, the
discrepancy between Kappa and MCC rise, pointing to an anomalous performance of
the former”.

Accuracy provides a measure of how many points were correctly classified from the
confusion matrix, Equation (1):

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

where TP is a true positive, TN is true negative (dry in the reference and dry in the predic-
tion), and FP and FN are incorrectly classified, false positive and false negative, respectively.

The F1 score, a measure of the precision and recall of the classifier is also evaluated:

Precision =
TP

TP + TN
(2)

Recall =
TP

TP + FP
(3)

F1 =

(
1 + β2) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall
(4)

Additionally, the true skill statistic (TrSk) is evaluated here. It is defined based on
the specificity (Sp) and sensitivity (Se) components of the standard confusion matrix,
representing matches and mismatches between observations and predictions [37]:

Sp =
TP

TP + FN
(5)

Se =
TN

FP + TN
(6)

TrSk = Sp + Se + 1 (7)

Finally, receiver operating characteristic curve (ROC) is generated for validation of
the results. A ROC is a graph showing the performance of a classification model at all
classification thresholds, plotting the true positive rate versus the false positive rate at
different classification thresholds. The Area under the curve (AUC) measures the entire
2-D area underneath the ROC curve, from 0.0 to 1.1.

3. Study Areas

In this study, five study areas in Canada have been selected which have experienced
floods in the past 10 years, Figure 2.
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The most western study area (BC) surrounds the city of Vancouver. This area is
characterized by steep terrain, bedrock geology, with snow-capped mountains, though
lower elevation regions rarely experience snow accumulation. This area has the highest
average temperature and total precipitation of the selected Canadian study areas. The
northern section (AB), which includes a portion of northern Alberta and a southern section
of the Northwest Territories, is covered largely with temperate or sub-polar needleleaf forest,
relatively flat terrain, and has the coldest average temperatures and the lowest precipitation
of the selected study areas. In central Canada, the southern part of Manitoba (MB) was
selected, having a long history of flooding, this is an area of flat terrain composed of
nutrient rich soils that support significant agricultural crops. The climate is more moderate
compared with the AB and BC regions and receives less precipitation. The national capital
region (NCR) includes the metropolitan cites of Ottawa, Ontario and Gatineau, Quebec.
This area covers the confluence of several waterways including the Ottawa and Gatineau
Rivers as they flow into the St. Lawrence River. This study area can be characterized as
a large urban, built-up area, surrounded by cropland, forests and hundreds of lakes. It is
described by moderate temperature and precipitation, with nearly 4 months of average
daily high temperatures above 20 ◦C and ~3 months of average daily high temperature
below 1 ◦C. The lower portion of the Saint John River in New Brunswick (NB) is the most
eastern study area. This area contains Fredericton and St. John as urban centres and Grand
Lake and the Grand Lake Meadows Wetland, as well as significant mixed forested areas. In
this region the greatest accumulation of snow is found. Several floods have occurred over
the past 10+ years, most notably large floods in both 2018 and 2019 that resulted in damage
to homes and disruptions to transportation networks, among other impacts [38].

4. Results
4.1. Exploratory Variables

Important variables were tested through three groupings of variables. The results
from NB are presented in Figures 3–5 for HG, HG-PT and HG-8M, respectively. Equivalent
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figures for the remaining study areas can be found in the Supplementary Materials. These
figures illustrate the mean variable importance and standard deviation of the variable
importance in the upper row, while the lower figures display the mean OOB error rate of
interpretation step (left) and prediction step (right) of the embedded random forest models.
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Figure 3. HG variables of importance, NB. Upper left, mean variable importance, upper right:
standard deviation of the variable importance, bottom left: mean OOB error rate of interpretation step
of RF models, bottom right: mean OOB error rate of prediction step of RF models. Red lines indicate
thresholds. The green line represents predictions given by a CART tree fitted to standard deviations.
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The HG test included the commonly used variables in flood susceptibility mapping,
those that describe the terrain, soil, land cover and hydrography. In all of the study areas,
six common variables were retained within the model based on the OOB error rates: dtm,
geo, lc, ndvi, nhn and sol, Figure 3. Several other variables were regionally considered
important, but not found consistently in all regions.

In HG-PT, for each of the study areas, when precip and tavg were introduced, these
variables were considered important in the VSURF test, Figure 4. It is interesting to note
that once precip and tavg were added, the overall number of retained variables decreases.
In NB, the number of important variables decreases from 10 to 7. Most commonly, the ndvi
and sol are dropped from the selection set due to exceeding the OOB error rate, followed
by geo, which is dropped in BC, and ON, rgh (dropped from MB and BC), and nrn (AB
and NB).

The final test, HG-8M, added several more climate variables not commonly found in
flood susceptibility mapping studies, Table 1, Figure 5. An exception is presented by [13],
which included frequency of heavy rain, which could be a proxy for the R10 or R25 used in
this study. In the HG-8M test, at least three of the eight climate variables were considered
important in every study area. The only tested meteorological variable that was absent
in the selection set was spr, which represents the number of spring days, March, April,
May, with minimum temperatures above 0 ◦C. In HG-8M, the majority of variables in the
selection set were meteorological. All of the sites retained the dtm, lc and nhn variables
from the initial HG test.

4.2. Model Results

For each of the study areas, using the optimal variables as determined by VSURF,
three ML algorithms were applied to the data. As discussed in Section 2.3.3, the models
are evaluated by accuracy, ROC, F1 and true skill (TrSk), the results of the parRF model for
each study area in Table 2, and Figure 6.
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Table 2. Results of the parRF model for each study area.

parRF Accuracy TrSk F1
Site HG HG-PT HG-8M HG HG-PT HG-8M HG HG-PT HG-8M

AB 0.953 0.955 0.957 0.904 0.911 0.914 0.95 0.954 0.956
BC 0.963 0.971 0.971 0.927 0.94 0.94 0.963 0.969 0.969
MB 0.797 0.822 0.827 0.593 0.643 0.653 0.782 0.811 0.82
ON 0.903 0.923 0.926 0.805 0.845 0.85 0.898 0.918 0.921
NB 0.939 0.943 0.954 0.877 0.885 0.908 0.935 0.939 0.951
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In each of the study areas, the parRF model performs well with regard to the accuracy,
true skill and F1 statistic. Of the five study areas, the best results are found in the NB study
area and worst in MB. Comparing HG to HG-8M, the parRF model increases from 0.008
to 0.03 in Accuracy, 0.013 to 0.06 in TrSk and 0.006 to 0.038 (F1). The largest improvement
from HG to HG-8M is found in the MB study area. Between the HG-PT and HG-8M, there
is minor improvements in each of the evaluated metrics. In the ROC curves, there is limited
change in between the scenarios tested. The greatest improvement of 0.03 is found in the
MB study area.

5. Discussion

The research question considered in this work is why meteorological variables used in
engineering flood models are not commonly considered in flood susceptibility studies, and
could they improve the performance of ML models if included.

Before the results are discussed, it is important to note that the datasets included
cover a range of temporal and spatial scales. The flood events used as training data,
primarily range from 2011 to 2020, however, a few significant floods which occurred in
the 1970s and 1980s have been included in the training data. Temporal datasets such as
land use, wetland, ndvi have been chosen to select 2015 products. Climate data has used
the published Normals, with records greater than 15 years over the period of 1980–2010,
the most recent period available. The selection of a single year data was thought to not to
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sufficiently represent the variability of climate, and Normals for 2010–2020 are not available
and resources and expertise were not available to generate them. From the available
datasets, a 30 m grid was used in many of the geological and ecological datasets and
thus was chosen as the resolution for analysis. Downscaling to meet the resolution of the
high-resolution terrain data was not appropriate. The authors recognize this variety of time
scales and resolutions that were combined in this analysis which may have influence on
the presented results.

5.1. Important Factors

In all tests and all study areas, the dtm and nhn layers were considered important
variables. These were ranked as either 1 or 2 in order of importance in all study areas,
with the exception of MB, where nhn ranked 4th and 8th in the HG and HG-PT tests,
respectively. The importance of these variables is expected, given their significance in
modelling of floodplain hydrodynamics [39].

When average annual precipitation and temperature, as have been used in several
other studies, is included, they are considered an important variable in all five of our study
areas. Average annual precipitation and temperature are generally ranked 3rd and 4th
in importance, right after the dtm, though in MB and AB, they are ranked 2nd and 3rd,
right after the dtm. In three of the five study areas, when precip and tavg are added, the
total number of important variables decreases, Table 3, indicating that the addition of these
variables produced the most differing proportions of the outcomes.

Table 3. Summary of important variables, per VSURF Interp, in each of the study areas, viewed by
category, HG (hydrographic, terrain and geomorphology) and Meteo for the meteorological variables
(temperature, precipitation, snow, etc.).

HG HG-PT HG-8M

HG Meteo Total HG Meteo Total HG Meteo Total

AB 7 0 7 6 2 8 5 4 9
BC 9 0 9 6 2 8 6 5 11
MB 8 0 8 7 2 9 8 4 12
ON 10 0 10 6 2 8 7 3 10
NB 12 0 12 7 2 9 7 5 12

Several variables found to be important in other studies applying to other regions
of the world were not found to be important in these five Canadian study areas: aspect,
curvature, both plan and profile, forest cover percentage and wetlands.

Additional meteorological variables, those that capture short-term intense rainfall
events, snow coverage and depth, are also considered important and in many cases,
more important than traditionally used HG variables Figure 5 (and in Supplementary
Materials). In the HG-8M test, at least 3 of the 8 meteorological variables are considered
important. Only the spr datasets, which represents the number of spring days with
minimum temperature above 0 ◦C is not considered a significant contributor to flood
susceptibility in any of these Canadian study areas. Both snow depth (sd) and Days with
min temp < −10 ◦C (tm10) were found to be important in four of the five study areas.

Surficial geology was found to be important in all but Ontario study area in the HG-
8M. This region contains regions of till blanket and till veneer as are found in many of the
other regions. However, it largely comprises alluvial sediments along the Ottawa River
with regions of offshore and outwash plain sediments. Looking at results of the VSURF
test (Supplementary Figure S13), it is surprising that the lc variable passes the OOB error
test and geo does not.
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5.2. Model Results

While the important factors indicate adding meteorological data, the results of the
parRF model shows minor improvements (0.002 to 0.06) in accuracy, true skill, F1, and
ROC, Table 2. This suggests that if meteorological factors, relevant to the local environment,
are not included in the selection set, then the approach may be missing out on contributing
factors to flood susceptibility. As the model is applied to areas not included in the training
set, the impact of adding in the meteorological data becomes more apparent. In Figure 7d–f,
the prediction accuracy is presented in the NB study area. In Figure 7d, the prediction
quality is quite noisy, with many pixels showing an accuracy between 0–50, whereas in
Figure 7f, the map presents a larger percentage of pixels with accuracy between 60 and 100.
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As the statistical tests showed only minor improvements, the index value of pixels
with the historic flood extents boundary were also evaluated, Figure 8. The histogram of
pixel values shows a left-skewed distribution in all tests, as is expected. All of the pixels
in this polygon extent have the potential to be valued at 100 and could have been part
of the training set. The mean value of these pixels increases between HG, HG-PT and
HG-8M, with values of 80.77, 85.37 and 88.99, respectively. This provides further evidence
supporting the hypothesis to include meteorological datasets, representative of the local
environment into the ML model.

The study area with the poorest results was in Manitoba. There are two primary
datasets that could potentially explain this decrease in predictive capacity. First, is the
limited HRDEM coverage in the area. At the time this analysis was undertaken, this area has
the lowest HRDEM coverage, and the majority of the elevation data was therefore derived
from the CDEM data. The estimated vertical accuracy of the CDEM in this region is between
0 to 15 m and was validated between 1960 and 1990 [22]. Further to this, the terrain in this
region has the smallest elevation relief and it is believed this abundance of CDEM data has
attributed to the poorer results. Secondly, this region is largely agricultural, and the national
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hydrographic dataset does not contain geometry of the agricultural drainage and/or man-
made channels that have been excavated to support agricultural fields. The hydrography
represents data from 1970 to 1990. Thus, the Euclidean distance raster generated from the
hydrographic network likely does not fully represent the try hydrography in the region.
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Figure 8. Distribution of Index pixel values within the boundaries of the Canadian Historic flood
event polygon (dissolved polygon of all events on record) from the parRF model.

6. Conclusions

In this work, the impact of meteorological factors on the prediction capability of flood
susceptibly using ML models has been tested. The standard steps of exploring and evaluat-
ing variable importance were first undertaken, then a random forest model was run on five
study areas across Canada. These study areas each capture unique characteristics of terrain,
geology, land use and climate across the country. Three tests were run: (i) using only
hydro-geomorphological (HG) variables; (ii) annual average precipitation and temperature
were added (HG-PT), and (iii) including a suite of climate variables including those that
capture high-intensity/short duration rainfall, snow accumulation and depth and seasonal
norms (HG-8M). The findings illustrate that when adding meteorological variables, their
importance outranks many of the traditional datasets that have been tested previously.
While the validation metrics of accuracy, true skill, F1 and ROC presented minimal im-
provements in the prediction capacity, the evaluation of the prediction accuracy and the
pixel values with historic flood events further confirmed the assumption that inclusion of
meteorological data inputs relative to the local environment improves the resultant flood
susceptibility map. Thus, our findings indicate that if some measures of meteorological
datasets are not incorporated into flood susceptibility modelling, the approach may not be
capturing the full flood susceptibility potential.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14071656/s1. Figure S1. AB HG Upper left, mean variable importance, upper right:
standard deviation of the variable importance, bottom left: mean OOB error rate of interpretation
step of RF models, bottom right: mean OOB error rate of prediction step of RF models. Red lines
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indicate thresholds, and green line predictions given by a CART tree fitted to standard deviations.
Figure S2. AB HG-PT Upper left, mean variable importance, upper right: standard deviation of the
variable importance, bottom left: mean OOB error rate of interpretation step of RF models, bottom
right: mean OOB error rate of prediction step of RF models. Red lines indicate thresholds, and
green line predictions given by a CART tree fitted to standard deviations. Figure S3. AB HG-8M
Upper left, mean variable importance, upper right: standard deviation of the variable importance,
bottom left: mean OOB error rate of interpretation step of RF models, bottom right: mean OOB
error rate of prediction step of RF models. Red lines indicate thresholds, and green line predictions
given by a CART tree fitted to standard deviations. Figure S4. BC-HG Upper left, mean variable
importance, upper right: standard deviation of the variable importance, bottom left: mean OOB error
rate of interpretation step of RF models, bottom right: mean OOB error rate of prediction step of
RF models. Red lines indicate thresholds, and green line predictions given by a CART tree fitted
to standard deviations. Figure S5 BC HG-PT Upper left, mean variable importance, upper right:
standard deviation of the variable importance, bottom left: mean OOB error rate of interpretation
step of RF models, bottom right: mean OOB error rate of prediction step of RF models. Red lines
indicate thresholds, and green line predictions given by a CART tree fitted to standard deviations.
Figure S6. BC HG-8M Upper left, mean variable importance, upper right: standard deviation of the
variable importance, bottom left: mean OOB error rate of interpretation step of RF models, bottom
right: mean OOB error rate of prediction step of RF models. Red lines indicate thresholds, and
green line predictions given by a CART tree fitted to standard deviations. Figure S7. MB-HG Upper
left, mean variable importance, upper right: standard deviation of the variable importance, bottom
left: mean OOB error rate of interpretation step of RF models, bottom right: mean OOB error rate
of prediction step of RF models. Red lines indicate thresholds, and green line predictions given
by a CART tree fitted to standard deviations. Figure S8. MB HG-PT Upper left, mean variable
importance, upper right: standard deviation of the variable importance, bottom left: mean OOB error
rate of interpretation step of RF models, bottom right: mean OOB error rate of prediction step of
RF models. Red lines indicate thresholds, and green line predictions given by a CART tree fitted
to standard deviations. Figure S9. MB HG-8M Upper left, mean variable importance, upper right:
standard deviation of the variable importance, bottom left: mean OOB error rate of interpretation
step of RF models, bottom right: mean OOB error rate of prediction step of RF models. Red lines
indicate thresholds, and green line predictions given by a CART tree fitted to standard deviations.
Figure S10. ON-HG Upper left, mean variable importance, upper right: standard deviation of the
variable importance, bottom left: mean OOB error rate of interpretation step of RF models, bottom
right: mean OOB error rate of prediction step of RF models. Red lines indicate thresholds, and green
line predictions given by a CART tree fitted to standard deviations. Figure S11. ON HG-PT Upper
left, mean variable importance, upper right: standard deviation of the variable importance, bottom
left: mean OOB error rate of interpretation step of RF models, bottom right: mean OOB error rate
of prediction step of RF models. Red lines indicate thresholds, and green line predictions given
by a CART tree fitted to standard deviations. Figure S12. ON HG-8M Upper left, mean variable
importance, upper right: standard deviation of the variable importance, bottom left: mean OOB error
rate of interpretation step of RF models, bottom right: mean OOB error rate of prediction step of
RF models. Red lines indicate thresholds, and green line predictions given by a CART tree fitted
to standard deviations. Figure S13. Index and estimated accuracy of prediction for the three tested
variable groups in the BC study area. Figure S14. Index and estimated accuracy of prediction for
the three tested variable groups in the MB study area. Figure S15. Index and estimated accuracy
of prediction for the three tested variable groups in the ON/QC study area Figure S16. Index and
estimated accuracy of prediction for the three tested variable groups in the AB/NT study area.
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