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Abstract: Due to different combinations of agriculture, livestock and forestry managed by rotation,
succession and intercropping practices, integrated agriculture production systems such as integrated
crop–livestock systems (iCL) constitute a very complex target and a challenge for automatic mapping
of cropping practices based on remote sensing data. The overall objective of this study was to develop
a classification strategy for the annual mapping of integrated Crop–Livestock systems (iCL) at a
regional scale. This strategy was designed and tested in the six agro-climatic regions of Mato Grosso,
the largest Brazilian soybean producer state, using MODIS satellite time-series images acquired
between 2012 and 2019, ground data with heterogeneous distribution in space and time and a
Random Forest classifier. The results showed that: 1. the use of unbalanced training samples with a
class composition close to the real one was the right classifier training strategy; 2. the use of a single
training database (pooling samples from different years and regions) to classify each region and year
individually proved to be robust enough to provide similar classification accuracies in comparison to
those based on the use of a database acquired for each region and for each year. The final hierarchical
classification overall accuracy was 0.89 for Level 1, the cropping pattern level (single and double
crops DC); 0.84 for Level 2, the DC category level (integrated system iCL soy-pasture/brachiaria,
soy-cotton and soy-cereal); 0.77 for Level 3, the iCL level (iCL1 soy-pasture and iCL2 soy-pasture
mixed with corn). The F-scores for DC, iCL and iCL1 cropping systems presented high accuracy
(0.89, 0.85 and 0.84), while iCL2 was more difficult to classify (0.63). This approach will next be
applied across the entire Brazilian soybean corridor, leading to an operational tool for monitoring the
adoption of sustainable intensification practices recognized by Brazil’s Agriculture Low Carbon Plan
(ABC PLAN).

Keywords: cropping systems; double cropping; sustainable agriculture; satellite image time series;
MODIS; machine learning; big data; hierarchical classification; training sample designs; samples balancing

1. Introduction

Brazil is currently the world’s largest producer of soy and meat [1]. In the last
six decades, the country has doubled its agricultural area, mainly due to the inclusion

Remote Sens. 2022, 14, 1648. https://doi.org/10.3390/rs14071648 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071648
https://doi.org/10.3390/rs14071648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3017-9625
https://orcid.org/0000-0003-0254-3327
https://orcid.org/0000-0001-5367-8059
https://orcid.org/0000-0002-9470-4791
https://orcid.org/0000-0002-9289-1052
https://doi.org/10.3390/rs14071648
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071648?type=check_update&version=2


Remote Sens. 2022, 14, 1648 2 of 21

of new production areas in the Amazon and Cerrado biomes [2,3]. However, nowadays,
it is possible to observe a clear land-use intensification process based on the adoption
of integrated production systems, notably in the agriculture areas related to the grain
production chain. The Crop–Livestock and Forestry Integration (iCLF) is one of the main
land use axes of the Sectoral Plan for Mitigation of Climate Change for Agriculture, the
so-called ABC Plan (Low Carbon Agriculture; [4]). It is a valuable strategy to increase
production in a more sustainable way and without the need to expand the production area,
as it becomes possible to efficiently produce different crops, grains, forest essences and
animal production in the same area [5,6]. Because of these agro-environmental benefits [7,8],
integrated systems have been widely adopted in Brazil [7,9,10].

The integrated crop–livestock–forest (iCLF) and integrated crop–livestock (iCL) are
particular sequential systems that consist of agricultural production (i.e., grain crops and
livestock), intercropped or in rotation grain crops with forage grasses, or in different parcels
within a farm. Different spatio-temporal combinations of varied crops in agricultural
production systems have been recognized as a strategy that contributes to increase the
agroecological efficiency by providing more efficient use of nutrients and greater incor-
poration of soil organic carbon. Particularly, the introduction of pasture in the integrated
systems intensifies this process due to the greater grass biomass production. Grain yields of
crops grown in rotation with pasture are generally higher than crops grown in non-grazed
fields [11] and, on the other hand, the conversion of low-yield extensive pastures to iCLs
increases stocks soil carbon and forage productivity [12].

Stimulated by sectoral public policies, such as the ABC Plan, the monitoring the iCLs
expansion area, on a national scale becomes extremely relevant for the sectoral management
from the Agriculture Ministry of Brazil, which needs information to assess the level of
adoption and the impact of these public policies. However, so far, the estimate of the
implementation of these systems is made by surveys that are costly in time and resources,
which is mostly carried out through interviews with cooperatives and producers [13,14].
Therefore, the development of monitoring systems that can automatically provide, updated
information is strongly required.

Earth observation (EO) data have been widely used to map agricultural patterns or
crop types and to monitor land use and cover changes over large areas; however, the
detection of crop practices or production systems still constitutes a challenge in remote
sensing. There are only a few examples of crop systems mapping in the specialized
literature; they are, in fact, mainly exploratory studies, carried out at the local level, focusing
only on certain practices [15]. Furthermore, Câmara et al. [16] point out that, despite the
large volume of Earth Observation data available, only a small part is used for scientific
research or operational applications. The results published in most cases are based on
experiments carried out with limited datasets referring to small field areas and, therefore,
are not properly tested and validated to support sectoral public policies.

However, the cropping practices’ diversity, in particular the integrated crop–livestock
systems, bring a further considerable complexity for land monitoring approaches based on
remote sensing data. First, considering the properties and the temporal variability of these
complex production systems, it is necessary to be able to capture the dynamics of land, and
in particular, of sequential cropping, through the analysis of Satellite Image Time Series
(SITS) [15,17]. As discussed by Gómez et al. [18] in their review, the vegetation indices (VI)
extracted from the time series of images allow the reconstruction of the entire phenological
cycle of the vegetation, which allows a better understanding of the multiple cropping
pattern. For example, the MODIS (MODerate resolution Imaging Spectroradiometer) satel-
lite has been successfully used for mapping simple and sequential crops over large areas,
particularly in the United States, e.g., [13,14,19,20], China, e.g., [21,22] and Brazil [23–29]. In
Brazil, Manabe et al. [30] and Kuchler et al. [31] carried out studies focused on the detection
of iCL in small regions of Mato Grosso state. In both studies, good accuracy is presented,
but the spatial extent of the final product is limited and does not correspond to the needs
of the policy-makers. At the opposite, [32] mapped the soybean-pasture system over the
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entire state of Mato Grosso but used only 20 samples referring to a small region, which
made it impossible to correctly assess the accuracy classification.

New information technologies (Big Data approach) and satellite data clouds-processing
platforms have allowed massive data processing, enabling solutions for large-scale land-use
monitoring. As an example, we can mention the Google Earth Engine (GEE) platform,
which allows, from a programming interface through an API (application programming
interface), to access a petabyte catalog of satellite images and use Google’s infrastructure
to process them [33]. This way, spatial data processing provides an environment that
makes it possible to compensate for the technical limitations of image processing over
large areas. As shown in the meta-analysis published by [34], GEE is increasingly used
worldwide, mainly for the mapping of agricultural areas, but a few studies are dedicated
to mapping production systems, such as those based on sequential crops. An important
initiative in Brazil that uses GEE for annual land-use monitoring is the Brazilian Project
for Annual Mapping of Land Use and Occupation (MapBiomas), which has been mapping
the entire national territory using Landsat images with 30 m spatial resolution for the last
33 years [35]. MapBiomas annually releases new maps versions that sometimes include
new land use classes or improvements in image processing methods. The hierarchical
nomenclature includes classes such as “soybean”, “sugar cane” and “other annual crops”
but does not currently include information about complex systems, including sequential
crops and iCL practices.

In this context, the motivation of this study was to explore the possibility of using
remote sensing data in order to contribute to the establishment of a methodological protocol
for monitoring integrated systems in Brazil. Then, the main objective of this work was to
develop a methodological approach for mapping the integrated crop–livestock systems in
the state of Mato Grosso, Brazil. Secondarily, the study aimed to evaluate the strategy for
building the training database in two main points of investigation: (i) identify a reliable
sampling strategy when targeting a marked minority class, such as iCL; (ii) evaluate
the generalization of classification models over areas and cropping seasons that were
not covered by field data collection. The classification strategy was applied for seven
agricultural years between 2012–2013 and 2018–2019.

2. Materials and Methods
2.1. Study Area

The methodology was applied in the state of Mato Grosso (MT), Brazil, which is
approximately 903,357 km2 (Figure 1a).

Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Study area: (a) Location of Mato Grosso state in Brazil and biomes map; (b) Agroclimatic 
maps of Mato Grosso state established in a previous study [36]; Cropland extent in 2017 is indicated 
in grey mapped by Camara et al. [27], and the ground samples are indicated in red (2018/2019). 

The predominant climate types are tropical, super-humid monsoon climate (with an 
annual average of 2000 mm) and tropical climate (with summer rains and dry winters 
with precipitation above the annual average of 1 500 mm [37]). It still has an interannual 
climate variability (Figure 2) due to the phenomena of the South Atlantic Convergence 
Zone (SACZ), the Intertropical Convergence Zone (ITCZ) and the “ENSO” (El-Niño—
Southern Oscillation) phenomena. 

 
Figure 2. Histogram depicting monthly rainfall distribution for Mato Grosso in different years. 

Figure 1. Study area: (a) Location of Mato Grosso state in Brazil and biomes map; (b) Agroclimatic
maps of Mato Grosso state established in a previous study [36]; Cropland extent in 2017 is indicated
in grey mapped by Camara et al. [27], and the ground samples are indicated in red (2018/2019).



Remote Sens. 2022, 14, 1648 4 of 21

2.1.1. Mato Grosso Environment

Mato Grosso contains three distinct biomes—the Amazon forest in the northern part
of the state, the Cerrado savannah in central Mato Grosso and the Pantanal wetland in
the southwest of the state (Figure 1a)—and six climatic zones (Figure 1b). These zones
have been labeled in terms of five agroclimatic zones of agricultural potential (from low
to excellent) where the zone with the lowest rainfall (between 120 and 150 mm) was not
included according to the ecological-economic zoning of the state [36].

The predominant climate types are tropical, super-humid monsoon climate (with an
annual average of 2000 mm) and tropical climate (with summer rains and dry winters
with precipitation above the annual average of 1500 mm [37]). It still has an interannual
climate variability (Figure 2) due to the phenomena of the South Atlantic Convergence Zone
(SACZ), the Intertropical Convergence Zone (ITCZ) and the “ENSO” (El-Niño—Southern
Oscillation) phenomena.
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2.1.2. Mato Grosso Agriculture

Mato Grosso is one of the main national beef and soybean producers [38]. A total of
23.2% of the state is covered by pasture and 12% by agriculture [39] (Figure 1b).

According to official statistics from the Brazilian institute of geography and statistics
(IBGE—Instituto Brasileiro de Geografia e Estatística) [40], in 2019, 95% of the state’s agricul-
tural areas were occupied with three main crops: soybeans (58.47%), corn (30.22%) and
cotton (6.65%), normally cultivated in succession in the same crop year (double cropping
systems). According to SEEG (Sistema de Estimativas de Emissões e Remoções de Gases de
Efeito Estufa) [41], Mato Grosso has been, for the last 10 years, the Brazilian state with the
highest Greenhouse Gases (GHG) emission rate in the agricultural sector (73% of livestock
emissions, 6% from fertilizer use, 6% from soybean cultivation, 15% from other sources).
To maintain high grain productivity and, at the same time, contribute to the mitigation
of GHG emissions [7,42–45] crop–livestock–forest integration (iCLF) and crop–livestock
integration (iCL) systems were particularly encouraged in the state. As a result, the state of
Mato Grosso has the second largest area of integrated systems implemented in the country,
of which more than 80% are integrated crop–livestock (iCL), with 1.5 Mha implemented for
2015/2016 [14].
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Based on the field data collection reported by [46], two main strategies of the iCL
systems are found in the state:

1. The multi-annual iCL systems: These are systems based on multi-annual crop-pasture
rotation. In this strategy, the farmer grows grains crops on the same plot for a few
years, then introduces pasture for the cattle that remain for a few more years and
then goes back to agriculture crops, and so on. This type of integration is generally
adopted by farmers whose focus is both agriculture and livestock. It also constitutes
a profitable pasture reform strategy used by ranchers with the aim of recovering
degraded pastures and/or increasing the general productivity of livestock activity
because the residual crop fertility contributes to restoring soil quality [47,48].

2. Annual iCL systems: These are systems based on the succession of crops with pastures
in the same agricultural year. Normally, in the studied region, soybean is cultivated in
mid-summer and, depending on the duration of the rainy season, a second crop (corn,
millet, sorghum) can be cultivated before planting a forage species to form pasture for
cattle grazing. The remaining forage biomass can be yet used as mulch for planting
the next crop in a no-tillage system. There are different strategies for the introduction
of the forage species (brachiaria) in the iCL systems. In the regions where just one
crop can be grown, due to the climatic restrictions, forage is normally introduced by
overseeding after the soybean harvest. While, in regions where double cropping is
possible, the forage is initially intercropped with the second crop, which is usually
corn or another cereal. In this case, the corn grows first and is harvested before the
pasture is fully developed, and after that, the pasture can fully develop.

However, it is observed that in both modalities of iCL, the introduction of forage occurs
in the same way after the summer harvest. In the multi-annual case, the pasture for livestock
is maintained for a few years, while in the annual case, grazing remains only until the new
harvest. Therefore, to detect iCL systems, it is sufficient to evaluate the crop’s phenological
profile in succession at the same agricultural year: (i) 1st summer crop (soybean) + 2nd
summer crop (corn/millet or sorghum) + pasture (brachiaria/or other forage species), for
regions that allow double cultivation; (ii) 1st summer crop (soybean) + pasture (Brachiaria
or other forage) for those regions whose rainy season is too short to sustain two crops at
the same time. We focused on the detection of iCL systems considering the spectral profile
characterization of the phenological cycles of the different cultures in succession over one
cropping season, making it possible to separate the two aforementioned cases.

The results of the farms investigated during this work show that in Mato Grosso,
integrated systems based on crop rotation also practice the integration of agriculture and
livestock in sequential crops. Thus, the iCL system considered in this work refers to
boi safrinha, which comes in two forms of sequential crop: soybean then pasture, and
soybean then corn/pasture association (which is extended by pasture alone after the
corn harvest).

3. Data
3.1. MODIS Time Series

Over the Mato Grosso state, 16-day composite MODIS Vegetation Indices and Spectral
Bands time series were acquired at a 250 m spatial resolution (MOD13Q1 product; [49]
for seven cropping years (October 2012–October 2019). Six tiles are needed to cover the
entire state.

The MODIS time series of vegetation indices was not pre-processed, as recommended
by Picoli et al. [27] and Chen et al. [32] for tropical areas and confirmed by our previous
work [31], where we obtained the best cropping system classification accuracy in a northern
Mato Grosso study site, including the integrated crop–livestock system class, using raw
vegetation indices. It has also been shown that in that region, data filtering, such as Savitsky–
Golay processing, on the one hand, reduces atmospheric interference in the time series, but,
on the other hand, filters away important information, thus hindering the discrimination of
classes with similar time profiles.
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3.2. Ground Data Collection

The availability of ground datasets, up-to-date and spatially representative, remains
a huge challenge for mapping agricultural land use on a large scale [15,50,51]. To get a
significant number of field samples, it is often necessary to implement several data collection
strategies. To label “stable” classes that have little intra and inter-annual variation (perennial
crops or natural wooded vegetation), we can base ourselves on the visual interpretation of
very high spatial resolution images to define learning areas [35,52]. For classes which, on
the contrary, have a marked seasonal and annual cycle (annual crops), in situ data collection
remains the most reliable method for building the “ground truth” database [53].

Parente et al. [54,55] use a combination of data collected by field campaigns and photo-
interpreted data in order to map pastures. In the case of sequential cropping systems, the
datasets are generally derived from interviews with producers and cooperatives, supple-
mented by data collected in the field [23,26,27,30,32]. The identification of these systems
remains very difficult by photo-interpretation, even for specialists, because they are very
dynamic and diverse systems, with different classes of pasture and annual crops (soybeans,
cotton, etc.). The strategy of collecting field data through interviews with producers in the
region is necessary because, in the case of its sequential crops, a visit made on a single date
does not identify the complete production system. In most studies, however, this strategy
is limited because it does not allow collecting a large number of samples over large areas
and remains problematic for poorly represented classes, such as integrated systems.

In this study, cropping practices samples for the 2012–2019 period were collected from
five different sources: in situ GPS field limits and surveys, interviews with producers,
data from local cooperatives, consultants and from research projects. During interviews
with producers of the URT (Technological Reference Units in partnership with Embrapa
Agrossilvipastoril), data on field limits and on the history of the cropping practices could
be collected. Samples were also gathered from the Bom Futuro group, one of the largest
agricultural production groups in Brazil, and from other research initiatives [56]. The final
database totaled 1748 polygons spread over 46 state municipalities. Table 1 indicates the
percentage of samples (by hierarchical level) that each data source represents.

Table 1. Source and number of field samples (training/validation database) for all classes and levels.

Level 1 Level 2 Level 3

Source SC 1 DC 2 Sce 3 iCL 4 Sco 5 iCL1 6 iCL2 7

In-situ GPS 10.81% 12.81% 2.62% 14.66% 0.09% 26.46% 0.79%
Bom Futuro Group 9.04% 35.93% 11.43% 12.22% 25.57% 22.05% 8.98%

Embrapa 0.17% 6.64% 3.32% 5.5% 0.00% 9.92% 1.42%
Consultants 2.12% 13.73% 4.1% 7.16% 0.00% 12.91% 17.48%

Previous Study 8 0% 8.75% 8.9% 0% 4.45% 0% 0%

TOTAL 22.14% 77.86% 30.37% 39.53% 30.10% 71.34% 28.66%
1 Single Crop (SC); 2 Double Crop (DC); 3 Soybean+Cereal (SCe; mainly corn but also millet, sorghum or
sunflower); 4 Soybean+Pasture (iCL); 5 Soybean+Cotton (SCo); 6 Soybean+Pasture (iCL1); 7 Soybean+Pasture in
association with cereals (iCL2); 8 Data obtained on previous study [56].

In order to avoid the border effect, all the polygons were overlaid on MODIS images,
while the border pixels were removed by applying a −250 m buffer. The spatial and
temporal distribution of the field samples is given in Figure 3 for Single Crop (SC); Double
Crop (DC); Soybean+Cereal (SCe; mainly corn but also millet, sorghum or sunflower);
Soybean+Pasture (iCL); Soybean+Cotton (SCo); Soybean+Pasture (iCL1); Soybean+Pasture
in association with cereals (iCL2).
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The training dataset was composed of 2/3 of the fields, randomly selected; the re-
maining 1/3 of the fields were used to validate the classification map. The separation
between the training and validation datasets was performed at the field level, not at the
pixel level, to avoid classification bias (due to training and validation samples located in
the same field).

4. Method
4.1. The Classification Strategy

Figure 4 shows the flowchart of the classification strategy adopted in this paper. The
classification is based on the MODIS SITS acquired for the mid-2012–mid-2019 period and
the field samples database, a hierarchical structure and Random Forest algorithm (RF). The
strategy consists of testing different sample-balancing strategies and assessing the impact
of the spatial and temporal distributions of the samples on the classification accuracy of the
cropping systems. The classification strategy with the highest accuracy for the iCL classes
is then used to produce annual cropping systems maps at the Mato Grosso scale for the
whole period.

4.2. The Hierarchical Image Classification

We adopted a hierarchical image classification approach [57] at four levels (Figure 5):
Level 0: The starting map corresponds to the Soybean class of the MapBiomas collec-

tion product [39];
Level 1: The Soybean class is separated into two classes: Single Crop (SC) and Double

Crop (DC);
Level 2: The Double Crop class is separated into three classes: Soybean+Cotton

(SCo), Soybean+Cereal (SCe; mainly corn but also millet, sorghum or sunflower), and
Soybean+Pasture (iCL);

Level 3: The integrated Soybean+Pasture class is separated into two classes: Soy-
bean+Pasture (iCL1) and Soybean+Pasture in association with cereals (iCL2).
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The classification algorithm was based on a machine learning technique performed in
cloud computing for annual mapping, where each map represents the cropping system of
an entire crop year. Based on the classification experiments carried out by Kuchler et al. [31],
who tested two classification algorithms and different spectral features for classifying Mato
Grosso cropping systems, we opted for an RF classifier [58] with 100 random trees. The
classification process was based on four features, two spectral indexes and two spectral
bands (the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), Near-Infrared spectral band (NIR) and Mid-Infrared spectral band (MIR)) of the
MOD13Q1 product and on the learning/validation dataset of approximately 25,000 pixels.
The platform used to run the RF classification was the Google Earth Engine, and we were
thus able to easily process the 3864 images of the dataset for the whole Mato Grosso state
and for the mid-2012–mid-2019 period (23 images per year; 4 bands; 6 tiles; 7 years).

4.3. The Training Databases
4.3.1. Balanced and Unbalanced Samples

The sample balancing strategy is fundamental as it directly influences the result of the
RF classification, particularly for the “rare” classes. Unbalanced data refers to a situation
where the number of observations is not the same for all classes. Machine learning classifiers
aimed at minimizing the overall error rate tend to favor the class with the highest proportion
of observations (or majority class). This can be particularly problematic for classifying
a “rare” class (or minority class), such as the iCL class. For this reason, it is essential to
perform a sensitivity analysis of the classifier performance to the class distribution of the
training samples.

Based on the sample balancing practices and recommendations found in the literature
for RF classification, three scenarios were tested: (i) balanced dataset (Bset01), using a similar
number of samples in each class, Dalponte et al. [59] and Jin et al. [60], (ii) unbalanced
dataset (Bset02), using a distribution of samples close to the actual distribution of classes
found in the field as estimated from the collected dataset, Colditz et al. [61] and Mellor
et al. [62], and (iii) unbalanced dataset (Bset03), using an over-representation of the “rare”
class iCL. Figure 6 shows the distribution of samples for each scenario and the results
obtained for the iCL class.
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with an over-representation of the iCL class.

4.3.2. Spatio-Temporal Distribution of the Samples

We showed previously that the training/validation datasets were distributed very
unevenly in space and time. Testing the performance and robustness of classifications
trained with samples acquired at different years and in different regions was a mandatory
pre-classification step, in particular for Mato Grosso, which displays a great diversity of
environments and agriculture production systems.
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To study the impact of this spatio-temporal distribution of the datasets on the accuracy
and robustness of the classifications, we tested and evaluated the accuracy of the cropping
system maps according to different years, characterized mainly by different rainfall patterns
(Figure 2) and agro-climatic regions of Mato Grosso (Figure 1).

To assess the impact of the uneven temporal distribution of the samples datasets,
we compared the classification accuracy obtained using two learning database construc-
tion strategies:

1. Strategy (a): Two-thirds of the field samples acquired for a given year are used as
training data to classify SITS for the same year, the other third is for validation;

2. Strategy (b): Two-thirds of the samples collected during the different years (between
2014/15 and 2018/19) are pooled and then used to train the SITS for each of the years
between 2012/13 and 2018/19. For 2014/15 to 2018/19, the validation is done with the
remaining samples collected for the year in question (samples not used for training),
while for the 2012/13 and 2013/14 years, the validation is done with the samples
acquired during those years, because there were not enough samples for those years.

3. To assess the impact of the uneven spatial distribution of the samples datasets, we
processed them the same way:

4. Strategy (a): Two-thirds of the field samples acquired for a given agroclimatic region
were used as training data for the same given region, the other third was used for
validation; Zone E was not concerned by this strategy because of the low number of
samples in this zone;

5. Strategy (b): Two-thirds of the samples collected in all regions are pooled and then
used to train the SITS for each region. The validation is done with the remaining
samples collected for the region in question (samples not used for training).

4.4. Post Processing

Annual maps of farming systems were produced at the pixel scale. A spatial filter was
then applied to the iCL class in order to eliminate the incorrectly classified isolated pixels
or groups of pixels (essentially mixed pixels related to the transitions between the crop,
pasture and forest classes) [63,64]. This spatial filter excludes pixels where a minimum of
five other pixels of the same class are not connected, i.e., patches with an area smaller than
approximately 35 ha. This number, which may appear high, should be evaluated in regard
to the average (90 ha) and minimum (30 ha) size of the fields in the dataset.

5. Results
5.1. Impact of Balanced and Unbalanced Learning Database

Table 2 presents the classification accuracy performances, obtained for Level 02, level
with most classes, including iCL, using the three strategies of the training database: Bset1
(balanced dataset), Bset2 and Bset3 (unbalanced datasets), for the classes Soybean+Cotton,
Soybean+Cereals, and the integrated crop–livestock system.

Table 2. Class accuracy metrics at Level 02, obtained with balanced (Bset1) and unbalanced (Bset2
and Bset3) training datasets. The classes are the Soybean+Cotton (SCo), Soybean+Cereals (SCe) and
integrated systems (iCL).

Bset 1 Bset 2 Bset 3

Metrics SCo SCe iCL SCo SCe iCL SCo SCe iCL

Producer accuracy 1 0.81 0.8 1 0.91 0.76 0.99 0.54 0.88
User accuracy 1 0.8 0.81 1 0.79 0.9 1 0.82 0.66

F-Score 1 0.96 0.81 1 0.85 0.83 1 0.65 0.75
Nber of samples (pixels) 2241 2383 2107 1361 3796 589 2383 885 2383

Overall accuracy 0.87 0.89 0.81
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The results show that the double cropping system Soybean+Cotton (SCo) is classified
with a very high accuracy, whatever the training strategy, while the F-Score of the Soy-
bean+Cereals (SCe) class is between 0.65 for Bset3 and 0.96 for Bset1. The best F-scores for
the iCL class were obtained for Bset01 and Bset02 (0.81 and 0.83, respectively), but with a
higher commission error for Bset01 (+9%).

The effectiveness of the Bset2 sampling strategy is probably related to the intrinsic
variability of the majority classes with respect to the characteristics of the Random Forest
classifier, which can suitably deal with such variability (i.e., building multiple different trees
for the same class) at the need of a larger sample set for those classes. Better discrimination
of such classes (SCe in our case) ends up in improving performances also on the minority
iCL class.

Due to higher overall precision, higher F-score and lower commission error for the
iCL class, the Bset2 unbalanced training dataset, with a number of samples per class
representative of the real proportion of classes in the field, is used for the following
classifications at Levels 02 and 03.

5.2. Impact of Temporal Distribution of the Learning Database
5.2.1. The NDVI Inter-Annual Variability: Example of the iCL Class

Before quantifying the impact of the uneven temporal distribution of the field samples
on the accuracy of the multi-year classifications, we represented the interannual variability
of the NDVI of the iCL class samples. The mean annual NDVI time series displays a strong
seasonality (Figure 7), with two vegetation peaks corresponding to the wet season (from
October to March; period of soybean cultivation) and to the dry season (from April to
September; pasture period). The NDVI inter-annual variability is more pronounced during
the wet season, in particular for years of high ENSO intensity, with two peaks of NDVI
growth in 2015/2016 (related to the heterogeneity of rainfall and/or the quality of images),
and an extended plateau in 2018/2019. NDVI profiles are more homogeneous during the
dry season from June to August, even in an ENSO year.
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5.2.2. Impact of the Temporal Training Strategy on the Classification Performances

In Figure 8, the results show that the overall accuracy and the F-score of the iCL
class are higher for strategy (b), with pooled annual samples than for strategy (a), with
individual annual samples. This is particularly true for years with small sample datasets,
such as 2012/2013, 2013/2014 and 2018/2019. For years with large samples datasets
(2015/2016, 2016/2017 and 2017/2018), the overall precision and the F-score have little
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variation; regardless of the number of years used for training. The results suggest that
the classification accuracy is more related to the number of training samples than to the
inter-annual variability of the precipitation.
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5.3. Impact of Spatial Distribution of the Learning Database
5.3.1. The NDVI Inter-Regional Variability: Example of the iCL Class

The NDVI annual profile of the iCL class displays differences between agro-climatic
regions (Figure 9), especially during the rainy season (Dec–Feb). Region E has the “noisiest”
NDVI curve, with the greatest amplitude, but it is also the zones that contain the fewest
samples. During the dry season (June–August), zones C and D behave similarly, despite
the large difference in the number of samples. The dispersion and symmetry of the NDVI
distribution by region do not show a clear trend. In zone A, the amplitude is greater during
the rainy season, while for zones B, C and E, a greater diversity of values was found in the
dry season. In zone D, the amplitude does not vary significantly. Finally, all the regional
curves show that the average NDVI values between the rainy season and the dry season are
not significantly different (with slightly lower values in the dry season for regions B and C).
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Figure 9. Spatial variability of the mean annual NDVI time series (between mid-2012 and mid-2019)
of the iCL class samples over the five agro-climatic regions of Mato Grosso produced in previous
study [36].
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5.3.2. Impact of the Spatial Training Strategy on the Classification Performances

Analysis Figure 10 allows the assessment of the impact of the spatial sampling strategy
on the overall accuracy of the map and on the F-score of the iCL class. We observed that
the larger the number of samples in the region is, the higher the overall accuracy and the
F-score, both for training strategy (a), with regional samples, and for training strategy (b),
with global pooled samples. The overall accuracy and F-score values in zones B, C and D
are close for both strategies. In zone A, when all years are used for training (dataset b), there
is a significant improvement in the overall accuracy. Following the pattern of the previous
test, the results suggest that the classification accuracy is more related to the number of
samples for training than to the climatic variability present in the different regions of the
state.
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Figure 10. Global Accuracy (OA) and F-score of the iCL class, obtained for the five climatic regions
(A to E) and for the two spatial sampling strategies (datasets a and b). The histograms show the
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5.4. Assessment of Cropping System Classifications at the Different Levels
5.4.1. Global Accuracy

Given the previous results, the annual classification of the cropping systems was
trained with the unbalanced dataset (Bset2), and with all the available samples (aggregated
for all regions and years). The classification accuracy was assessed at each level of the
hierarchy.

The overall accuracy of the classifications of cropping systems obtained at the three
levels (the score was limited in the classes of each hierarchical level) is between 0.70 and
0.96 (Table 3). As expected, Level 01 (DC and SC classes) obtains, on average, the best score
(0.89) and shows the greatest multi-year stability (between 0.86 and 0.96). Next comes Level
02 (0.84 on average), then Level 03 (0.77 on average). Levels 02 and 03 have amplitudes of
variation within the same order.

Table 3. Overall accuracy of the annual hierarchical classification of the cropping systems, at the
three levels, for 7 years in Mato Grosso.

Overall Accuracy

Agricultural Year Level 01 Level 02 Level 03

2012/2013 0.87 0.91 0.72
2013/2014 0.86 0.72 0.70
2014/2015 0.89 0.91 0.73
2015/2016 0.87 0.89 0.74
2016/2017 0.89 0.85 0.92
2017/2018 0.90 0.77 0.80
2018/2019 0.96 0.82 0.79

7-year mean 0.89 0.84 0.77

7-year standard deviation 0.03 0.07 0.07
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5.4.2. Integrated System Classes Accuracy

The F-scores of the double crop and iCL classes calculated for each year are given
in Figure 11. The DC, iCL and iCL1 classes, although belonging to different levels, have
similar accuracy (respectively, 0.89, 0.85 and 0.84). The iCL2 class is less well ranked (0.63).
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At Level 02, the iCL class has a user accuracy between 0.8 and 0.94 (and. therefore,
a low commission error) and a producer precision between 0.68 and 0.88 (and, therefore,
a mean error of omission). The large number of false negatives suggest that the area
implanted with the iCLs is underestimated (some iCL areas have been classified as Soy-
bean+Cereals); on the other hand, the low number of false positives (of the Soybean+Cereals
areas classified as iCL) indicates more reliability when a pixel is classified as iCL. This
good result is partly due to the sample balancing strategy presented above (choice of a
distribution close to that found in reality).

The difference in classification accuracy between iCL1 and iCL2 can be explained
by the lack of available samples for the iCL2 class in addition to these samples being
more concentrated in time and space, with less spectro-temporal diversity, as can be seen
in Figure 4.

5.5. The Mato Grosso Cropping System Maps
5.5.1. The Final Classification Products

Based on the methodology, 21 maps were derived (7 years and 3 levels); Figure 12
shows the 2018–2019 cropping system map of Mato Grosso at Level 02, as an example of
the methodology output. Those maps can be used to analyze the land use dynamic and
iCL distribution over the years in different regions.

5.5.2. Evaluation of the Cropping System Maps with Official Statistics

The official harvest statistics (IBGE-PAM) [40], based on annual surveys carried
out at the municipal level, are only available for cotton and corn, sunflower and/or
sorghum crops. It is why we could only evaluate the classes Soybean+Cotton, and
Soybean+Cereals (Figure 13).



Remote Sens. 2022, 14, 1648 15 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 11. Annual F-score of the double crop and iCL classes of Level 01 (blue solid line), Level 02 
(orange large dotted line) and Level 03 (gray and yellow dotted line), calculated at the Mato Grosso 
scale between 2012–2013 and 2018–2019. 

The difference in classification accuracy between iCL1 and iCL2 can be explained by 
the lack of available samples for the iCL2 class in addition to these samples being more 
concentrated in time and space, with less spectro-temporal diversity, as can be seen in 
Figure 4. 

5.5. The Mato Grosso Cropping System Maps 
5.5.1. The Final Classification Products 

Based on the methodology, 21 maps were derived (7 years and 3 levels); Figure 12 
shows the 2018–2019 cropping system map of Mato Grosso at Level 02, as an example of 
the methodology output. Those maps can be used to analyze the land use dynamic and 
iCL distribution over the years in different regions. 

 
Figure 12. 2018/2019 Level 2 classification map at the Mato Grosso scale and a detailed area. Figure 12. 2018/2019 Level 2 classification map at the Mato Grosso scale and a detailed area.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 22 
 

 

5.5.2. Evaluation of the Cropping System Maps with Official Statistics 
The official harvest statistics (IBGE-PAM) [40], based on annual surveys carried out 

at the municipal level, are only available for cotton and corn, sunflower and/or sorghum 
crops. It is why we could only evaluate the classes Soybean+Cotton, and Soybean+Cereals 
(Figure 13). 

(a) (b) 

Figure 13. Comparisons between the annual cultivated areas of Mato Grosso given by IBGE-PAM 
and those obtained by Random Forest classification, for (a) cotton (class SCo), and (b) cereals (class 
SCe). 

At the state scale, the correlation between the annual cotton areas obtained by IBGE-
PAM and those obtained by image classification is 0.94. For the SCe class, the correlation 
is 0.74, with an overestimation of the area provided by the classification. This overestima-
tion is due to the inclusion of millet as class SCe (Soybean+Cereal) in our classification, 
while the millet class is not available in the IBGE database. In addition, the areas provided 
by IBGE-PAM are calculated based on interviews. 

Regarding the class iCL, which is the target of our work, IBGE does not have the 
means to provide that information, but other reference values can be found at “Rede ILPF”. 
Rede ILPF is an iCLF network in Brazil created by public and private companies. They 
were initiated in 2012 and aimed to accelerate the widespread adoption of integrated 
crop–livestock–forest (iCLF) technologies by rural producers. They organized a huge sur-
vey interviewing large farmers by telephone. This survey estimated for Mato Grosso an 
iCL area of 1.25 Mha in the 2015/2016 crop year; this value is similar to the 1.37 Mha ob-
tained in our study based on remote sensing techniques. 

6. General Discussion 
6.1. The Integrated Crop–Livestock System: A Remote-Sensing Challenge 

To meet the public policy needs related to Low Carbon Agriculture (Plan ABC) of the 
Brazilian state, in particular the monitoring of the integrated agriculture–livestock sys-
tems (iCL), we have developed a method to produce annual maps of cropping systems at 
larges areas. To do this, we had to overcome methodological and technical challenges: 
Mapping a complex and rare land-use class, retrospectively and at the regional scale, and 
on an operational mode. 

6.1.1. Mapping Rare Complex Agricultural Systems 
Integrated agricultural production systems cover different productive strategies with 

various spatio-temporal arrangements of agricultural, pastoral and forestry activities (se-
quential, associated crops, rotation, etc.). These are complex systems, difficult to map by 
remote sensing. In this study, understanding the spatial and temporal functioning of the 
integrated systems gave us the keys to move from land cover, as observed by satellite, to 
land use, which is the marker of socio-economic activity. 
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those obtained by Random Forest classification, for (a) cotton (class SCo), and (b) cereals (class SCe).

At the state scale, the correlation between the annual cotton areas obtained by IBGE-
PAM and those obtained by image classification is 0.94. For the SCe class, the correlation is
0.74, with an overestimation of the area provided by the classification. This overestimation
is due to the inclusion of millet as class SCe (Soybean+Cereal) in our classification, while
the millet class is not available in the IBGE database. In addition, the areas provided by
IBGE-PAM are calculated based on interviews.

Regarding the class iCL, which is the target of our work, IBGE does not have the
means to provide that information, but other reference values can be found at “Rede ILPF”.
Rede ILPF is an iCLF network in Brazil created by public and private companies. They
were initiated in 2012 and aimed to accelerate the widespread adoption of integrated crop–
livestock–forest (iCLF) technologies by rural producers. They organized a huge survey
interviewing large farmers by telephone. This survey estimated for Mato Grosso an iCL
area of 1.25 Mha in the 2015/2016 crop year; this value is similar to the 1.37 Mha obtained
in our study based on remote sensing techniques.
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6. General Discussion
6.1. The Integrated Crop–Livestock System: A Remote-Sensing Challenge

To meet the public policy needs related to Low Carbon Agriculture (Plan ABC) of the
Brazilian state, in particular the monitoring of the integrated agriculture–livestock systems
(iCL), we have developed a method to produce annual maps of cropping systems at larges
areas. To do this, we had to overcome methodological and technical challenges: Mapping
a complex and rare land-use class, retrospectively and at the regional scale, and on an
operational mode.

6.1.1. Mapping Rare Complex Agricultural Systems

Integrated agricultural production systems cover different productive strategies with
various spatio-temporal arrangements of agricultural, pastoral and forestry activities (se-
quential, associated crops, rotation, etc.). These are complex systems, difficult to map by
remote sensing. In this study, understanding the spatial and temporal functioning of the
integrated systems gave us the keys to move from land cover, as observed by satellite, to
land use, which is the marker of socio-economic activity.

As a rare class, there is a need to work on the land use training data. We analyzed
three different compositions of training data and found that the unbalanced dataset, with
a similar composition to reality, gave the best classification results for the iCL class. This
result is in accordance with Colditz et al. [61] and Mellor et al. [62], who showed better
Random Forest classification performance when the distribution of samples between classes
is closer to the actual proportion of the classes in the field. However, it is in contradiction
with other studies [60,65] that showed better classification results with balanced learning
samples. These opposing bibliographic results must be related to the richness of the training
samples and even in relation to the distribution and proportionality of minority classes.

6.1.2. Classify Agricultural Systems Retrospectively at Regional Scale

Testing the performance and robustness of classifications trained with samples ac-
quired at different years and in different regions is an essential pre-classification step, in
particular for areas with a great diversity of environments and agriculture production
systems, such as Mato Grosso state. For the temporal (and spatial) sensitivity of the train-
ing dataset, we tested two scenarios of classification, one using the associated annual
(agro-climatic regional) dataset to classify each year (each region), the other using the
whole training dataset to classify each year (each agroclimatic region). The results showed
that, in both cases, the classification accuracy was more related to the number of training
samples than to the inter-annual or regional variability of the environmental conditions,
suggesting the pooling of the samples for the classification. This training strategy finding is
in accordance with Picolli et al. [27], who obtained a good classification accuracy for double
cropping, using a unique learning and validation base of 1800 points for 15 years and for
different regions of the state of Mato Grosso. This result might seem to be in contradiction
with the results of Parente et al. [54,55], who showed the importance of considering the
spatial and temporal spectral variability of the pasture class in Brazil, but in fact, it is not,
as Parent et al. [54,55] artificially increased the number of samples by photo-interpretation
for each year of study and each scene of the national territory. This could not be done in
our study, as photo-interpreting the iCL class is not possible.

6.1.3. Processing a Large Volume of Data

Over the period studied, a total of 3864 images were processed. The image processing
was facilitated by the use of the Google Earth Engine (GEE) platform, which offers easy
access to images and which makes it possible to create processing chains that are easily
reusable on other datasets (regions or years). The solution proposed in this work is based
on Big Data technologies—Cloud computing and the use of machine learning algorithms
applied to Earth observation data. This approach has proven to have great potential to
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respond to the challenges previously posed in the field of remote sensing and allows the
development of methods for operational purposes.

6.2. Perspectives to Map Low Carbon Agriculture in Brazil
6.2.1. Research Perspectives

The dynamic of the Earth observation and science data tools opens up many perspec-
tives for methodological research. Thus, we can consider improving the image processing
chain by including other data sources that have a better spatial resolution (e.g., Land-
sat, CBERS, Sentinel-2) or that are less sensitive to cloud cover, such as radar images
(e.g., Sentinel-1). The data from the European Sentinel satellites of the COPERNICUS
program are extremely important in terms of mapping agricultural practices by their high
spatial and temporal resolution and by their spectral richness. The first Sentinel-2 satellite
was launched in 2015, but the 5-day revisit frequency was not reached until March 2018
for Brazil, limiting the use of these satellites for retrospective analysis. Thus, the advan-
tage of MODIS remains the consistency of the dataset over time since 2000, with a high
temporal frequency.

There are different multi-sensor data fusion pathways that could be tested for mapping
iCLF and to better distinguish the different iCLs systems. New machine learning algorithms
make it possible to process heterogeneous, multi-source data. CNN (Convolutional Neural
Networks)-type algorithms eliminate the need for the choice and calculation of descriptors,
and LSTM (Long Short-Term Memory)-type algorithms allow better consideration of time
information. However, the extraction power of these new tools is conditioned by learning
the underlying models, which requires a large amount of quality data. To date, the localized
datasets available on agricultural systems are not yet sufficient to take advantage of this
computing power.

6.2.2. Operational Perspectives

The possibility of using a large volume of Earth observation data with high-performance
computers and parallel processing has become popular, and its investment costs have con-
siderably decreased [33,66,67]. This drives the creation of structures based on Big Earth
Observation Data solutions. The combination of the Big Data and Earth Observation areas
enhances the use of time series of satellite images with the creation of data cube structures,
a multidimensional array of values (space, time, property) with great dimensionality [68],
enabling the identification of hidden patterns in large amounts of data to be transformed
into information [69].

Finally, the use of the Google Earth Engine allowed the development of the methodol-
ogy, with all the positive aspects already mentioned; however, this use poses the problem
of a solution proposed by a private actor who can modify their data and platform access
policy, and which stores the data and products. This type of risk is less in collaborative
structures, such as the Orfeo ToolBox (OTB) in France, or in national structures, such as
the structure under development of the Brazilian Data Cube, which will be the preferred
option for the pursuit of this work.

7. Conclusions

In this work, we developed a satellite image processing chain based on the classifica-
tion of MODIS time series for annual mapping of the integrated crop–livestock systems
(iCL) at a regional scale for seven agricultural seasons (2012–2019). The Random Forest
classification strategy was designed and tested in six agro-climatic regions of Mato Grosso
state, the biggest soybean producer in Brazil. Ground data with a heterogeneous distri-
bution in space and time was acquired in order to assess the spatio-temporal variability
impact on the classification results. The results show that the MODIS time series combined
with machine learning algorithms are capable of detecting sequential crops, especially inte-
grated crop–livestock systems, and that parallel computing in the cloud, as part of the Big
Earth Observation Data concept, allows the development of an efficient and reproducible
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methodology for mapping complex systems over large areas. This methodology can be
applied as an operational tool for monitoring the adoption of sustainable intensification
practices recognized by Brazil´s Agriculture Low Carbon Plan (ABC Plan).
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