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Abstract: This paper focuses on the high-resolution (HR) remote sensing images semantic segmenta-
tion task, whose goal is to predict semantic labels in a pixel-wise manner. Due to the rich complexity
and heterogeneity of information in HR remote sensing images, the ability to extract spatial details
(boundary information) and semantic context information dominates the performance in segmenta-
tion. In this paper, based on the frequently used fully convolutional network framework, we propose
a boundary enhancing semantic context network (BES-Net) to explicitly use the boundary to enhance
semantic context extraction. BES-Net mainly consists of three modules: (1) a boundary extraction
module for extracting the semantic boundary information, (2) a multi-scale semantic context fusion
module for fusing semantic features containing objects with multiple scales, and (3) a boundary
enhancing semantic context module for explicitly enhancing the fused semantic features with the
extracted boundary information to improve the intra-class semantic consistency, especially in those
pixels containing boundaries. Extensive experimental evaluations and comprehensive ablation stud-
ies on the ISPRS Vaihingen and Potsdam datasets demonstrate the effectiveness of BES-Net, yielding
an overall improvement of 1.28/2.36/0.72 percent in mF1/mIoU/OA over FCN_8s when the BE and
MSF modules are combined by the BES module. In particular, our BES-Net achieves a state-of-the-art
performance of 91.4% OA on the ISPRS Vaihingen dataset and 92.9%/91.5% mF1/OA on the ISPRS
Potsdam dataset.

Keywords: remote sensing images; semantic segmentation; boundary enhancing semantic context;
fully convolutional network

1. Introduction

Semantic segmentation of remote sensing images [1], also known as land-cover classi-
fication [2], aims at locating objects at the pixel level and predicting the semantic categorical
label for each pixel in a remote sensing image. It plays an important role in many remote
sensing applications [3,4] such as environmental change monitoring, precision agriculture,
environmental protection, and urban planning and 3D modeling.

Driven by the rapid development of aeronautics and astronautics technology, together
with Earth observation and remote-sensing technology, massive numbers of high-quality
and high-resolution remote sensing images have been captured. These high-resolution (HR)
remote sensing images are rich in information and contain substantial spatial detail, which
can provide the data support for land-cover classification and segmentation. Although
semantic segmentation of natural images has achieved considerable progress, the semantic
segmentation of HR remote sensing images is still a challenging task, since larger scenes
always contain more complex ground information with heterogeneous objects. HR remote
sensing images often exhibit large intra-class variations and small inter-class variations
at the semantic object level, due to the diversity and complexity of ground objects. For
example, the structure, color, and size of buildings show significant variation even in a
single scene, as shown by the two buildings outlined with blue rectangles in Figure 1, while
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trees and low vegetation are always indistinguishable due to their similar colors and fuzzy
boundaries, as shown by the areas in yellow circles in Figure 1. This makes it a difficult
task to classify high-resolution remote sensing images pixel by pixel.

Building

Tree

Low

vegetation

GTImage

Figure 1. A high-resolution remote sensing sample image and the corresponding ground truth (GT)
from ISPRS Vaihingen dataset. One can see the high intra-class variance (blue rectangles) and the low
inter-class variance (yellow circles).

Extensive studies have been presented on the challenging HR remote sensing images
semantic segmentation task, including studies using traditional methods and deep-learning-
based methods. The earlier traditional methods [5,6] mainly consisted of two parts: first
extracting features based on the color, shape, texture and spatial position relations of a
potential semantic object and then adopting clustering or classification methods to segment
the image. They depended heavily on hand-crafted features, always achieving unsat-
isfactory performance. Recently, with the advent of deep learning, deep convolutional
neural networks (DCNNs) have made great progress in semantic segmentation, due to
the ability of DCNNs to automatically extract nonlinear and hierarchical features at dif-
ferent semantic levels. Most current semantic segmentation methods are based on the
fully convolutional network (FCN) [7] framework, which replaces the fully connected
layers with convolutional ones to output spatial feature maps, then utilizes an upsampling
operation to generate the predicted maps. Generally, FCN-based architectures consist
of a contracting path (also known as an encoder), which extracts information from the
input image and obtains high-level feature maps, and an expanding path (also known as a
decoder), where high-level feature maps are utilized to generate the mask for pixel-wise
segmentation using single-level (e.g., FCN [7], DeepLab [8]) or multilevel (e.g., UNet [9])
upsampling procedures.

The semantic context information is a key factor in HR remote sensing images se-
mantic segmentation. Although DCNNs can automatically extract hierarchical semantic
features, they simultaneously also reduce the spatial resolution and degrade the spatial
detail information in high-level feature maps. Based on the high-level semantic features,
single-level upsampling methods (e.g., FCN [7], DeepLab [8]) directly adopt upsampling
and (or) dilated (atrous) convolution to generate the high-resolution segmentation output.
They may fail in some cases, especially when there are many relatively small objects (e.g.,
cars) in the fine-spatial-resolution remote sensing images. Alternatively, to address this
issue, the utilization of multi-scale contextual feature fusion is a feasible solution for dif-
ferentiating semantic categories at different spatial scales. The most commonly utilized
techniques for aggregating multi-scale contextual features include pyramid pooling mod-
ules [10], atrous spatial pyramid pooling [8,11], and context encoding modules [12]. These
strategies are always incorporated into the decoder part of the UNet framework. However,
in the UNet framework, the low-level and fine-grained detailed features extracted by the
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encoder are simply copied and then concatenated with the high-level and coarse-grained
semantic features extracted by the decoder, leading to insufficient exploitation of the feature
discrimination ability. Therefore, in this study, we investigated how to fuse the multi-scale
semantic contexts for parsing HR remote sensing images.

In addition, the boundary information of a semantic object may determine the final
performance of the HR remote sensing images semantic segmentation. It is well known
that in the semantic segmentation task, the pixels at the boundary are more likely to be
misclassified. However, HR remote sensing images always contain large and complex
scenes with heterogeneous objects with various shapes, scales, textures, and colors. The
boundaries of objects are often ambiguous and blurry [13,14] due to the lighting conditions,
imaging angles, occlusions, and shadows, as shown by the areas marked by yellow circles
in Figure 1. Although DCNNs have the ability to learn robust and discriminative features,
the features extracted by a DCNN always fail to distinguish the adjacent objects, since in HR
remote sensing images the semantic objects are adjacent and often have a similar appearance
(color). The reason may be that the high-level features of DCNNs tend to extract the local
semantic information while ignoring the global geometric prior and over-smoothing the
boundaries of objects, which is important for object localization. There are generally two
ways to improve the accuracy of the boundary: by adding the boundary loss [15–17] and
by adding extra boundary detection sub-networks [18–20]. These methods mainly focus on
the detection of the boundary, ignoring the relationships between the boundary and the
semantic context. That is, they pay little attention to utilizing the boundary information
to guide the semantic context, in order to improve the final performance of the semantic
segmentation at the object level. Therefore, we also investigated how to explicitly adopt the
extracted boundary information to enhance the semantic context for parsing HR remote
sensing images.

To address the above-mentioned two research points, in this paper we propose the
boundary enhancing semantic context network (BES-Net) for high-resolution remote sens-
ing images semantic segmentation. Based on the FCN framework, a ResNet [21] model is
adopted as the backbone to extract the hierarchical semantic features. Additionally, BES-
Net builds three modules to emphasize the boundary and semantic context information,
including the boundary extraction (BE) module, the multi-scale semantic context fusion
(MSF) module, and the boundary enhancing semantic context (BES) module. The BE mod-
ule is introduced to predict the binary boundary of the objects, simultaneously adopting
low-level detailed features and the highest-level semantic features from the backbone as
the input. It is supervised by the binary boundary labels generated from the segmentation
ground truth using the Laplacian operation [22]. The MSF module adopts the high-level
semantic features from the backbone as the input and fuses them with the attention mech-
anism in a hierarchical manner, to obtain the fused semantic features containing objects
with multiple scales. Finally, the BES module is designed to explicitly adopt the extracted
boundary information to enhance the fused semantic context using simple addition and
multiplication operations. By aggregating the semantic context information along with
the boundaries, pixels from the same semantic category can receive a similar response,
enhancing the semantic consistency.

The main contributions can be summarized as follows:

• We present a simple yet effective semantic segmentation framework, BES-Net, for HR
remote sensing images semantic segmentation.

• We explicitly, not implicitly, adopt the well-extracted boundary to enhance the seman-
tic context for semantic segmentation. Accordingly, three modules are designed to
enhance the semantic consistency in the complex HR remote sensing images.

• Experimental results on two HR remote sensing images semantic segmentation
datasets demonstrate the effectiveness of our proposed approach compared with
state-of-the-art methods.
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2. Related Work

This section briefly reviews related deep-learning-based semantic segmentation meth-
ods, mainly including the following two aspects: multi-scale feature learning for semantic
segmentation and boundary improved semantic segmentation.

2.1. Multi-Scale Feature Learning for Semantic Segmentation

Recently, deep convolutional neural network (DCNN)-based methods have dominated
the field of semantic segmentation. Fully convolutional networks (FCNs) [7] laid the
foundation for the application of CNNs in semantic segmentation by replacing the fully
connected layers with convolutional ones, to output spatial maps. Based on the FCN
framework, various semantic segmentation approaches have arisen. However, the feature
maps learned by the FCN backbone reduce the spatial resolution and lose the spatial
location information, which results in the inaccurate prediction of small objects and the
boundaries of objects.

To address this issue, a number of studies focus on multi-scale feature learning for
capturing more context information to enhance the feature representation. For example,
Zhao et al. [10] first proposed a pyramid pooling module to aggregate the multi-scale
semantic context information. Chen et al. [8] introduced an atrous spatial pyramid pooling
(ASPP) module with dilated convolution to expand the receptive fields at different scales.

Additionally, some research [23,24] is based on the UNet [9] framework, which in-
cludes an encoder–decoder structure with skip connections between the encoder and
decoder layers to bridge the high-level semantic information and low-level spatial informa-
tion. Bai et al. [24] presented a hierarchical context aggregation network, incorporating the
proposed compact ASPP module into the UNet framework to replace the copy-and-crop
operation for extracting the multi-scale context information. Diakogiannis et al. [25] ex-
tended the UNet framework by incorporating residual connections, atrous convolutions,
and pyramid scene parsing pooling, to perform multi-tasking learning.

Moreover, some research focused on enhancing feature learning by introducing atten-
tion mechanisms [14,23,26,27]. Chen et al. [26] presented a pioneering study utilizing the
attention to re-weight the multi-scale features. Then, Wang et al. [28] proposed a non-local
attention module to capture the global dependencies for pixels at all positions and to
utilize these to refine the feature representations. Yang et al. [29] proposed a multipath
encoder framework, consisting of a multipath attention-fused block module to fuse mul-
tipath features and a refinement attention-fused block module to fuse high-level abstract
features and low-level spatial features. Li et al. [23] proposed a multi-attention network to
extract contextual dependencies through multiple efficient attention modules with linear
complexity. They also proposed an attentive bilateral contextual network, i.e., a lightweight
convolutional neural network with a spatial path and a contextual path [27].

The above methods could refine the semantic features with some detailed spatial
information; however, they still could not handle the pixels at the boundary well, i.e., the
pixels that are easily misclassified.

2.2. Boundary Improved Semantic Segmentation

As an essential element of the image, boundaries play a vital role in improving the se-
mantic segmentation performance. Several studies have made great progress in improving
the accuracy of boundaries. In the early studies on DCNN-based semantic segmentation
performance, most modules adopted boundary information as a post-processing step to
refine the segmentation results, using methods such as boundary neural fields [30], an
affinity field [31], and a random walk [32].

Recently, some approaches have tended to explicitly construct a boundary detection
sub-network in parallel with the semantic segmentation network to distinguish these
confusing pixels. Takikawa et al. [17] specially designed a boundary detection stream and
combined the two tasks of boundary and semantic modeling for boundary enhancement.
Li et al. [16] pointed out that in an image, the object boundary and body area correspond
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to high- and low-frequency information, respectively, and they proposed solving semantic
segmentation by explicitly modeling the body consistency and edge preservation at the
feature level and then jointly optimizing them in a unified framework. Ding et al. [33]
proposed learning the boundary as an additional semantic class, to enable the network to
be aware of the boundary layout, using a boundary-aware feature propagation module
to harvest and propagate the local features within the regions isolated by the learned
boundaries. Ma et al. [18] also exploited the boundary information for context aggregation.
Sun et al. [19] proposed a boundary-aware semi-supervised semantic segmentation network
with a focus on the object boundaries in complex scenes, including a channel-weighted
multi-scale feature module that fuses the semantic and spatial information and a boundary
attention module that weights the feature map containing rich boundary information.

Moreover, some research [15,34,35] has additionally focused on developing novel loss
methods to address the boundary information. Zheng et al. [15] proposed a dice-based edge-
aware loss function to guide the networks to refine both the pixel-level and image-level
edge information directly from semantic segmentation prediction. EdgeNet [35] addresses
segmentation tasks from the perspective of efficiency. It contains a class-aware edge loss
module and a channel-wise attention mechanism. It aims to preserve the segmentation
performance with no drop in inference speed.

In summary, these methods always separately focus on learning semantic features or
extracting the boundary, ignoring their combination. They assume that the well-extracted
boundary can implicitly improve the semantic features for semantic segmentation. In our
study, we take one further step and explicitly design a boundary enhancing semantic context
module to refine the semantic features for improving the performance of HR remote sensing
images semantic segmentation.

3. Methodology

In this section, we introduce the framework of our proposed boundary enhancing
semantic network (BES-Net) for parsing high-resolution remote sensing images.

3.1. The Framework of BES-Net

As depicted in Figure 2, BES-Net explicitly adopts boundary information to enhance the
semantic context, ensuring that those pixels within one object achieve similar responses
after the semantic feature aggregation. Specifically, our method employs the ResNet [21]
model as its backbone to extract the hierarchical features, where the vanilla convolutions
are replaced by dilated ones to enlarge the receptive field (also known as FCN_8s [7]). The
backbone outputs five feature maps: F1 and F2 at 1/4 of the size of the input resolution, with
low-level detail information, and F3, F4, and F5 at 1/8 of the size of the input resolution,
with high-level semantic information. Moreover, BES-Net contains three modules for
aggregating the boundary and semantic context information, including the boundary
extraction (BE) module, the multi-scale semantic context fusion (MSF) module, and the
boundary enhancing semantic context (BES) module.

The BE module focuses on extracting the boundary information by regarding it as an
independent sub-task along with the mainstream semantic segmentation. The low-level
detail features are concatenated with the highest-level semantic features to capture the se-
mantic boundaries. The boundary information is supervised by the binary boundary labels
generated from the segmentation ground truth using a Laplacian operation. Furthermore,
regarding the three high-level semantic features which have different semantic scales, the
MSF module fuses them using the attention mechanism in a hierarchical manner to obtain
the refined semantic features. Finally, the BES module is carefully designed to enhance
the semantic context with the extracted semantic boundaries from the BE module. By
aggregating the semantic information along the boundaries, pixels from the same semantic
category can receive a similar response, thus enhancing the semantic consistency. We give
details of each of the modules in the following subsections.
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MSF Module

BES 
Module

BE Module

𝐿𝑏

𝐿𝑠𝑒𝑔

𝐹1 𝐹2 𝐹5

𝐹3 𝐹4 𝐹5

𝐹𝑓

𝐹𝑏

GT boundary 
generation

𝐹5 𝐹𝑒

Input Output GT

Figure 2. The pipeline of our proposed BES-Net framework for parsing HR remote sensing images.
In addition to the backbone, BES-Net also contains three other main components: the boundary
extraction (BE) module, the multi-scale semantic context fusion (MSF) module, and the boundary
enhancing semantic context (BES) module. The BES module can enhance the semantic information
extracted from MSF module with the boundary information extracted from the BE module, to improve
the semantic segmentation performance, giving more intra-class segmentation consistency.

3.2. Boundary Extraction Module

The boundary extraction module is designed to extract the boundaries of semantic
objects. Since deep convolutional neural networks can learn features containing both
low-level detail information and high-level semantic information in a hierarchical manner,
the BE module directly borrows the intermediate features from the backbone. Although
the boundary information exists in the low-level detail feature maps, most of them lack
the semantic information. Therefore, to extract the semantic boundary, as well as the two
low-level detail features (F1 and F2), the BE module also utilizes the highest-level semantic
feature (F5) as an input, as shown in Figure 3.

Conv1×1 Conv1×1 Conv1×1

Conv3×3 Conv3×3 Conv3×3

𝐹1 𝐹2 𝐹5 𝐹𝑏

𝐿𝑏

C

Boundary Extraction

C:addition :concatenation

Figure 3. The boundary extraction (BE) module.

Based on the inputs, the BE module firstly unifies their channels to db (e.g., = 64) using
3× 3 convolutional layers. The extracted boundary feature map of F5 is upsampled to the
size of F1 (i.e., 1/4 of the size of the input) and then they are concatenated together as the
boundary features Fb.
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Furthermore, to ensure the boundary features truly contain the boundary information
of a semantic object, the extracted multi-scale boundary feature maps are supervised by the
binary boundary labels generated from the segmentation ground truth. Specifically, the
multi-scale boundary feature maps are mapped to the 1-channel boundary maps by 1× 1
convolutional layers and the sigmoid function, then merged by element-wise addition.

The binary boundary labels are generated from the semantic segmentation ground
truth using the Laplacian operation, as shown in Figure 4. Since the semantic objects
in a scene always have various sizes, inspired by ASPP [8] we performed the boundary
extraction at different scales. Given the ground truth (GT), we can obtain the corresponding
boundary (GTb) as follows:

GTb = Convs
(

Cati=1,2,4
(
Up(LConvi(GT))

))
, (1)

where LConvi is the convolution which adopts the Laplacian operator

−1 −1 −1
−1 8 −1
−1 −1 −1


as the convolutional kernel to perform 2D convolutions with strides of i (i = 1, 2 and 4,
respectively). This can produce soft, thin-detail feature maps with multi-scale semantic
boundaries. Then, the feature maps are bilinearly upsampled (Up) to the original size, and
channels are concatenated (Cat) together and mapped to the 1-channel boundary maps by
1× 1 convolutional layers (Convs).

Laplacian
Conv

(Stride=1)

Laplacian
Conv

(Stride=2)

Laplacian
Conv

(Stride=4)

Conv1×12×

4×

GT Boundary Processor

GT Generated
GT boundary

Figure 4. The procedure for GT boundary generation.

3.3. Multi-Scale Semantic Context Fusion Module

The three high-level features (F3, F4, and F5) have different semantic scales, due to
the different receptive fields. The multi-scale semantic context fusion module is designed
to fuse the multi-scale semantic information into one feature map. As shown in Figure 5,
the three high-level features (F3, F4, and F5) are firstly converted to f3, f4, and f5 with
the same channel d f (e.g., = 128 for ResNet18, = 512 for ResNet50 and ResNet101) using
1× 1 convolutional layers. Then, they are fused by the fusion blocks in a hierarchical
manner to obtain the fused semantic features.

The fusion block is based on the channel attention mechanism, since different channels
of features may correspond to different semantic classes [36]. Compared to features from
different spatial positions, the features from different channels may have higher class
discriminability. Considering this, the fusion block aims to effectively exploit the cross-
scale complementary information by re-weighting the importance of single-scale features
in a channel-dependent way.
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𝐹𝑖
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MSF Module
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Conv1×1 Conv1×1 Conv1×1

𝑓4 𝑓5𝑓3

𝑊

Figure 5. The multi-scale semantic context fusion (MSF) module.

As shown on the right of Figure 5, given the two-scale features ( fi and f j, i < j),
they are concatenated and then fed into two convolutional layers to obtain the relative
importance of the paired features from different scales but in the same channels. The
channel importance (or attention) weights W can be calculated as follows:

W = GAP
(

Sigmoid
(
Convs

(
Cat( fi, f j)

)))
, (2)

where Cat(∗) is the channel concatenation operation, and Convs(∗) is a convolutional
block with a 1× 1 convolutional layer (for channel reduction) and a 3× 3 convolutional
layer (for feature refining). Sigmoid(∗) is the sigmoid function, and GAP(∗) denotes the
global average pooling operation.

Higher values of W indicate that the corresponding channels of features at the jth
scale are more likely to be important than the corresponding channels of features at the
ith scale, and vice versa. As a result, the relative importances of the channels of features
from different scales are obtained. Therefore, we can adopt the gate fusion method [37] to
fuse the two scale features, where the channel importance weights correspond to the gate.
Based on the channel importance weights, the fused features can be computed as follows:

f f = fusion( fi, f j) (3)

= fi • (1−W) + f j •W,

where fusion(∗) represents the whole fusion block, and • denotes channel-wise multiplication.
Finally, the three high-level features (F3, F4, and F5) are fused by the MSF module in a

hierarchical manner with a fusion block, to obtain the final fused feature Ff .

Ff = fusion
(

F3, fusion(F4, F5)
)
. (4)

3.4. Boundary Enhancing Semantic Context Module

Since the semantic boundary has intrinsic partitioning capability for an object, the
goal of the BES module is to enhance the fused semantic features Ff , to give them more
intra-class consistency using the extracted boundary features Fb. The key point is the
method of aggregating the two features. Ff has sufficient semantic information (focusing
on the body area of an object without the boundary information), while Fb has salient
boundary information. They complement each other in describing an object.
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Like the fusion block of the MSF module in the previous subsection, the BES module
is designed based on two fundamental mathematical operations (element-wise addition,
+, and element-wise multiplication, ×) to aggregate the two complementary features.
Generally, the multiplication operation can filter out the boundary-related information
to emphasize it, while the addition operation can complement two features. With the
two simple, parameter-free mathematical operations, two complementary features can
be effectively fused to describe the complete information of objects. Moreover, to obtain
more robust performance, we also utilize the extracted boundary features Fb to enhance the
highest-level semantic feature F5.

As shown in Figure 6, given three features, i.e., the fused semantic features Ff , the
extracted boundary features Fb, and the highest-level semantic features F5, the BES module
firstly unifies the channel numbers of the three features to de (e.g., = 128) using 1 × 1
convolutional layers. Taking the highest-level semantic features F5 as an example, this is
updated as follows:

F5 ⇐ ASPP
(
Conv(F5)

)
, (5)

where ASPP(∗) is the atrous spatial pyramid pooling module [8], and Conv(∗) denotes the
1× 1 convolutional layer for unifying the channel numbers.

ASPP

𝐹𝑓 𝐹5𝐹𝑏

𝐹𝑒

BEF Module

:addition:multiplication

Conv1×1Conv1×1 Conv1×1

𝐹𝑓 𝐹𝑏

𝐹5

Figure 6. The boundary enhancing semantic context (BES) module.

All the features are then upsampled to the size of Fb (i.e., 1/4 of the size of the input).
Finally, the fused semantic features Ff are enhanced by the extracted boundary features

Fb using the addition and multiplication operations. Simultaneously, in order to make the
boundary-related information more salient, features F5 are also enhanced by Fb using the
multiplication operation. The final enhanced features Fe are calculated as follows:

Fe = Ff + Fb × Ff + Fb × F5. (6)

3.5. Loss Function

Based on the final enhanced features Fe, with sufficient semantic information and
boundary information, we can predict the segmentation results with a convolution block
(sequentially including a 3× 3 convolutional layer and a 1× 1 convolutional layer), in the
same way as for FCN [7] and DeepLab [8].
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In our framework, BES-Net outputs two main results that aim to generate the seg-
mentation masks and boundaries, respectively. For semantic segmentation, we adopt the
standard cross-entropy Lseg to measure the difference between the predicted masks P and
the ground truth G:

Lseg = − 1
K

K

∑
k=1

∑
i

(
Gi,k log Pi,k + (1− Gi,k) log(1− Pi,k)

)
, (7)

where K is the number of semantic categories corresponding to K predicted feature maps,
and the subscript i,k denotes the ith pixel in the kth predicted feature map.

Similarly, for boundary prediction, we also adopt the binary cross-entropy to measure
the difference between the predicted boundary Pb and the ground truth boundary Gb:

Lb = −∑
i

(
Gb

i log Pb
i + (1− Gb

i ) log(1− Pb
i )
)
. (8)

Additionally, following the settings in DeepLab [8], to accelerate model convergence
we also apply an auxiliary cross-entropy loss Laux to the intermediate feature representa-
tions of the backbone. Therefore, the overall training loss is

L = Lseg + λ1Lb + λ2Laux, (9)

where λ1 and λ2 are the hyperparameters. We empirically set λ1 = 1 and λ2 = 0.4.

4. Experiments and Results

In this section, we evaluate the effectiveness of our proposed methods for HR re-
mote sensing images semantic segmentation on two public 2D semantic labeling datasets
provided by the International Society for Photogrammetry and Remote Sensing (ISPRS)
(https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/, ac-
cessed on 26 February 2022): Vaihingen and Potsdam. Both datasets cover urban scenes.
The reference data are labeled according to six land-cover classes: impervious surfaces,
buildings, low vegetation, trees, cars, and clutter/background.

4.1. Experimental Settings
4.1.1. Datasets and Settings

The ISPRS Vaihingen dataset recorded a relatively small village with many detached
buildings and small multi-story buildings. It contains 33 orthophoto image patches. The
images have an average size of 2494× 2064 pixels and a resolution of 9 cm. The near-
infrared (IR), red (R), and green (G) channels, together with corresponding digital surface
models (DSMs) and normalized DSMs (NDSMs), are provided in the dataset. We only
utilized the IR-R-G images; the DSMs were not used in the experiments. Following the
official data split, we employed 16 images for training and 17 images for testing.

The ISPRS Potsdam dataset recorded a typical historic city with large building blocks,
narrow streets, and a dense settlement structure. It contains 38 orthophoto image patches.
The images have a size of 6000× 6000 pixels and a resolution of 5 cm. The dataset provides
the near-infrared, red, green, and blue channels, as well as DSMs and NDSMs. Again, we
only utilized the IR-R-G images in the experiments. Following the official data split, we
employed 24 images for training and 14 images for testing.

https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/
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4.1.2. Evaluation Metrics

Following existing studies, the overall accuracy (OA), mean intersection over union
(mIoU), and mean F1-score (mF1) were adopted as evaluation metrics. Based on the
accumulated confusion matrix, the OA, mIoU, and mF1 were calculated as.

OA =
∑K

k=1 TPk

∑K
k=1 TPk + FPk + TNk + FNk

, (10)

mIoU =
1
K

K

∑
k=1

TPk
TPk + FPk + FNk

, (11)

mF1 =
1
K

K

∑
k=1

F1k

=
1
K

K

∑
k=1

2×
precisionk × recallk

precisionk + recallk
, (12)

where TPk, FPk, TNk, and FNk denote the true positive, false positive, true negative, and
false negative values for a class k, respectively. In addition, precisionk = TPk

TPk+FPk
and

recallk =
TPk

TPk+FNk
are the precision and recall indicators for class k, respectively.

4.1.3. Implementation Details

The implementation (https://github.com/FlyC235/BESNet, accessed on 26 February 2022)
of our method uses the PyTorch framework. Following existing HR remote sensing images
semantic segmentation studies, the ResNet model was adopted as the backbone network for
a fair comparison, and the pre-trained ImageNet parameters were adopted for the network
initialization. We used the dilated FCN_8s as the baseline. In the training phase, considering
the limited GPU memory, we cut the training images, as well as the corresponding labels,
into patches with a size of 512 × 512, using a sliding window with an overlap of 171
(≈512× 1

3 ) pixels. To avoid overfitting, some common data augmentation methods were
adopted, including random flipping and rotating at 30-degree intervals. We adopted
the mini-batch stochastic gradient descent (SGD) optimizer for optimization, with the
momentum and weight decay parameters set to 0.9 and 0.0005, respectively. The maximum
training epoch number itermax was set to 120 for the Vaihingen dataset and 200 for the
Potsdam dataset. We set the initial learning rate as 0.005. The "poly" learning rate strategy
[38] was adopted to update the learning rate, where at each iteration (iter) the learning rate
is multiplied by (1− iter

itermax
)0.9. Following the settings used in other studies [19,24,27], in

the testing phase we also adopted data augmentation strategies, including horizontal and
vertical flipping, multiple scales [0.75×, 1×, 1.25×], and overlay fusion on the full test files,
which is also known as test-time augmentation (TTA).

4.2. Ablation Experiments

In this section, we evaluate the effectiveness of our proposed BES-Net method, in-
cluding three components: the boundary extraction (BE) module, the multi-scale semantic
context fusion (MSF) module, and the boundary enhancing semantic context (BES) module.
The ablation experiments were only conducted on the ISPRS Vaihingen dataset (note that
to simply show the effectiveness of different components during the ablation experiments,
we only reported the results without the test-time augmentation (TTA) during testing). The
dilated FCN_8s with the ResNet50 backbone was adopted as the baseline. On this basis, we
tested the effectiveness of each module by incorporating them separately or simultaneously.
The results are shown in Figure 7.

https://github.com/FlyC235/BESNet
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mF1 mIoU OA

Baseline 88.23 71.65 89.56

+BE 88.82 73.31 89.80

+MSF 88.57 73.45 90.12

BES-Net 89.51 74.01 90.28

71

73
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77

79

81

83

85

87

89

91
Baseline +BE +MSF BES-Net

Figure 7. Ablation study (%) on ISPRS Vaihingen dataset.

From the figure, we can see that the three modules all have a positive effect on
improving the baseline performance,since:

• Compared to the baseline, using only the BE module (+BE) improved the mF1, mIoU,
and OA by 0.59%, 1.66%, and 0.24%, respectively.

• Compared to the baseline, using only the MSF module (+MSF) improved the mF1,
mIoU, and OA by 0.34%, 1.80%, and 0.56%, respectively.

• When combining the BE and MSF modules using the BES module (our BES-Net),
the mF1, mIoU, and OA were improved by 1.28%, 2.36%, and 0.72%, respectively,
compared to the baseline.

• Compared to +BE and +MSF methods, our BES-Net performed much better. This
demonstrates the effectiveness of explicitly adopting boundary information to enhance
the semantic context.

• The ablation experiments demonstrated the effectiveness of our proposed three mod-
ules, BE, MSF, and BES, for HR remote sensing images semantic segmentation.

Furthermore, based on the framework of BES-Net, we visualized the intermediate
feature maps generated by our proposed three modules. As shown in Figure 8, the feature
map of Fb has rich boundary information at the semantic object level, while the feature
map of Ff has sufficient high-level semantic information (focusing on the body area of an
object without the boundary information) of multi-scale objects, including those at a fine
scale (the small cars) and at a coarse scale (the large buildings). Fb and Ff complement each
other in describing an object. After aggregating the fused semantic features Ff using the
extracted boundary features Fb to obtain the final enhanced features Fe, the feature map of
Fe has abundant boundary and semantic context information simultaneously. Finally, the
predicted results from Fe matched the ground truth more accurately, with more intra-class
semantic consistency.
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Image GT Predictions

𝐹𝑏 𝐹𝑓 𝐹𝑒

Figure 8. Visualization results of intermediate feature maps of one sample image from ISPRS
Vaihingen dataset. The top row shows the sample image, corresponding ground truth (GT), and the
segmentation results predicted by our proposed BES-Net method. The bottom row shows the feature
maps of the extracted boundary features Fb, the fused multi-scale semantic features Ff , and the final
enhanced features Fe, respectively.

4.2.1. Boundary Extraction

In our proposed boundary extraction module, we adopted two low-level detail features
(F1 and F2) and only the highest-level semantic feature (F5) as the inputs. To verify why
only F5 was utilized and not the other two features F3 and F4, we conducted the following
experiments (Baseline+BE) with different input combinations. Since the goal of the BE
module is to extract the semantic boundaries, we used a fixed input for the two low-level
detail features and gradually added the high-level semantic features from F5 to F3. The
results are listed in Table 1. We can see that only combining the highest-level semantic
features F5 achieved the best performance. When adding more features, the performance
was degraded, especially regarding the mIoU metric. This is reasonable, because F5 can
provide sufficient semantic information to guide the boundary learning, and adding F3 and
F4 introduces more convolution parameters.

Table 1. The performance (%) of BE module with different input combinations on ISPRS Vaihin-
gen dataset.

Index
Inputs

mF1 mIoU OA
F1 F2 F3 F4 F5

ine ¬ X X - - X 88.82 73.31 89.80
­ X X - X X 88.85 71.56 89.73
® X X X X X 88.59 71.90 89.80

4.2.2. Multi-Scale Semantic Context Fusion

In our proposed multi-scale semantic context fusion module, we fuse the three high-
level semantic features F3, F4, and F5 in a hierarchical manner (Equation (4)), firstly fusing
two features and then fusing the last one with the fused result. To determine the fusion
strategy, we conducted the following experiments (Baseline+MSF) with different fusion
orders. F3, F4, and F5 have sequentially higher semantic scales. According to their semantic
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scales, we set three kinds of orders, corresponding to indexes ¯, °, and ±, as listed in
Table 2. We can see that method ¯ with the fusion fusion

(
F3, fusion(F4, F5)

)
order, in a

coarse-to-fine scale manner, achieved the best performance.

Table 2. The performance (%) of MSF module with different fusion orders on ISPRS Vaihingen dataset.

Index Fusion Orders mF1 mIoU OA

¯ fusion
(

F3, fusion(F4, F5)
)

88.57 73.45 90.12
° fusion

(
F4, fusion(F3, F5)

)
88.53 72.95 89.95

± fusion
(
fusion(F3, F4), F5

)
88.35 72.31 90.09

² Cat(¯,°,±) 88.89 72.66 89.97

Moreover, we also conducted more experiments by concatenating the results of the
above three methods, corresponding to index ². Compared to our method (index ¯), this
introduced twice as many convolution parameters, achieving a slightly better mF1 result
(+0.32%) but a much worse mIoU result (-0.79%).

4.2.3. Boundary Enhancing Semantic Context

In our proposed boundary enhancing semantic context module, we introduced a
feature aggregation method containing two simple mathematical operations to utilize
the extracted boundary features to enhance the fused multi-scale semantic features. To
verify the effectiveness of the feature aggregation method, we conducted the following
experiments (BES-Net) with different boundary enhancing semantic features. Table 3
shows that:

• When the highest-level backbone semantic feature F5 is enhanced by the boundary
feature Fb, corresponding to index ³, it achieves better performance compared to
the baseline.

• When Fb enhances the fused multi-scale semantic features Ff , corresponding to index
´, it slightly outperforms method ³.

• Finally, Fb simultaneously enhancing Ff and F5, corresponding to index µ, achieves
the best performance.

• The experimental results demonstrate the effectiveness of our BES-Net in explicitly
adopting boundary information to enhance the semantic context.

Table 3. The performance (%) of BES module with different boundary enhancing semantic features
on ISPRS Vaihingen dataset.

Index
Inputs

mF1 mIoU OA
Fb Ff F5

Baseline - - - 88.23 71.65 89.56
³ X - X 89.01 72.97 90.18
´ X X - 89.47 73.61 90.17
µ X X X 89.51 74.01 90.28

4.2.4. Backbone

Furthermore, we conducted experiments based on our BES-Net with different ResNet
backbones, including ResNet18, ResNet50, and Resnet101. As shown in Table 4, with
increasing model parameters, the segmentation performances were improved according to
the mF1 and OA metrics. This is reasonable, because the well-structured ResNet models
with more parameters correspond to more powerful feature representation capabilities.
However, from ResNet18 to ResNet101, the parameters increase by about five times, and
the results on the Vaihingen dataset show improvements in mF1 of 0.82% and in OA of



Remote Sens. 2022, 14, 1638 15 of 21

0.65%, while the results on the Vaihingen dataset only show improvements in mF1 of 0.07%
and in OA of 0.18%.

Moreover, The results of ResNet18 on the Potsdam dataset are better than those on
Vaihingen dataset, which is reasonable since the Potsdam dataset has a fine resolution (5
cm), while the Vaihingen dataset has a slightly coarser resolution (9 cm). Fine-resolution
images can provide more spatial detail about the objects.

Table 4. The performance (%) of BES-Net with different ResNet backbones on ISPRS Vaihingen and
Potsdam datasets.

Backbone
Vaihingen Potsdam

mF1 mIoU OA mF1 mIoU OA

ine ReNet18 88.86 73.00 89.92 92.05 78.21 90.52
ResNet50 89.51 74.01 90.28 92.09 77.98 90.64

ResNet101 89.68 75.04 90.57 92.26 77.91 90.71

4.2.5. The Hyperparameters in the Loss Function

There are two hyperparameters in the loss function (Equation (9)): λ1 for boundary
loss Lb and λ2 for auxiliary loss Laux. As most of the related studies follow the settings of
DeepLab [8] to set the hyperparameter λ2 = 0.4, we also adopted this setting here. For the
hyperparameter λ1, we conducted experiments with different values, {0.1, 0.5, 1.0, 5.0, 10.0}.

As shown in Figure 9, we find that the mF1/OA of BES-Net improves when the weight
range is from 0.1 to 0.5 to 1.0, then drops when the weight range is from 1.0 to 5.0 to 10.0.
The highest performance is achieved when λ1 = 1.0 (the boundary loss and segmentation
loss have equal weight). Furthermore, the performance of BES-Net drops slightly when the
weights are 0.1 and 0.5 but drops dramatically when the weights are 5.0 and 10.0. These
results suggest that focusing too much on the boundary information may lead to ignoring
the inter-class semantic information. Therefore, the boundary loss and segmentation loss
should have equal weight.

88.97
89.11

89.51

88.86

87.61

90.07 90.1
90.28

89.71

88.77

86

86.5

87

87.5

88
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89

89.5
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90.5

0.1 0.5 1 5 10

λ1

mF1
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Figure 9. The effect (%) of different weights λ1 of the boundary loss.

4.3. Comparison to the State of the Art

This section compares our BES-Net (with a ResNet18, ResNet50, and ResNet101
backbone) to state-of-the-art HR remote sensing images semantic segmentation methods.
The results with test-time augmentation (TTA) on the ISPRS Vaihingen and Potsdam
datasets are listed in Table 5.

The experiments on the Vaihingen dataset show that:

• Our proposed BES-Net method can achieve comparable performance to the current
state-of-the-art results obtained by BAS4Net [19], except on car segmentation, and



Remote Sens. 2022, 14, 1638 16 of 21

it outperforms all the other comparison methods. However, BAS4Net has more
parameters due to the additional discriminator network.

• Regarding the lightweight models, compared to ABCNet [27] our BES-Net method
with the ResNset18 backbone can achieve a slightly better performance on all metrics.

• All the results demonstrate the effectiveness of our proposed BES-Net method for
enhancing the semantic context using boundary information to improve the intra-class
semantic consistency.

Table 5. Quantitative results (%) comparing state-of-the-art methods on ISPRS Vaihingen and
Potsdam test datasets.

Method Backbone
Per-Class F1-Score

mF1 OA
Impervious Surfaces Building Low Vegetation Tree Car

Vaihingen

DeepLabV3+ [11] ResNet101 92.4 95.2 84.3 89.5 86.5 89.6 90.6
PSPNet [10] ResNet101 92.8 95.5 84.5 89.9 88.6 90.3 90.9
IPSPNet [39] ResNet101 89.6 91.5 82.0 88.3 68.4 84.0 87.8
CVEO [40] SDFCN139 90.5 92.4 81.7 88.5 79.4 86.5 88.3
LWN [1] ResNet101 91.0 94.9 79.2 88.6 88.4 87.6 88.9
DANet [41] ResNet101 91.6 95.0 83.3 88.9 87.2 89.2 90.4
DDCM-Net [42] ResNet50 92.7 95.3 83.3 89.4 88.3 89.8 90.4
CASIA2 [43] ResNet101 93.2 96.0 84.7 89.9 86.7 90.1 91.1
HCANet [24] ResNet101 92.5 95.0 84.2 89.4 84.0 89.0 90.3
BAS4Net [19] ResNet101 93.3 95.8 85.0 90.1 90.1 90.9 91.3
ABCNet [27] ResNet18 92.7 95.2 84.5 89.7 85.3 89.5 90.7

BES-Net (ours) ResNet18 92.8 95.5 84.8 90.0 85.8 89.8 90.9
BES-Net (ours) ResNet50 93.0 96.0 85.4 90.0 88.3 90.6 91.2
BES-Net (ours) ResNet101 93.4 95.9 85.2 90.3 87.8 90.5 91.4

Potsdam

DeepLabV3+ [11] ResNet101 93.0 95.9 87.6 88.2 96.0 92.1 90.9
PSPNet [10] ResNet101 93.4 97.0 87.8 88.5 95.4 92.4 91.1
CVEO [40] SDFCN139 91.2 94.5 86.4 87.4 95.4 91.0 89.0
DDCM-Net [42] ResNet50 92.9 96.9 87.7 89.4 94.9 92.4 90.8
CCNet [44] ResNet101 93.6 96.8 86.9 88.6 96.2 92.4 91.5
HCANet [24] ResNet101 93.1 96.6 87.0 88.5 96.1 92.3 90.8
ABCNet [27] ResNet18 93.5 96.9 87.9 89.1 95.8 92.6 91.3

BES-Net (ours) ResNet18 93.8 97.0 88.1 88.9 96.4 92.9 91.5
BES-Net (ours) ResNet50 93.9 97.3 87.9 88.5 96.5 92.8 91.4
BES-Net (ours) ResNet101 93.7 97.2 87.9 88.9 96.3 92.8 91.3

The experiments on the Potsdam dataset show that our proposed BES-Net method
with the ResNet18 backbone obtains the best performance with respect to the two metrics
mF1 and mIoU. The experiments suggest that our proposed method can boost the semantic
segmentation performance, with more intra-class segmentation consistency, at a holistic
semantic object level. Regarding the backbones, ResNet18 can achieve comparable (or
slightly better) performance on the two metrics mF1 and mIoU, compared to ResNet50 and
ResNet101. However, ResNet18 has considerably fewer parameters.

The experimental results indicate that for the Potsdam dataset with a fine resolution
(5 cm), ResNet18 is sufficient to extract the spatial details and semantic information for
parsing the HR remote sensing images. It can provide the best balance between the
computational burden of forward inference and richness of feature learning.

4.4. Qualitative Analysis

Figures 10 and 11 show the visualization results of our BES-Net (ResNet18) method
and the corresponding baseline (FCN_8s) on the Vaihingen and Potsdam test datasets,
respectively. It can be seen that compared to the baseline, our BES-Net method significantly
improved the segmentation performance, especially in the regions marked with red dashed
circles (or boxes). Benefiting from the utilization of the BE, MSF, and BES modules, our BES-
Net method could obtain a coherent and accurately labeled result in these heterogenous
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regions which are hard to distinguish. The three modules together learn the features from
the entire semantic object level, resulting in segmentation results with more complete
boundaries. Some representative samples can be found in Figures 10 and 11. We can
observe that:

• Some pixels are easily misclassified by the baseline method. (1) in Figures 10a and 11a,
some regions of the building with a red roof are misclassified as low vegetation. (2) In
Figure 11b, some regions of low vegetation with complex textures are misclassified
as impervious surfaces. (3) In Figure 11c, some regions of the building with a gray
roof are misclassified as clutter/background. The baseline method could not process
those pixels belonging to one object in a holistic fashion, while our BES-Net method
considering the semantic boundary had the global concept of an entire semantic object
to improve the segmentation performance.

• As shown in Figure 10b, our BES-Net can separate two adjacent cars while the baseline
may link them. This is because our BES-Net with boundary enhancement can generate
clear boundaries and regular shapes.

• The object boundaries generated by our BES-Net are remarkably more complete than
those from baseline, especially for regular objects such as buildings, as shown in
Figures 10c and 11c. BES-Net can draw out the complete shape of the building with a
clear boundary, while the baseline yields an incomplete building due to interruptions
caused by different textures.

• All these results demonstrate that our BES-Net is more robust to adjacent object
confusion and can effectively capture fine-structured objects with both boundary and
semantic information at an entire semantic object level.

Moreover, to show the effectiveness of our proposed method for handling challenging
situations when there is cloud shadow, some sample visualization results of our BES-
Net (ResNet18) method and the corresponding baseline (FCN_8s) method are shown in
Figure 12. As the red circles illustrate, the baseline method may miss some cars in shadow,
while our BES-Net is able to perceive them. Our network can achieve better performance
in challenging situations with shadows.

Image

GT
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Ours

Building

Tree

Low veg.

Car

Imp. Surf.

Clutter/

background

(a) (b) (c)

Figure 10. Visualization of semantic segmentation results on the Vaihingen test dataset. The red
dashed circles (or boxes) are used to mark the regions which have been obviously improved by
our method.
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Figure 11. Visualization of semantic segmentation results on the Potsdam test dataset. The red dashed
circles (or boxes) are used to mark the regions which have been obviously improved by our method.
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Figure 12. Visualization of semantic segmentation results on some sample images with shadow. The
red dashed circles are used to mark the regions with shadow which have been obviously improved
by our method.
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4.5. Computational Complexity

We compared the computational complexity with state-of-the-art methods such as
ABCNet [27], FANet [45], MAResU-Net [46], and SwiftNet [47]. Model parameters and
computation FLOPs are also listed for comparison in Table 6. Note that for a fair comparison,
we used the same backbone (ResNet18) network to evaluate the computational complexity.
We can see that compared to the state-of-the-art lightweight method ABCNet, our BES-Net
achieved better performance with fewer parameters and FLOPs, maintaining both low
computational cost and high accuracy simultaneously.

Table 6. The computational complexity of our BES-Net method and other lightweight methods.

Model Backbone Params (M) FLOPs (G) mF1 OA

PSPNet [10] ResNet18 24.0 12.6 79.0 87.7
DANet [41] ResNet18 12.7 9.9 79.6 88.2
FANet [45] ResNet18 21.7 13.8 85.4 88.9

MAResU-Net [46] ResNet18 25.4 16.2 87.7 90.1
SwiftNet [47] ResNet18 18.8 34.2 88.3 90.2
ABCNet [27] ResNet18 14.1 18.7 89.5 90.7

BES-Net(ours) ResNet18 13.6 15.8 89.8 90.9

5. Conclusions and Discussion

We presented a boundary enhancing semantic context network (BES-Net) in this paper
that could improve the semantic segmentation performance for parsing high-resolution
remote sensing images. The main idea was that we explicitly, not implicitly, used the
well-extracted boundary to enhance the semantic context for semantic segmentation. BES-
Net simultaneously takes the boundary and semantic context information into account
using three designed modules. The BES module enhances the fused multi-scale semantic
context extracted from the MSF module, using the boundary information extracted from
the BE module to boost the semantic segmentation performance, giving more intra-class
segmentation consistency at a holistic semantic object level. Experiments on the ISPRS
Vaihingen and Potsdam datasets showed that when only the boundary information or
multi-scale semantic context was incorporated, the segmentation performance was slightly
improved, while adding our BES module to explicitly enhance the fused multi-scale se-
mantic segmentation using boundary information improved the performance considerably.
This demonstrates the progressiveness and superiority of our proposed BES-Net method,
even compared to the current state-of-the-art methods.

Although it achieves a relatively fine combination of boundary information and seman-
tic context, the proposed BES-Net still has room for improvement. (1) Efficiency. At present,
due to the high dimensionality, our BE module still has a relatively high computational
cost. (2) Performance. To reduce the computational cost, our BES module only utilizes two
simple parameter-free mathematical operations(element-wise addition and element-wise
multiplication), to fuse two complementary features. There should be more effective ways
to design the BES module. Therefore, our future work will focus on further optimizing
the BE and BES modules, reducing the complexity of the BE module while maintaining
its performance and adopting more effective methods for using boundary information to
enhance semantic context. Furthermore, focusing on more challenging situations in the
actual scenarios, e.g., images with clouds and shadows, is also an interesting topic.
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