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Abstract: The interest in bistatic SAR systems for soil moisture monitoring has grown over recent
years, since theoretical studies suggest that the impact of surface roughness on the retrieval of soil
moisture decreases when multistatic, i.e., simultaneous mono- and bistatic, radar measurements are
used. This paper presents a semi-empirical method to retrieve soil moisture over bare agricultural
fields, based on effective roughness modeling, and applies it to a series of L-band fully-polarized SAR
backscatter and bistatic scattering observations. The main advantage of using effective roughness
parameters is that surface roughness no longer needs to be measured in the field, what is known to
be the main source of error in soil moisture retrieval applications. By means of cross-validation, it
is shown that the proposed method results in accurate soil moisture retrieval with an RMSE well
below 0.05 m3/m3, with the best performance observed for the cross-polarized backscatter signal.
In addition, different experimental SAR monostatic and bistatic configurations are evaluated in
this study using the proposed retrieval technique. Results illustrate that the soil moisture retrieval
performance increases by using backscatter data in multiple polarizations simultaneously, compared
to the case where backscatter observations in only one polarization mode are used. Furthermore, the
retrieval performance of a multistatic system has been evaluated and compared to that of a traditional
monostatic system. The recent BELSAR campaign (in 2018) provides time-series of experimental
airborne SAR measurements in two bistatic geometries, i.e., the across-track (XTI) and along-track
(ATI) flight configuration. For both configurations, bistatic observations are available in the backward
region. The results show that the simultaneous use of backscatter and bistatic scattering data does
not result in a profound increase in retrieval performance for the bistatic configuration flown during
BELSAR 2018. As theoretical studies demonstrate a strong improvement in retrieval performance
when using backscatter and bistatic scattering coefficients in the forward region simultaneously,
the introduction of additional bistatic airborne campaigns with more promising multistatic SAR
configurations is highly recommended.

Keywords: L-band bistatic SAR; soil moisture retrieval; effective roughness modeling

1. Introduction

Soil moisture (Mv) is an essential variable in the hydrological cycle both at the global
and local scale, since it plays a critical role in the water and energy balance, affecting crop
development, and controlling runoff processes. Acquiring ground measurements of soil
moisture is labor intensive. Therefore, ground measurements are often limited in spatial
coverage and to few snapshots in time. Remote sensing provides a means of monitoring
soil moisture over a range of spatial and temporal scales [1]. It is well known that Synthetic

Remote Sens. 2022, 14, 1650. https://doi.org/10.3390/rs14071650 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7528-8289
https://orcid.org/0000-0003-2113-9549
https://orcid.org/0000-0002-9461-4120
https://orcid.org/0000-0003-4116-8881
https://doi.org/10.3390/rs14071650
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071650?type=check_update&version=1


Remote Sens. 2022, 14, 1650 2 of 23

Aperture Radar (SAR) systems are capable of observing soil moisture, with relatively high
spatial resolution, typically about 5–20 m [2]. Studies by Schmugge [3] and Ulaby et al. [4,5]
illustrated a relationship between the radar backscatter signal and the soil moisture content.
Several models have been developed and evaluated over the last decades to retrieve soil
moisture from the SAR backscattering coefficient (see [6,7] for an overview). The Integral
Equation Model (IEM) is one of the most frequently used scattering models that performs
well for bare or sparsely vegetated land surfaces [8].

The backscattered microwave energy not only depends on the soil moisture content,
but also on other surface parameters such as surface roughness and vegetation cover. De-
coupling the contributions of soil moisture and surface roughness on radar backscatter
is difficult when relying on a measurement from a monostatic SAR system, making the
retrieval of soil moisture challenging. Therefore, the interest in bistatic remote sensing
systems for soil moisture retrieval has grown over recent years. Thereby, one aims to evalu-
ate the improvement in estimation accuracy from the simultaneous use of the monostatic
backscattering and bistatic scattering signal, the so-called multistatic system, compared to
the standard monostatic system (e.g., [9–15]).

A bistatic radar system is defined when a transmitter is placed at one site and a receiver
at another site, separated by a considerable distance. The receiver detects and processes the
echoes scattered by the Earth’s surface, which is illuminated by the transmitter [16]. The
bistatic scatter can be regarded as an independent observation of the target, as different
scattering mechanisms affect the bistatic observation. The bistatic geometry is depicted in
Figure 1, with θi the zenith incidence angle and θs and φs the scattering zenith and azimuth
angle, respectively. Scattering in the plane of incidence is observed when φs = 0° or 180°.
The backscattering and specular directions are in this case (θi = θs and φs = 180°) and (θi = θs
and φs = 0°), respectively. The zenith angles can range from 0◦ to 90◦and the azimuth
scattering angle can range from −180◦ to 180◦.

Figure 1. Geometry of the bistatic active-passive SAR system.

Global navigation satellite signal reflectometry (GNSS-R) is a bistatic soil moisture
detection technique that has been studied intensively over recent years. Both modeling and
experimental GNSS-R studies are available evaluating the potential and effectiveness of
bistatic SAR systems for soil moisture sensing, e.g., [17–19]. The GNSS-R studies mostly
focus on bistatic scattering in the specular region because of received power considerations.
However, studies evaluating the various bistatic SAR geometries for soil moisture detection
are to-date only limited to theoretical model simulations, e.g., [10,12,20]. These theoretical
studies make use of the Advanced Integral Equation Model (AIEM) [21,22] to simulate
various geometric SAR configurations and to show the potential of the combined use
of monostatic backscatter and bistatic scattering signals for bare soil moisture retrieval.
In these studies, it is hypothesized that the impact of surface roughness on the retrieval
decreases due to the two simultaneous observations. Especially, for bistatic observations in
the forward region, an increase in sensitivity towards soil moisture is expected [10,20]. A
recent study by Pierdicca et al. [15] investigated the best possible bistatic SAR configura-
tions for soil moisture sensing using the small slope approximation up to the second-order
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model (SSA2). It was found that the following set of polarizations is very interesting: VV
bistatic with VV and HH monostatic, with most promising region of scattering angles:
30◦< θs < 60◦and 60◦< φs < 80◦. Furthermore, it was pointed that all bistatic measurements
performed in the forward region could improve the soil moisture retrieval accuracy.

In order to validate these theoretical model results and to further assess the feasibility
of a bistatic active-passive satellite configuration for soil moisture retrieval, an airborne
campaign for fully-polarized bistatic SAR measurements in the L-band has been carried
out over an agricultural test site in Belgium, i.e., the BELSAR campaign. The campaign
provided time series of airborne monostatic and bistatic measurements in the L-band,
recorded during the crop growing season in 2018 including bare soil conditions. In addition,
in situ measurements of soil moisture and surface roughness were acquired concurrently
with the airborne flights. As stated by Ulaby et al. [23], the surface correlation length (l) and
standard deviation of the surface height variation, also called root-mean-square height (s),
are two geophysical parameters that are commonly used to characterize surface roughness.
The autocorrelation function (ACF) is also an important factor in characterizing the surface
roughness. According to Davidson et al. [24] and Callens et al. [25], the exponential ACF
is capable of characterizing a relative smooth agricultural soil surface, particularly in the
L-band.

By inverting radar scattering models, one is able to retrieve soil moisture from SAR
observations. Yet, these soil moisture retrieval results are prone to errors, which are found
to be mainly caused by inadequate surface roughness parameterization from field measure-
ments [26,27]. Here, we present a method which relies on calibrated or effective surface
roughness, in which SAR observations are first used to calibrate roughness parameters that
can then be used in an inversion scheme to retrieve soil moisture with higher accuracy.
These effective roughness parameters no longer have a physical meaning, but must rather
be seen as tuning parameters of the scattering models improving the retrieval accuracy.
The main advantage of using effective roughness parameters is that surface roughness no
longer needs to be measured in the field. Lievens et al. [28] proposed a method in which a
statistical model is developed that allows for the estimation of effective surface roughness
parameters from SAR backscatter observations in the L- and C-band over bare agricultural
soils. These effective roughness parameters are updated for every acquisition, resulting
in more accurate soil moisture retrieval results compared to more traditional techniques
in which a fixed effective roughness parameter is used, e.g., Su et al. [29]. In this paper,
the method proposed by Lievens et al. [28] is further developed in order to improve the
accuracy and to allow the modeling of effective surface roughness parameters from bistatic
SAR observations.

In this article, we evaluate the potential of monostatic and bistatic SAR data to estimate
soil moisture over bare agricultural fields, whereby the soil moisture retrieval performance
obtained from monostatic SAR data is compared with those obtained using a multistatic
configuration. This work has been accomplished in the frame of the Belgian Science Policy
Office (BELSPO) funded project BELSAR-Science and provides the opportunity to evaluate
the performances of L-band SAR monostatic and multistatic imagery for soil moisture
retrieval based on experimental SAR observations.

In Section 2, a description of the study site, the experimental SAR data and in situ
ground measurements is given and the developed technique for effective roughness model-
ing is proposed. Section 3 analyzes and validates the soil moisture retrieval results from
L-band mono- and bistatic scattering observations, and furthermore, identifies the SAR
configurations that provide the best retrieval performances. Finally, the concluding remarks
are summarized in Section 4.

2. Materials and Methods
2.1. Study Site

The BELSAR airborne and field campaign took place during the 2018 crop growth
season (May–September), including bare soil conditions, in the BELAIR Hesbania test site
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near Gembloux, Belgium. Belgium is characterized by a temperate, maritime climate with
an average cumulative precipitation amount of 910 mm/year with a peak occurring in
winter and a mean annual temperature of 10.2 °C, with highest temperatures occurring in
July (after: https://www.meteo.be, 25 January 2022). A total of 20 reference plots (10 winter
wheat and 10 maize fields) were selected in the area to perform the BELSAR-Science study.
The fields are relatively large, about 1–19 ha, and have a uniform topsoil texture of silt loam.
Ground measurements campaigns were performed concurrently with the SAR acquisitions,
to acquire in situ measurements of soil moisture and soil surface roughness in the reference
plots. The location of the Hesbania test site and reference plots within the site are depicted
in Figure 2.
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Figure 2. The BELAIR Hesbania test site, with the winter wheat and maize fields in green and
red, respectively, and all the other agricultural fields inventoried on the anonymous cadastral map
for agricultural land provided in Wallonia’s land-parcel identification system (Système Intégré de
Gestion et Contôle (SIGeC)) in grey. The four parallel flight tracks are represented by colored arrows.

2.2. Airborne SAR Data

The BELSAR project intended to carry out an airborne campaign over a Belgian test site
in order to acquire bistatic and interferometric SAR measurements in the L-band (1.375 GHz)
in full-polarization (HH, VV, HV and VH) [30]. Five flights were conducted over the test
site during the vegetation growth period in 2018. The first flight took place on 30 May,
the second on 20 June, the third on 30 July, the fourth on 28 August and the final flight
on 10 September. Since this study focuses on the application potential of multistatic SAR
images for soil moisture retrieval over predominantly bare soil surfaces, only harvested
winter wheat and maize fields are taken into account here, further referred to as bare-wheat
and bare-maize. Winter wheat fields measured in July, August and September missions
are classified as bare-wheat. Wheat stubble was still present on the winter wheat fields
during the July flight. Scattering data acquired during this flight are taken into account
in the analysis. Some maize fields measured in August and all maize fields measured in
September are classified as bare-maize.

During each flight-day, the HESBANIA site was imaged in four overlapping parallel
tracks, i.e., Alpha (A), Bravo (B), Zulu (Z) and a short data sample of Zulu (Zs), once in
across-track (XTI) and once in along-track (ATI) formation. Tracks A and B are oriented
from south to north and are therefore referred to as ascending tracks. Tracks Z and Zs are
oriented from north to south and defined as descending tracks (see Figure 2). The baseline
between the transmitting antenna (SAR) and receiving antenna (BISAR) in across-track
formation is set at 25 m, while in along-track, the baseline equals 400 m, for a flight altitude
of 2500 m. Furthermore, both sensors are left-looking. The main characteristics of the
BELSAR bistatic active-passive radar system configuration are listed in Table 1.

https://www.meteo.be
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Table 1. The main characteristics of the Active-Passive Radar System.

Active-Passive SAR System

Central Frequency 1.375 GHz
Polarization HH, VV, HV and VH

Signal Bandwidth 50 MHz
Along-track baseline ∼400 m
Across-track baseline ∼25 m

Zenith incidence angle range θi 20◦–55◦

Zenith scattering angle range θs 20◦–55◦

Average azimuth scattering angle φs ATI −171.6◦

Average azimuth scattering angle φs XTI −179.2◦

The acquisition and processing of the BELSAR data have been performed with
MetaSensing’s airborne SAR system and software [31]. The radiometric and polarimetric
calibration were performed according to the procedure described in [32]. The processing
delivered Single-Look Complex (SLC) monostatic and bistatic SAR focused data with a 1 m
spatial ground resolution. For each reference plot, the field-average monostatic and bistatic
scattering coefficient (σ0) in linear scale was calculated from each calibrated SAR image, in
order to reduce uncertainty.

Given the limited dynamic range of the soil moisture measurements during the BEL-
SAR campaign (see below in Section 2.3), additional SAR data have been added to the
BELSAR dataset to test the retrieval approach over a wider range of conditions. To do so,
full-polarized ALOS/Palsar backscatter observations in the L-band over the bare Orgeval
study site have been added. Coincident with the SAR acquisition on 8 April 2009, mea-
surements of soil moisture and surface roughness were conducted. Fields with surface
roughness conditions similar to the bare-wheat fields of the BELSAR campaign were se-
lected for further analysis (four fields in total). For a detailed description of the dataset, we
refer to the assessment paper of Baghdadi et al. [33].

It is well known that the radar backscatter not only depends on target properties, but
is also influenced by the radar system configuration, i.e., incidence angle, polarization and
frequency. To account for the impact of the incidence angle over bare soils, a radiometric
normalization is performed, whereby the backscatter and bistatic scattering coefficient (σ0)
are normalized to a reference incidence angle of 40◦. Several normalization techniques have
been described and compared by Abdel-Messeh and Quegan [34] and Mladenova et al. [35].
A cosine normalization is applied here, because of its simple and fast implementation as
no parameter has to be fitted. The normalization approach is based on Lambert’s law for
optics and was initially applied in Ulaby et al. [4]. The normalization of the backscatter
coefficient is defined as

σ0
SAR,ref =

σ0
SAR,θi

cos2(θref)

cos2(θi)
(1)

where σ0
SAR,θi

is the backscattering coefficient (m2/m2) at the original incidence angle θi,
and σ0

SAR,ref is the backscattering coefficient (m2/m2) at the reference incidence angle θref,
in this case 40◦.

In addition, the normalization of the bistatic scattering coefficient is defined as

σ0
BISAR,ref =

σ0
BISAR,θs

cos2(θref)

cos(θi)cos(θs)
(2)

where σ0
BISAR,θs

is the bistatic scattering coefficient (m2/m2) at the θs zenith scattering
angle, and σ0

BISAR,ref is the bistatic scattering coefficient (m2/m2) at the reference θref zenith
scattering angle, in this case 40◦.

It should be noted that the BELSAR data used for this study are limited to very
short baselines and corresponding small bistatic angles between the transmitting and
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receiving antennas (0.6◦ and 9◦ for the XTI and ATI configuration, respectively), with very
small differences in zenith incidence (θi) and scattering (θs) angles and azimuth scattering
angles (φs) that are very close to −180◦, especially in XTI configuration. This implies that
bistatic observations are only available in the backward region and not in the theoretically
more promising forward region [10,15,20]. Therefore, one might conclude that the bistatic
configurations of the BELSAR campaign may likely not be optimal for soil moisture retrieval
applications over bare agricultural fields. The baseline was kept low to keep the coherence
between monostatic and bistatic signals for change detection, which was also an objective
of the BELSAR-Science study. This issue limits the study of the full potential of multistatic
radar data to account for the impact of surface roughness in soil moisture retrieval. A flight
configuration in specular or orthogonal direction was desired based on theoretical model
results [10,15].

2.3. Ground Measurements

Coincident with each SAR acquisition, volumetric soil moisture content was measured
using Time Domain Reflectometry (TDR) sensors with 11 cm rods. At least 10 locations
per reference plot were monitored with 3 repetitions per location. All soil moisture mea-
surements within each plot were averaged to provide field average soil moisture values.
Within-field soil moisture variations are low, which could be expected given the flat topogra-
phy and homogeneous soil texture. The range of soil moisture values is 0.030–0.189 m3/m3,
which corresponds to very dry conditions. The average soil moisture content for bare-
wheat soils is 0.05, 0.134 and 0.127 m3/m3, with a standard deviation of 0.008, 0.033 and
0.029 m3/m3, respectively, on 30 July, 28 August and 10 September. Especially during the
July flight campaign, soil moisture values were found to be low. Furthermore, it should be
stressed that the dynamic range of soil moisture is limited, which is not ideal for developing
and testing soil moisture retrieval techniques. Therefore, soil moisture observations over
the bare Orgeval study site have been added in order to test the retrieval approach over a
wider range of soil moisture conditions (0.030–0.22 m3/m3).

Soil surface roughness was determined using a pin profilometer of 1 m length, with a
spacing of 1 cm. Roughness profiles along and across the direction of tillage were acquired
to allow determination of correlation length (l) and root-mean-square height (s). At least
five profiles per reference plot were taken in both orientations on each acquisition date
and field averages were calculated to reduce uncertainty. Correlation length l and root-
mean-square height s range from 1.44 to 6.25 cm and from 0.49 to 2.05 cm, respectively, in
this study.

In addition, the bulk density of the soil in the reference plots was sampled using
Kopecky rings. During the first flight campaign, five samples per reference plot were taken
to derive the field average bulk density and within-field standard deviation. If the bulk
density changed due to tillage operations in later flight campaigns, additional samples
were taken. The average bulk density in the study area over the entire investigation period
is 1.205 g/cm3.

2.4. Effective Roughness Modeling as a Tool for Soil Moisture Retrieval

Soil moisture can be retrieved by inverting radar scattering models, using measured
SAR backscatter and bistatic scattering as input. The scattering models used in this study
are the semi-empirical Oh model [36] and the physically-based Advanced Integral Equation
Model (AIEM) [8,21,22]. These models require input information on the surface roughness
state in terms of the root-mean-square height (s), and for the AIEM also the correlation
length (l), and type of autocorrelation function (ACF). Both Gaussian and exponential ACFs
have been evaluated in this study (not shown here) and best results were obtained with
the exponential ACF. Therefore, the exponential ACF will be adopted in all simulations
in this study. The surface roughness parameterization from field measurements is found
to be problematic [26,27] and is therefore often reported as the main source of error in soil
moisture retrieval. To circumvent these issues, a method is proposed here which relies on
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calibrated or effective surface roughness parameters, in which SAR observations are used
to calibrate roughness parameters that can then be used in an inversion scheme in order to
retrieve soil moisture.

Lievens et al. [28] proposed a method for effective roughness modeling as a tool for
soil moisture retrieval from SAR. In the study of Lievens et al. [28], effective roughness
parameters were defined by propagating a range of s- and l-values through the IEM and
calculating the absolute soil moisture retrieval error for every combination of roughness
parameters. The s- and l-values for which the absolute soil moisture retrieval error is
minimal, were defined as the effective roughness parameters. By analyzing the behavior
of these effective roughness parameters, Lievens et al. [28] have found that a linear rela-
tionship exists between normalized SAR backscatter observations and effective roughness
parameters. Based on this analysis, a simple linear regression model has been developed
in their study that allows for the estimation of effective roughness parameters from HH
polarized L-band backscatter observations

Rmod = aσ0
θref + b (3)

with Rmod being the modeled effective roughness parameter (here the correlation length l),
a and b being regression parameters and σ0

θref the normalized backscatter signal (dB) [28].
The method implies that surface roughness no longer needs to be measured in the field for
soil moisture retrieval from SAR. The model parameters a and b have been calibrated for
L-band HH polarized backscatter for the IEM, based on a range of (σ0, Mv)-observations
for agricultural fields with a smooth to medium smooth roughness state. In the study of
Lievens et al. [28], the best soil moisture retrieval results were obtained when s was fixed
at a predefined value of 2 cm, and l was estimated using regression model parameters
a = −8.833 and b = −102.7 for L-band HH SAR backscatter observations. The modeled
effective correlation lengths have then propagated through an iterative inversion scheme
of the IEM [8] for the retrieval of the soil dielectric constant, which may then be converted
to volumetric soil moisture using the four-component dielectric mixing model [37]. The
performance of the linear model has been assessed through cross-validation. The observed
and retrieved soil moisture showed good agreement with RMSE close to 4 vol% and R2

values of approximately 0.87. For a detailed description of the developed technique, we
refer to [28].

In this paper, the technique of Lievens et al. [28] has been further developed in order to
improve accuracy and to make it applicable for fully-polarized SAR backscatter and bistatic
scattering signals. To do so, a range of linear models (i = 1...N) have been evaluated for
every polarization which allow for the estimation of s and l based on normalized backscatter
and bistatic scattering data, by considering a range of values for slope a and intercept b
in Equation (3). These modeled effective roughness parameters are then propagated
through an iterative inversion scheme of the Oh model [36] and the AIEM [21,22] for the
retrieval of the soil dielectric constant, which may then be converted to volumetric soil
moisture using the four-component dielectric mixing model [37]. This scheme can be
regarded as an iterative optimization procedure. Thereby, a range of soil moisture values
(0.001–0.45 m3/m3) are inserted in the dielectric mixing model to compute corresponding
soil dielectric constants. Subsequently, these dielectric constants are used as input to the
Oh model and AIEM, together with the modeled s- and l-values, and associated backscatter
coefficients (HH, VV and HV) are simulated. The retrieved soil moisture value is then
reported as the one for which the difference in simulated and observed backscatter is
minimal. Once all linear regression models are propagated through the iterative inversion
scheme, an optimal linear regression model can be determined. This best linear regression
is defined, as the one resulting in the best soil moisture retrieval results, evaluated by the
Kling–Gupta Efficiency [38]. The modeled surface roughness parameters corresponding
with this best linear regression are defined as the effective roughness parameters (Reff).
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The Kling–Gupta Efficiency (KGE) is a goodness-of-fit measure between observed and
simulated soil moisture and is defined as

KGE = 1 −

√
(R − 1)2 +

(
σsim

σobs
− 1
)2

+

(
µsim

µobs
− 1
)2

(4)

where R is the linear correlation between observations and simulations, σobs the standard
deviation in observations, σsim the standard deviation in simulations, µobs the observation
mean and µsim the simulation mean. Negative KGE values are considered as bad model
performance and good model performance is obtained for positive values. The closer to
1, the more accurate the model is. A graphical overview of the developed technique for
effective roughness modeling is given in Figure 3.

Figure 3. Graphical overview of the effective roughness modeling algorithm.

Optimal linear regression models are defined for both the Oh model and AIEM
separately, what implies that different effective roughness parameters are found for each
model. The Oh model only needs the root-mean-square-height s as roughness input
parameter. An optimal linear regression for modeling s-values for the Oh model will thus
be defined. The AIEM needs both root-mean-square height s and correlation length l as
input parameters. We choose to set s at a fixed predefined value, as this parameter can be
better measured in the field, and evaluate linear regression models for the estimation of l.

Because of the limited amount of data available, the accuracy of the soil moisture
retrieval method has been assessed through cross-validation [39]. The validation of the
developed retrieval models is performed based on two strategies. In the first strategy, the
data are trained on all data points and subsequently validated on these data points. It
should be noted that there are no independent data for validation in this strategy, yet, the
validation results of this strategy can be used as a reference. For the second strategy, a
leave-one-out cross-validation is carried out. This implies that the linear regression model
is trained on all but one data point, and subsequently evaluated on that data point. This
procedure is repeated for every data point until a soil moisture value is retrieved for all
data points. All these retrieved soil moisture values are then pooled together and plotted
and compared against the observed soil moisture values.

2.5. Experimental Set-Up

The BELSAR-Science study is the first experimental study that makes use of fully-
polarized L-band airborne backscatter and bistatic scattering observations in two geometric
configurations in order to evaluate different SAR configurations for soil moisture sensing.
Here, we compare different soil moisture retrieval approaches over bare agricultural soils
and we select the most promising one, resulting in accurate retrieval performance. To do
so, three cases are studied. In the first one, a comparison is made between two scattering
models that can be used for retrieving soil moisture from single co-polarized and cross-
polarized backscatter data, i.e., the semi-empirical Oh model and the physically-based
AIEM. The second case compares the soil moisture retrieval performance based on single-
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polarized backscatter data with that based on multi-polarized backscatter data. In the
final case, we analyze whether more accurate soil moisture retrieval performance can be
obtained when using both co-polarized backscatter and bistatic scattering observations
simultaneously in the retrieval process, i.e., the multistatic configuration, compared to
monostatic backscatter data. The correlation coefficient (R2) and Root-Mean-Square Error
(RMSE) are used to evaluate the retrieval performance of the different SAR configurations.

For the first two cases, only monostatic backscatter data are considered. Normalized
backscatter data of the BELSAR campaign are used [30], accompanied by normalized
SAR backscatter observations in the L-band over another bare agricultural study site, i.e.,
Orgeval, France [33], in order to increase the dynamic range of soil moisture. For the third
case, normalized backscatter and bistatic scattering data in ATI and XTI flight configuration
of the BELSAR campaign are used [30]. It should be noted that the angular separation
between transmitter and receiver is limited in both geometric configurations, especially
in XTI flight configuration, making the active-passive SAR system rather quasi-bistatic
instead of true bistatic.

Two scattering models are evaluated in this study, i.e., the semi-empirical Oh model [36]
and the physically-based AIEM [21,22]. The Oh model allows SAR backscatter simula-
tions in co-polarization modes HH and VV and in cross-polarization mode HV. A second
scattering model that is evaluated in this study is the physically-based AIEM [21,22]. The
single scattering AIEM is an updated version of the widely used IEM model and is capable
of simulating bistatic scattering coefficients over bare soil surfaces for a wide range of
scattering directions and roughness parameters [40,41]. This way, the AIEM would allow a
comparison between the soil moisture retrieval performance using backscatter and bistatic
scattering data simultaneously, i.e., multistatic, with that using only backscatter data. The
main drawback of the single scattering AIEM is the fact that the model is a first-order
model, implying that no cross-polarized backscatter can be simulated due to the lack of the
multiple scattering contribution in the model [41]. In addition, it cannot accurately simulate
cross-polarized bistatic scattering close to the incidence plane and co-polarized bistatic
scattering close to the orthogonal plane. Given the fact that the geometric configuration of
the BELSAR campaign corresponds to bistatic scattering coefficients close to the incidence
plane, both in XTI and ATI configurations, it is not possible to include cross-polarized
bistatic scattering observations in the analysis.

Case 1. In the first experimental case, a comparison is made between soil moisture
retrieval performance obtained with the semi-empirical Oh model and the physically-based
AIEM using single-polarized backscatter data of the BELSAR and Orgeval campaign. In
order to allow a comparison in both co-polarization and cross-polarization modes, a hybrid
version of the AIEM is evaluated, whereby the cross-polarized backscatter signal HV is
estimated by multiplying the VV signal with an empirical factor q, as is done in the Oh
model [36]. This factor represents the cross-polarized ratio q = σ0

HV/σ0
VV and is empirically

determined. We refer to Oh et al. [36] for a detailed description. It should be noted that this
is a very simple approach to simulate cross-polarized backscatter coefficients and that it
not necessarily represents the physical processes that contribute to the depolarization of
the radar signal. The Oh model only has one roughness parameter, i.e., root-mean-square
height s. For the first experimental case, effective s-values are modeled for the Oh model
for HH, VV and HV backscatter based on linear regressions, as described in Section 2.4.
Linear regression models are evaluated for each polarization. For the AIEM, the s-value
is fixed at 1.75 cm and effective l-values are modeled based on a similar technique. This
fixed s-value is determined after iterative optimization (not shown here). These effective s-
and l-values are then propagated through an iterative inversion scheme of the Oh model
and AIEM, and the four-component dielectric mixing model [37] for the retrieval of soil
moisture. To do so, a range of soil moisture values (0.001–0.45 m3/m3) are inserted in the
Oh model and AIEM together with the modeled s- and l-values, and associated backscatter
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coefficients (HH, VV and HV) are calculated. When single-polarized backscatter data are
considered, the following cost function can then be evaluated

Cpq =
√
(σ0

pq,sim − σ0
pq,obs)

2 (5)

where σ0
pq,sim is the simulated backscatter in HH, VV or HV polarization and σ0

pq,obs the
observed backscatter in HH, VV or HV polarization. The soil moisture value corresponding
with the minimal cost, is reported as the retrieved soil moisture value.

Case 2. The second case study analyzes whether more accurate retrieval performance
can be obtained when the information of all three polarization modes (HH, VV and HV) is
evaluated together. Therefore, one can consider to integrate all backscatter observations
in one cost function to take into account all the information. Since the BELSAR and
Orgeval dataset comprises fully-polarized backscatter data, it was possible to perform
the soil moisture retrieval approach using the information of three polarization modes
simultaneously (HH, VV and HV). To do so, we used the modeled effective s- and l-values
that were found in the first case. These effective s- and l-values are then propagated
through an iterative inversion scheme of the Oh model and AIEM, and the four-component
dielectric mixing model [37] for the retrieval of soil moisture. To do so, a range of soil
moisture values (0.001–0.45 m3/m3) are inserted in the Oh model and AIEM, together with
the modeled s- and l-values, and associated backscatter coefficients (HH, VV and HV) are
calculated. For multi-polarized data, the following cost function has been introduced

C =
√
(σ0

HH,sim − σ0
HH,obs)

2 + (σ0
VV,sim − σ0

VV,obs)
2 + (σ0

HV,sim − σ0
HV,obs)

2 (6)

whereby all backscatter observations in all three polarization modes are taken into account.
The soil moisture value corresponding with the minimal cost, can then be defined as the
retrieved soil moisture value. This way, the soil moisture retrieval performance based
on single-polarized and multi-polarized backscatter data can then be compared for both
the Oh model and AIEM. This way, the second experimental case studies whether more
accurate retrieval results can be obtained when using the information of three polarization
modes simultaneously (HH, VV and HV) in the retrieval process.

Case 3. The third experimental case evaluates whether more accurate retrieval results
can be obtained by using backscatter and bistatic scattering data simultaneously, i.e., multi-
static, in the retrieval process. Since the AIEM cannot simulate bistatic cross-polarization
coefficients close to the incidence plane, this case is focused on the co-polarization mode. A
second-order model, e.g., the small slope approximation up to second order (SSA2) [42],
could be evaluated in further research to include the depolarization effects originating
from multiple scattering. For this experimental case, field average backscatter and bistatic
scattering observations in ATI and XTI flight configuration of the BELSAR campaign over
bare-wheat soils are used. The s-value is fixed at 1.75 cm and effective l-values are modeled
for both the normalized backscatter and bistatic scattering observations in HH and VV
polarization, based on a linear regression as described in Section 2.4. These effective rough-
ness parameters are then propagated through an iterative inversion scheme of the AIEM
and the four-component dielectric mixing model for the retrieval of soil moisture. To do
so, a range of soil moisture values (0.001–0.45 m3/m3) are inserted in the AIEM, together
with the modeled l-values, and associated backscatter and bistatic scattering coefficients
are calculated. The following cost function is then evaluated to retrieve soil moisture from
backscatter observations

C =
√
(σ0

HH,sim,SAR − σ0
HH,obs,SAR)

2 + (σ0
VV,sim,SAR − σ0

VV,obs,SAR)
2 (7)

with σ0
pq,sim,SAR the simulated backscatter in HH or VV polarization and σ0

pq,obs,SAR the
observed backscatter in HH or VV polarization.
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For retrieving soil moisture using backscatter and bistatic observations simultaneously,
the following cost function is considered

C =
√
(σ0

HH,sim,SAR − σ0
HH,obs,SAR)

2 + (σ0
VV,sim,SAR − σ0

VV,obs,SAR)
2 + (σ0

HH,sim,BISAR − σ0
HH,obs,BISAR)

2 + (σ0
VV,sim,BISAR − σ0

VV,obs,BISAR)
2 (8)

with σ0
pq,sim,SAR the simulated backscatter in HH or VV polarization, σ0

pq,obs,SAR the observed

backscatter in HH or VV polarization, and with σ0
pq,sim,BISAR the simulated bistatic scattering

in HH or VV polarization and σ0
pq,obs,BISAR the observed bistatic scattering in HH or VV

polarization. The soil moisture value corresponding to the minimal cost is reported as the
retrieved soil moisture value.

3. Results and Discussion
3.1. Backscatter Simulations and Soil Moisture Retrieval Using In Situ Measured Surface
Roughness Parameters

In order to illustrate the usefulness of effective surface roughness modeling as a
tool for soil moisture retrieval, we first illustrate forward backscatter simulations and
soil moisture retrievals performed using in situ measured surface roughness parameters
and in situ measured soil moisture. To do so, the BELSAR airborne backscatter data
are used accompanied by SAR backscatter observations in the L-band over another bare
agricultural study site, i.e., Orgeval, France. The field-average SAR backscatter coefficients
are normalized to a reference incidence angle of 40◦ based on Lambert’s law for optics
as illustrated in Section 2.2 and, afterwards, the field averaged normalized scatter signals
of the four tracks of the BELSAR campaign are averaged, so that for every field average
soil moisture value one field average backscatter observation is available, i.e., (σ0, Mv).
We found that the field average scattering signal of bare-maize soils is generally higher
than that of bare-wheat soils, especially in cross-polarization mode (not shown here). Since
soil moisture content and surface roughness are similar for bare-wheat and bare-maize
soils, the strong scattering signal of bare-maize soils could result from large crop residues
of maize that were still present on the soil surface after harvest. Due to the fact that no
information is available regarding crop residue cover in the BELSAR dataset, the data of
maize fields are not taken into account in this study.

Next, the SAR observations are confronted with backscatter simulations, obtained
through forward backscatter modeling with the Oh model [36], whereby the in situ mea-
sured soil moisture and in situ measured root-mean-square height s are used as input
parameters for the model. Figure 4 shows the simulated versus observed SAR backscatter
coefficients for HH, VV and HV polarization. The simulations are in good agreement with
the SAR observations, especially for VV polarization. The Oh model slightly underesti-
mates the backscatter in HH and VV polarization, with a bias of 2.5 dB in HH and 0.6 dB
in VV. For the cross-polarization mode HV, a larger bias (5.7 dB) is observed, with the
simulated backscatter coefficients being lower than the observed ones. Especially for soil
moisture values lower than 0.10 m3/m3, the Oh model tends to underestimate the cross-
polarized backscatter coefficient. The origin of this discrepancy might be in the calibration
or normalization process of SAR data, in the parameterization of surface roughness or in
the model itself, which does not simulate all physical interactions for the cross-polarization.
This strong underestimation might also be due to the fact that the radar response is below
the noise equivalent sigma zero (NESZ = −31 dB). Therefore, the results presented here
related to cross-polarization should be interpreted with caution.
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Figure 4. Simulated versus observed field average bare soil SAR backscatter for HH (left), VV
(middle) and HV (right) polarization. Backscatter simulations are performed with the semi-empirical
Oh model and in situ measured root-mean-square heights.

Figure 5 illustrates the retrieved versus observed soil moisture values when in situ
measured root-mean-square heights s are used in the retrieval process. These in situ
measured s-values are inserted in the Oh model together with the backscatter coefficient
in order to estimate the associated soil moisture. In order to account for the discrepancy
between simulated and observed SAR signals, illustrated in Figure 4, a bias correction has
been applied to the SAR backscatter observations prior to the retrieval. This implies that
the backscatter observations are corrected by subtracting the biases that were found in
Figure 4, i.e., subtracting 2.6 dB for HH, 0.6 dB for VV and 5.7 dB for HV. This way, the
SAR observations are in closer agreement with the SAR simulations. Next, we define the
retrieved soil moisture values by evaluating the cost function defined in Equation (5). These
results indicate that classical measurement techniques for surface roughness parameters
in remote sensing campaigns are not accurate enough for retrieving soil moisture using
theoretical models, with errors larger than 0.05 m3/m3. Instead, calibrated or effective
roughness parameters can be used in the retrieval process.

Figure 5. Retrieved field-average soil moisture values using in situ measured root-mean-square
heights in the retrieval process with the Oh model against observed field-average soil moisture
values, using single-polarized backscatter data.

3.2. Modeling Effective Root-Mean-Square Height s from SAR Backscatter

Here, we propose a technique for calibrating effective s-values from fully-polarized
SAR backscatter observations for the semi-empirical Oh model. The BELSAR airborne
backscatter data are used accompanied by SAR backscatter observations in the L-band over
another bare agricultural study site, i.e., Orgeval, France, to model effective s-values.

A technique is developed that allows for calibrating effective s-values from fully-
polarized SAR backscatter observations. In order to account for the discrepancy between
simulated and observed SAR signals, illustrated in Figure 4 and which may result from the
calibration or normalization process of SAR data, a bias correction has been applied first to
the SAR backscatter observations, similar to the one applied in Section 3.1. Next, different
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linear regression models are designed and evaluated which allow for the estimation of s
from normalized, bias-corrected backscatter coefficients. The slope a of the selected linear
regressions for simulating s for the Oh model ranges from 0.001 to 0.20, with ∆a = 0.001,
and intercept b ranges from 0 to 8, with ∆b = 0.01 (as optimal KGE values were found
within this range). These modeled effective roughness parameters can then be propagated
through an iterative inversion scheme of the Oh model [36]. Next, the best linear regression
is defined as the one resulting in the best soil moisture retrieval results, evaluated by the
Kling–Gupta Efficiency [38], as illustrated in Section 2.4. A visual representation of the
KGE for the range of linear regression models (the slope a ranging from 0.001 to 0.20
and intercept b ranging from 0 to 8) that allow for the estimation of effective s-values
from HH (left) VV (middle) and HV (right) polarized SAR backscatter, is illustrated in
Figure 6. The slope and intercept corresponding with the highest KGE are selected as
optimal calibration parameters of the linear model for that particular polarization. The
modeled surface roughness parameters corresponding with this best linear regression are
defined as the effective roughness parameters.

Figure 6. Kling–Gupta Efficiency (KGE) values for a range of linear regression models (slope a
ranging from 0.001 to 0.20 and intercept b ranging from 0 to 8), obtained by inverting the Oh model
for HH (left) VV (middle) and HV (right) normalized bias-corrected backscatter coefficients.

As such, an optimal linear model has been developed for HH, VV and HV normalized
SAR backscatter observations. An overview of the regression coefficients of these simple
linear models and corresponding KGE values is given in Table 2. The corresponding
modeled effective s-values range from 0.49 to 1.34 cm for HH, 0.56 to 1.33 cm for VV and 0.74
to 1.11 cm for HV, which is within the validity condition of the Oh model (0.13 < ks < 6.98
with k the wave number, for the L-band k = 0.288 cm−1) and within the range of in
situ measured root-mean-square heights. Yet, the link between observed and effective
roughness parameters is not of importance for this study and is therefore not investigated
here, but could be subject of further research. Furthermore, the selection of the optimal
linear model may be further optimized in future research by including additional data,
spanning a wider range of soil moisture values.

Table 2. Regression model parameters for estimating the effective s-values for the Oh model from
normalized backscatter observations.

L-Band Backscatter abest bbest KGEmax

HH 0.083 2.88 0.723
VV 0.056 2.16 0.768
HV 0.025 1.87 0.791

3.3. Modeling Effective Correlation Length l from SAR Backscatter and Bistatic Scattering

A similar technique has been developed for modeling effective correlation lengths
l for the physically-based AIEM [21,22]. As already illustrated in Section 2.5, the AIEM
cannot simulate the cross-polarized bistatic scattering coefficient given the geometric flight
configuration of the BELSAR campaign. Therefore, linear regression models will only be
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set up for co-polarized bistatic scattering coefficients. A second-order model, e.g., the small
slope approximation up to second order (SSA2) [42], could be evaluated in further research
to include the depolarization effects. For the backscatter signal, a hybrid version of the
AIEM is evaluated, as described in Section 2.5. As already noted before, this is a very simple
approach, which does not necessarily represent the physical processes that contribute to
the depolarization of the radar signal.

Data of the BELSAR campaign are used for modeling effective l-values from SAR
backscatter and bistatic scattering data. First, backscatter and bistatic scattering observa-
tions have been normalized to a reference incidence and zenith scattering angle of 40◦ as
illustrated in Section 2.2 and averages of scattering coefficients of the four flight tracks
are calculated. Next, the backscatter and bistatic scattering observations of the XTI and
ATI flight configuration are confronted with backscatter and bistatic scattering simulations
from the single scattering AIEM. For this purpose, we perform forward backscatter and
bistatic scattering modeling with the AIEM. The AIEM requires following input: surface
roughness parameters (i.e., root-mean-square height s, correlation length l and the type of
autocorrelation function), the soil dielectric constant, radar frequency and geometric infor-
mation of the SAR configuration (incidence angle θi, zenith θs and azimuth φs scattering
angle). In situ measured soil moisture and in situ measured surface roughness are used
for the forward backscatter and bistatic scattering modeling, along with an exponential
autocorrelation function. The SAR simulations are plotted against normalized SAR obser-
vations in Figure 7 for backscatter and, in Figures 8 and 9, for bistatic scattering in XTI and
ATI flight configuration, respectively.

Good agreement is observed for backscatter and XTI bistatic scattering, especially for
HH polarization. A slight underestimation is observed for low signals in HV polarization.
As already mentioned, this discrepancy might be due the model description itself, where
an empirical factor is used to simulate the cross-polarized signal or it may also be due to
the fact that the radar response is below the noise equivalent sigma zero (NESZ = −31 dB).
Therefore, the results presented here related to cross-polarization should be interpreted
with caution, as was also the case for the Oh model. For the VV signal, a bias is visible
between simulated and observed backscatter and bistatic scattering with the simulations
being slightly higher than the observations. This might be caused by the calibration or
normalization process of the airborne SAR data or by parameterization errors of the surface
roughness measurements. If these in situ measured surface roughness parameters would be
propagated through an inversion scheme of the AIEM for soil moisture retrieval, inaccurate
soil moisture retrieval results would be obtained, as was illustrated for the Oh model in
Figure 5. For the ATI flight configuration, the simulated bistatic scattering coefficients are
not in agreement with the observed coefficients, with the airborne measurements being
approximately 10.4 dB (HH) to 14.5 dB (VV) lower than what was simulated with the AIEM.
This discrepancy is found to be related to the calibration process of the airborne SAR data.

In order to correct for these inconsistencies, a bias correction is applied first to the
BELSAR backscatter and bistatic scattering observations. To do so, biases that were found in
Figures 7–9 were subtracted from the SAR observations in order to obtain a closer agreement
between simulations and observations, i.e., subtracting −0.3 dB for HH, −3.7 dB for VV
and 1.7 dB for HV from the backscatter observations, and for the bistatic observations
subtracting 0.3 dB for HH and −3.0 dB for VV in XTI mode, and −10.4 dB for HH and
−14.5 dB for VV in ATI mode. Next, effective roughness parameters are modeled for
the AIEM which can then be used for soil moisture retrieval. The model needs both
root-mean-square height s and correlation length l as input parameters. For effective
roughness modeling, we set the s parameter at a predefined value of 1.75 cm, and we define
and evaluate a range of linear regression models which allow the estimation of l-values
from normalized, bias-corrected backscatter and bistatic scattering data. The slope a of the
selected linear regressions for simulating l for the AIEM ranges from −20 to 1, with ∆a = 0.1,
and intercept b ranges from −100 to 30 for co-polarized and from −250 to −150 for cross-
polarized data, with ∆b = 0.1 (as optimal KGE values were found within this range). These
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simple linear models have been evaluated by the KGE, as described in Section 2.4, and best
linear regressions have been identified for each polarization, corresponding with modeled
effective l-values that result in accurate soil moisture retrieval results. An overview of
the regression coefficients of these optimal linear models and corresponding KGE values
for HH, VV and HV backscatter and HH and VV bistatic scattering for the XTI and ATI
flight configuration is given in Tables 3 and 4, respectively. Modeled effective l-values for
backscatter range from 23.6 to 38.4 cm for HH, from 8.3 to 93.2 cm for VV, and from 61.4 to
146.7 cm for HV. For bistatic scattering in ATI mode, the modeled effective l-values range
from 22.2 to 34.9 cm for HH and from 4.2 to 96.8 cm for VV and in XTI mode they range
from 22.5 to 35.5 cm for HH and from 13.3 to 95.9 cm for VV. These values are much larger
than in situ measured correlation lengths, which typically range from 2 to 8 cm, e.g., [43]. It
is not clear whether there exists a link between in situ measured and effective correlation
length. This could be subject of further research.

Figure 7. Simulated versus observed field average bare soil SAR backscatter for HH (left), VV
(middle) and HV (right) polarization. Backscatter simulations are performed with the physically-
based AIEM and in situ measured roughness parameters.

Figure 8. Simulated versus observed field average bare soil SAR bistatic scattering in XTI flight
configuration for HH (left) and VV (right) polarization. Bistatic scattering simulations are performed
with the physically-based AIEM and in situ measured roughness parameters.

Table 3. Regression model parameters for estimating the effective l-values for the AIEM from
normalized backscatter observations, whereby s is set at 1.75 cm.

L-Band abest bbest KGEmax

HH −1.7 −5.7 0.566
VV −7 −77.1 0.720
HV −8.5 −203.3 0.682
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Figure 9. Simulated versus observed field average bare soil SAR bistatic scattering in ATI flight
configuration for HH (left) and VV (right) polarization. Bistatic scattering simulations are performed
with the physically-based AIEM and in situ measured roughness parameters.

Table 4. Regression model parameters for estimating the effective l-values for the AIEM from
normalized bistatic scattering observations, whereby s is set at 1.75 cm.

L-Band abest bbest KGEmax

XTI HH −1.3 0.9 0.667
VV −7.9 −91 0.617

ATI HH −1.2 2.4 0.664
VV −8 −90.9 0.575

3.4. Soil Moisture Retrieval Based on Effective Roughness Modeling

In the previous section, a technique has been developed in which we search for an
optimal linear regression model which allows for the estimation of effective roughness
parameters from normalized backscatter and bistatic scattering data. As already illustrated
before, these modeled effective roughness parameters can be propagated through an
iterative inversion scheme of a scattering model for the retrieval of soil moisture. Optimal
linear regression models have been developed for HH, VV and HV backscatter observations
in the L-band (for modeling effective s-values for the Oh model and effective l-values for
the AIEM) and for HH and VV bistatic scattering observations in the L-band for the ATI
and XTI flight configuration of the BELSAR campaign (for modeling effective l-values for
the AIEM), see Sections 3.2 and 3.3.

Because of the limited amount of data available (n = 32), the accuracy of the soil
moisture retrieval method has been assessed through cross-validation [39]. Figure 10 shows
the retrieved field-average soil moisture values against the observed values and this for
fully-polarized backscatter data (BELSAR and Orgeval study site), whereby we made use
of the inverse of the Oh model. The top line represents the first strategy in which the data
are trained on all data points and subsequently validated on these data points. The bottom
line represents the second strategy, where a leave-one-out cross-validation is performed. The
scatterplots demonstrate a close agreement with the retrieved and observed soil moisture
values, with RMSE values well below 0.05 m3/m3. These retrieval results are much better
compared to what we found when using in situ measured surface roughness parameters in
the retrieval process (see Figure 5). Furthermore, in Figure 10, similar results are obtained
for the two strategies, illustrating the robustness of the developed retrieval technique. The
best results are obtained for the cross-polarization mode HV, with errors below 0.04 m3/m3

and a maximum R2 value of 0.626. The co-polarization mode VV also yields accurate soil
moisture retrieval results. For the co-polarization mode HH, the retrieval results are slightly
worse with R2 values lower than 0.55 and errors equal to or slightly larger than 0.04 m3/m3.

Because of the intensive computation time, the leave-one-out cross-validation of the
linear regression model has not been investigated for the AIEM. Nevertheless, the accuracy
of the soil moisture retrieval results obtained with the modeled effective l-values for the
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AIEM (bottom line in Figure 10) is similar to that with the Oh model. Therefore, we can
assume a good performance of the developed technique for the AIEM.

Figure 10. Simulated field-average soil moisture values based on effective roughness modeling for the
Oh model and AIEM against observed field-average soil moisture values for HH (left), VV (middle)
and HV (right) polarization. The top line represents the first validation technique performed with
the Oh model. The middle line represents the second validation technique, i.e., leave-one-out cross-
validation, performed with the Oh model. The bottom line represents the first validation technique
performed with the AIEM.

3.5. Evaluating Different Soil Moisture Retrieval Approaches

In this section, we compare different soil moisture retrieval approaches over bare
agricultural soils, using experimental L-band SAR backscatter and bistatic scattering data,
and we detect the most promising one, resulting in accurate retrieval performance. To do
so, three experimental cases are studied, which were described in Section 2.5.

Case 1. The first case focuses on the comparison between soil moisture retrieval
performance obtained with the semi-empirical Oh model and the physically-based AIEM
using single-polarized backscatter data. A hybrid version of the AIEM is evaluated here
in order to evaluate both co- and cross-polarization modes. Effective s-values have been
simulated for the Oh model, based on the linear regression model described in Section 3.2.
For the AIEM, the s-value is fixed at 1.75 cm and effective l-values have been simulated.
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Based on the method described in Section 3.3, optimal linear regression models were defined
for the simulation of l-values based on normalized bare-soil backscatter observations from
the BELSAR campaign [30] and one additional field campaign, i.e., Orgeval [33]. The
optimal regression coefficients for modeling these effective l-values are: a = −0.1 and
b = 23.8 for HH polarization, a = −7.9 and b = −91.2 for VV polarization and a = −8.6
and b = −213.3 for HV polarization. These effective s- and l-values have been propagated
through the Oh model and AIEM, and retrieved soil moisture values are defined by
evaluating Equation (5).

The top line and bottom line in Figure 10 represent plots of the retrieved field-average
soil moisture values obtained with the semi-empirical Oh model and the physically-based
AIEM, respectively, against the observed field-average soil moisture values. It is found that
for HH polarization, the Oh predictions are closer to the 1:1 line compared to the AIEM,
suggesting that the Oh model performs slightly better for retrieving soil moisture from HH
polarized backscatter observations. For VV polarization, a slightly lower retrieval error and
higher correlation is found for the AIEM. Very similar retrieval performance is found for
the cross-polarization mode HV, which can be explained by the fact that the HV signal in
the hybrid AIEM is simulated by multiplying the VV signal with an empirical factor, which
is also used in the semi-empirical Oh model.

Case 2. In the second experimental case, we study and compare the soil moisture
retrieval performance based on single-polarized backscatter data with that based on multi-
polarized backscatter data, both for the Oh model and AIEM, by evaluating Equation (6).
The modeled effective s- and l-values for HH, VV and HV backscatter that were found in
the first experimental case are used.

Intuitively, we would expect that more accurate soil moisture retrieval results can be
obtained when multi-polarized backscatter data are used in the retrieval approach because
more information is taken into account in the retrieval process compared to the case where
only single-polarized backscatter data are used. Figures 10 (top line) and 11 (left) represent
plots of the retrieved field-average soil moisture values against the observed values, based
on single-polarized backscatter data and multi-polarized backscatter data respectively
using the semi-empirical Oh model. Slightly better soil moisture retrieval performance is
observed when multi-polarized data are considered, with an error of 0.032 m3/m3 and a
correlation coefficient of 0.665. This is in line with what we expect and could be linked to
the BELSAR sensitivity study of Bouchat et al. [44], whereby a higher sensitivity to soil
moisture and a lower sensitivity to surface roughness was observed when the combination
of dual-polarized backscatter was evaluated. For the AIEM, the retrieved versus observed
soil moisture based on single-polarized data is represented in Figure 10 (bottom line) and
the retrieved versus observed soil moisture based on multi-polarized data is represented in
Figure 11 (right). For the AIEM, using multi-polarized data in the retrieval process does not
result in a profound increase in retrieval performance, the retrieval performance is rather
similar to the one obtained with single-polarized SAR data in VV and HV polarization.

Case 3. The third case analyzes whether more accurate soil moisture retrieval results
can be obtained when using backscatter and bistatic scattering observations simultaneously,
the so-called multistatic case. For this purpose, field-average co-polarized backscatter and
bistatic scattering observations in ATI and XTI flight configuration of the BELSAR campaign
over bare-wheat soils are used. The effective l-values are modeled based on the optimal
linear regression models described in Section 3.3 for both the normalized backscatter and
bistatic scattering observations. These effective roughness parameters are then propagated
through the AIEM. First, soil moisture is retrieved using only co-polarized backscatter data,
as defined in Equation (7). For retrieving soil moisture using co-polarized backscatter and
bistatic observations simultaneously, Equation (8) is evaluated.
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Figure 11. Simulated field-average soil moisture values based on effective roughness modeling for
the Oh model (left) and AIEM (right) against observed field-average soil moisture values, using
multi-polarized backscatter data.

The left plot in Figure 12 represents the retrieved field-average soil moisture values
as a function of the observed values when co-polarized backscatter data were used in the
retrieval process and both HH and VV polarizations are considered in the cost function (see
Equation (7)). The retrieved field-average soil moisture values when using both backscat-
ter and bistatic scattering observations simultaneously, as illustrated in Equation (8), is
reported in the middle and left plot of Figure 12 for the XTI and ATI flight configura-
tion, respectively. We can observe that slightly better soil moisture retrieval results are
obtained when using backscatter and bistatic scattering observations simultaneously, and
most accurate results are obtained for the ATI flight configuration. Yet, the increase in
accuracy is very limited, i.e., ∆RMSE = −0.001 m3/m3 and ∆R2 = +0.028 for XTI flight
configuration and ∆RMSE = −0.002 m3/m3 and ∆R2 = +0.066 for ATI flight configuration.
This limited increase in retrieval performance was expected given the flight configuration
of the BELSAR campaign with short along-track and especially short across-track base-
line, and corresponding small bistatic angles. Because of this, the scattering mechanisms
involved in the monostatic and bistatic geometry are similar, resulting in the fact that the
bistatic scattering coefficients do not give substantial added value to the backscattering.
The model-based theoretical study of Pierdicca et al. [15] highlights that the scattering
mechanism of the monostatic and bistatic system should be sufficiently different in order to
increase the retrieval performance if both scattering coefficients are used simultaneously in
the retrieval process. Bistatic scattering in the forward region was therefore desired, with a
special focus on the specular and orthogonal direction. These findings are in agreement
with the BELSAR sensitivity study of Bouchat et al. [44] where no increase in sensitivity to
soil moisture was observed when considering backscatter and bistatic scattering coefficients
simultaneously. Given this, the introduction of additional bistatic airborne campaigns with
more promising active-passive SAR configurations is highly recommended in order to
further verify the improvement in soil moisture retrieval performance.
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Figure 12. Simulated field-average soil moisture values based on effective roughness modeling for
the AIEM against observed field-average soil moisture values. Left: using HH- and VV-polarized
backscatter data of the BELSAR campaign. Middle: using HH- and VV-polarized backscatter and
XTI bistatic scattering data of the BELSAR campaign. Right: using HH- and VV-polarized backscatter
and ATI bistatic scattering data of the BELSAR campaign.

4. Conclusions

This paper presents a semi-empirical method to retrieve soil moisture over bare
agricultural fields, based on effective roughness modeling, and applies it to a series of L-
band fully-polarized SAR backscatter and bistatic scattering observations over the Hesbania
site and Orgeval site. The technique relies on estimating effective surface roughness
parameters for each new SAR acquisition based on simple linear regression modeling.
The results of this study illustrate that the developed technique is a promising tool for
soil moisture retrieval over bare agricultural soils, especially since it removes the need of
surface roughness field measurements, which are known to be the main source of error
in soil moisture retrieval applications. Given the limited dynamic range of soil moisture
values in this study, it is recommended to evaluate additional linear regression models
using a broader range of scattering coefficients and compare these with the regressions that
were found in this study. This way, the applicability of the developed linear regression
models to other SAR databases can be evaluated. In addition, further research can be
carried out in which the developed technique is used as a basis for soil moisture retrieval
under a vegetation layer, as is done in the study of Lievens et al. [45].

In addition, different airborne SAR monostatic and bistatic configurations are evalu-
ated in this study for soil moisture retrieval over bare soils, making use of the developed
technique and the semi-empirical Oh [36] and physically-based AIEM [21,22] scattering
models. Based on the results, we can conclude that using multi-polarized backscatter
observations in the retrieval process is recommended to increase soil moisture retrieval
performance from L-band SAR backscatter, especially when using the semi-empirical Oh
model. Furthermore, the physically-based AIEM shows good potential for simulating
backscatter and bistatic scattering coefficients. Yet, some model refinements are recom-
mended, with a special focus on the simulation of cross-polarized backscatter and bistatic
scattering close to the incidence plane, in order to evaluate soil moisture prediction ac-
curacy of a fully-polarized bistatic SAR configuration. An attempt has been made by
Yang et al. [46] to include a multiple scattering term for the simulation of cross-polarized
scattering coefficients.

The retrieval performance of a multistatic system has been evaluated in this study and
compared to that of a traditional monostatic system. Airborne SAR data were available
for two bistatic geometries, i.e., the XTI and ATI flight configuration. For both configu-
rations, bistatic scattering observations were only available in the backward region close
to the incidence plane, which limited the scope of this study to co-polarized multistatic
data. Experimental results of this study show that using backscatter and bistatic scatter-
ing data simultaneously does not result in a profound increase in retrieval performance.
As theoretical studies demonstrate a strong improvement in retrieval performance when
using backscatter and bistatic scattering coefficients in the orthogonal direction simultane-
ously [15], the introduction of additional bistatic airborne campaigns with more promising
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active-passive SAR configurations (i.e., bistatic scattering in the forward region with a
special focus on the orthogonal and specular direction) is highly recommended.

We can conclude that a more optimal active-passive radar system, with bistatic scatter-
ing observations in the forward region, in combination with the developed technique for
surface roughness modeling, might result in a promising soil moisture detection tool over
bare agricultural fields, whereby the need for measuring surface roughness on the field
disappears. Especially, in the light of future satellite missions that are foreseen to operate in
the L-band, i.e., SAOCOM [47], NISAR [48] and ROSE-L [49], this work is of relevance as it
proposes a promising tool for soil moisture retrieval from L-band SAR.
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